Solving Lattice Point Problems Using Rational Generating Functions

Kevin Woods
Oberlin College

An Easy Start

Question: How many even numbers are there between 100 and 250?

An Easy Start

Question: How many even numbers are there between 100 and 250?

List them all:
$100,102,104,106,108,110,112,114,116,118,120,122,124,126,128$,
$130,132,134,136,138,140,142,144,146,148,150,152,154,156,158$, $160,162,164,166,168,170,172,174,176,178,180,182,184,186,188$, 190, 292, 294, 296, 298, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, $220,222,224,226,228,230,232,234,236,238,240,242,244,246,248$, 250
and count: 76.

An Easy Start

This is the wrong way to answer the question.

Another Easy One

Question: How many dots are in this picture?

Another Easy One

Question: How many dots are in this picture?

Count them: 76.
This is the best we can do.

Philosophy Class

The difference:

Philosophy Class

The difference:

The set of even numbers between 100 and 250 has a pattern that we can take advantage of.

Theme of talk: Demonstrate a nice tool to take advantage of the special structure of certain sets.

That tool is generating functions.

The Easy Problem, Redux

Given a set $S \subseteq \mathbb{N}$, define the generating function

$$
f(S ; x)=\sum_{a \in S} x^{a}
$$

In example,

$$
\begin{aligned}
f(S ; x) & =x^{100}+x^{102}+x^{104}+\cdots+x^{248}+x^{250} \\
& =\frac{x^{100}-x^{252}}{1-x^{2}} .
\end{aligned}
$$

Then $|S|=f(S ; 1)$.
Use l'Hospital's rule:

$$
f(S ; 1)=\frac{100-252}{-2}=76
$$

The Easy Problem, Redux

Given a set $S \subseteq \mathbb{N}$, define the generating function

$$
f(S ; x)=\sum_{a \in S} x^{a}
$$

In example,

$$
\begin{aligned}
f(S ; x) & =x^{100}+x^{102}+x^{104}+\cdots+x^{248}+x^{250} \\
& =\frac{x^{100}-x^{252}}{1-x^{2}} .
\end{aligned}
$$

Then $|S|=f(S ; 1)$.
Use l'Hospital's rule:

$$
f(S ; 1)=\frac{100-252}{-2}=76
$$

The Easy Problem, Redux

Given a set $S \subseteq \mathbb{N}$, define the generating function

$$
f(S ; x)=\sum_{a \in S} x^{a}
$$

In example,

$$
\begin{aligned}
f(S ; x) & =x^{100}+x^{102}+x^{104}+\cdots+x^{248}+x^{250} \\
& =\frac{x^{100}-x^{252}}{1-x^{2}} .
\end{aligned}
$$

Then $|S|=f(S ; 1)$.
Use l'Hospital's rule:

$$
f(S ; 1)=\frac{100-252}{-2}=76
$$

The Easy Problem, Redux

Given a set $S \subseteq \mathbb{N}$, define the generating function

$$
f(S ; x)=\sum_{a \in S} x^{a}
$$

In example,

$$
\begin{aligned}
f(S ; x) & =x^{100}+x^{102}+x^{104}+\cdots+x^{248}+x^{250} \\
& =\frac{x^{100}-x^{252}}{1-x^{2}} .
\end{aligned}
$$

Then $|S|=f(S ; 1)$.
Use l'Hospital's rule:

$$
f(S ; 1)=\frac{100-252}{-2}=76
$$

The Frobenius Problem

Let $a_{1}, a_{2}, \ldots, a_{d}$ be nonnegative integers such that $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{d}\right)=1$. Let

$$
S=\left\{\lambda_{1} a_{1}+\cdots+\lambda_{d} a_{d}: \quad \lambda_{i} \in \mathbb{N}\right\}
$$

Question: What is the largest integer not in S ?
Question: How many positive integers are not in S ?

The Frobenius Problem

Example: $a_{1}=3, a_{2}=7$.

$$
S=\{0,3,6,7,9,10,12,13,14, \ldots\}
$$

Question: What is the largest integer not in S ? Answer: 11.

Question: How many positive integers are not in S ? Answer: 6.

Generating Functions to the Rescue

Listing out the set is the "wrong" way to answer these questions, because there's some structure we're not using.

Let's use generating functions.

$$
f(S ; x)=x^{0}+x^{3}+x^{6}+x^{7}+x^{9}+x^{10}+\cdots
$$

As before, this can be rewritten as a nice rational function.
We will later show that

$$
f(S ; x)=\frac{1-x^{a_{1} a_{2}}}{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)}
$$

Generating Functions to the Rescue

Listing out the set is the "wrong" way to answer these questions, because there's some structure we're not using.

Let's use generating functions.

$$
f(S ; x)=x^{0}+x^{3}+x^{6}+x^{7}+x^{9}+x^{10}+\cdots
$$

As before, this can be rewritten as a nice rational function.
We will later show that

$$
f(S ; x)=\frac{1-x^{a_{1} a_{2}}}{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)}
$$

Generating Functions to the Rescue

Listing out the set is the "wrong" way to answer these questions, because there's some structure we're not using.

Let's use generating functions.

$$
f(S ; x)=x^{0}+x^{3}+x^{6}+x^{7}+x^{9}+x^{10}+\cdots
$$

As before, this can be rewritten as a nice rational function.
We will later show that

$$
f(S ; x)=\frac{1-x^{a_{1} a_{2}}}{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)}
$$

Generating Functions to the Rescue

Let $T=\mathbb{N} \backslash S$ (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; x) & =\frac{1}{1-x}-f(S ; x) \\
& =\frac{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)-(1-x)\left(1-x^{a_{1} a_{2}}\right)}{(1-x)\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)}
\end{aligned}
$$

The largest integer not in S is the degree of the polynomial $f(T ; x)$, which is

$$
\left(1+a_{1} a_{2}\right)-\left(1+a_{1}+a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2} .
$$

The number of positive integers not in S is $f(T ; 1)$, which is (taking the limit as $x \rightarrow 1$)

$$
\frac{a_{1} a_{2}-a_{1}-a_{2}+1}{2}
$$

Generating Functions to the Rescue

Let $T=\mathbb{N} \backslash S$ (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; x) & =\frac{1}{1-x}-f(S ; x) \\
& =\frac{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)-(1-x)\left(1-x^{a_{1} a_{2}}\right)}{(1-x)\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)}
\end{aligned}
$$

The largest integer not in S is the degree of the polynomial $f(T ; x)$, which is

$$
\left(1+a_{1} a_{2}\right)-\left(1+a_{1}+a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2} .
$$

The number of positive integers not in S is $f(T ; 1)$, which is (taking the limit as $x \rightarrow 1$)

$$
\frac{a_{1} a_{2}-a_{1}-a_{2}+1}{2}
$$

Generating Functions to the Rescue

Let $T=\mathbb{N} \backslash S$ (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; x) & =\frac{1}{1-x}-f(S ; x) \\
& =\frac{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)-(1-x)\left(1-x^{a_{1} a_{2}}\right)}{(1-x)\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)}
\end{aligned}
$$

The largest integer not in S is the degree of the polynomial $f(T ; x)$, which is

$$
\left(1+a_{1} a_{2}\right)-\left(1+a_{1}+a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2} .
$$

The number of positive integers not in S is $f(T ; 1)$, which is (taking the limit as $x \rightarrow 1$)

$$
\frac{a_{1} a_{2}-a_{1}-a_{2}+1}{2}
$$

Generating Functions to the Rescue

Let $T=\mathbb{N} \backslash S$ (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; x) & =\frac{1}{1-x}-f(S ; x) \\
& =\frac{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)-(1-x)\left(1-x^{a_{1} a_{2}}\right)}{(1-x)\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)}
\end{aligned}
$$

The largest integer not in S is the degree of the polynomial $f(T ; x)$, which is

$$
\left(1+a_{1} a_{2}\right)-\left(1+a_{1}+a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2} .
$$

The number of positive integers not in S is $f(T ; 1)$, which is (taking the limit as $x \rightarrow 1$)

$$
\frac{a_{1} a_{2}-a_{1}-a_{2}+1}{2}
$$

Generating Functions to the Rescue

Let $T=\mathbb{N} \backslash S$ (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; x) & =\frac{1}{1-x}-f(S ; x) \\
& =\frac{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)-(1-x)\left(1-x^{a_{1} a_{2}}\right)}{(1-x)\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)}
\end{aligned}
$$

The largest integer not in S is the degree of the polynomial $f(T ; x)$, which is

$$
\left(1+a_{1} a_{2}\right)-\left(1+a_{1}+a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2} .
$$

The number of positive integers not in S is $f(T ; 1)$, which is (taking the limit as $x \rightarrow 1$)

$$
\frac{a_{1} a_{2}-a_{1}-a_{2}+1}{2}
$$

Generating Functions to the Rescue

Let $T=\mathbb{N} \backslash S$ (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; x) & =\frac{1}{1-x}-f(S ; x) \\
& =\frac{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)-(1-x)\left(1-x^{a_{1} a_{2}}\right)}{(1-x)\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)}
\end{aligned}
$$

The largest integer not in S is the degree of the polynomial $f(T ; x)$, which is

$$
\left(1+a_{1} a_{2}\right)-\left(1+a_{1}+a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2} .
$$

The number of positive integers not in S is $f(T ; 1)$, which is (taking the limit as $x \rightarrow 1$)

$$
\frac{a_{1} a_{2}-a_{1}-a_{2}+1}{2}
$$

What else?

Questions:

- What types of sets can be encoded as rational generating functions?
- What types of sets can be encoded as short rational generating functions, quickly?

If $S \subseteq \mathbb{N}^{n}$, then let

$$
f(S ; \mathbf{x})=\sum_{s=\left(s_{1}, \ldots, s_{n}\right) \in S} x_{1}^{s_{1}} x_{2}^{s_{2}} \cdots x_{n}^{s_{n}} .
$$

What else?

Question: When can a set be encoded as a rational generating function?

Answer [W]: If and only if it can be written like

$$
\begin{aligned}
S=\{x \in \mathbb{N} \mid & \forall y_{1} \in \mathbb{N}, \exists y_{2} \in \mathbb{N}: \\
& \left(3 y_{1}+5 y_{2}-x \geq 0\right) \text { and } \\
& \left.\left(5 y_{1}+2 y_{2}+3 x<5 \text { or } 3 y_{1}-x=7\right)\right\}
\end{aligned}
$$

using quantifiers (\exists and \forall), boolean operations (and, or, not), and linear (in)equalities $(\leq,=,>)$.

These are sentences in the Presburger arithmetic.

What else?

Examples:

$$
S=\{x \in \mathbb{N} \mid \exists y \in \mathbb{N}: 2 y=x \text { and } 100 \leq x \leq 250\}
$$

$$
\begin{aligned}
S=\{x \in \mathbb{N} \mid & \exists \lambda_{1} \in \mathbb{N}, \ldots, \exists \lambda_{d} \in \mathbb{N}: \\
& \left.x=a_{1} \lambda_{1}+\cdots+a_{d} \lambda_{d}\right\}
\end{aligned}
$$

A Computer Example

```
for i=0 to 5
    for j=0 to i
        Do something that requires i\cdotj units of storage
    end
end
```

Want to compute

$$
\sum_{i=0}^{5} \sum_{j=0}^{i} i j
$$

Let

$$
S=\left\{(i, j) \in \mathbb{N}^{2} \mid i \leq 5 \text { and } j \leq i\right\} .
$$

We want

$$
\sum_{(i, j) \in S} i j .
$$

A Computer Example

```
for i=0 to 5
    for j=0 to i
    Do something that requires i\cdotj units of storage
    end
end
```

Want to compute

$$
\sum_{i=0}^{5} \sum_{j=0}^{i} i j
$$

Let

$$
S=\left\{(i, j) \in \mathbb{N}^{2} \mid i \leq 5 \text { and } j \leq i\right\} .
$$

We want

$$
\sum_{(i, j) \in S} i j .
$$

A Computer Example

A Computer Example

A Computer Example

A Computer Example

A Computer Example

A Computer Example

A Computer Example

A Computer Example

A Computer Example

We have

$$
f(S ; x, y)=\sum_{(i, j) \in S} x^{i} y^{j}
$$

We want

$$
\sum_{(i, j) \in S} i j
$$

A Computer Example

We have

$$
f(S ; x, y)=\sum_{(i, j) \in S} x^{i} y^{j}
$$

We want

$$
\begin{gathered}
\sum_{(i, j) \in S} i j \\
\frac{\partial^{2}}{\partial x \partial y} f(S ; x, y)=\sum_{(i, j) \in S} i j x^{i-1} y^{j-1} .
\end{gathered}
$$

Therefore we want

$$
\left.\frac{\partial^{2}}{\partial x \partial y} f(S ; x, y)\right|_{x=1, y=1}=140
$$

Summary

- We can often use patterns in seemingly complicated sets to encode them compactly as generating functions.
- We can manipulate the generating functions to answer questions about the sets.

Quick now!

Question: When can we find $f(S ; \mathbf{x})$ quickly?
We want an algorithm that inputs a Presburger sentence and outputs $f(S ; \mathbf{x})$.

The input size is the number of bits needed to encode the input for the algorithm.

The input size of a number a is approximately

$$
\log _{2}(a)
$$

An algorithm is polynomial time if there is a polynomial p such that the algorithm runs in at most p (input size) steps.
polynomial time $=$ quick

Quick now!

Question: When can we find $f(S ; \mathbf{x})$ quickly?
We want an algorithm that inputs a Presburger sentence and outputs $f(S ; \mathbf{x})$.

The input size is the number of bits needed to encode the input for the algorithm.

The input size of a number a is approximately

$$
\log _{2}(a)
$$

An algorithm is polynomial time if there is a polynomial p such that the algorithm runs in at most p (input size) steps.
polynomial time $=$ quick

Quick now!

Question: When can we find $f(S ; \mathbf{x})$ quickly?
We want an algorithm that inputs a Presburger sentence and outputs $f(S ; \mathbf{x})$.

The input size is the number of bits needed to encode the input for the algorithm.

The input size of a number a is approximately

$$
\log _{2}(a)
$$

An algorithm is polynomial time if there is a polynomial p such that the algorithm runs in at most p (input size) steps.
polynomial time $=$ quick

Good Algorithms

- If there are no quantifiers, there is a polynomial time algorithm (if we fix the number of variables) [Barvinok].
- If only \exists 's are needed to define S, there is a polynomial time algorithm (if we fix the number of variables and linear inequalities) [W].

No Quantifiers

This is like the previous example:

$$
S=\left\{(i, j) \in \mathbb{N}^{2} \mid i \leq 5 \text { and } j \leq i\right\}
$$

- Inclusion-Exclusion of cones [Brion]
- Not all cones are "nice" (unimodular):

No Quantifiers

This is like the previous example:

$$
S=\left\{(i, j) \in \mathbb{N}^{2} \mid i \leq 5 \text { and } j \leq i\right\} .
$$

- Inclusion-Exclusion of cones [Brion]
- Not all cones are "nice" (unimodular):

unimodular decomposition [Barvinok]

No Quantifiers

This is like the previous example:

$$
S=\left\{(i, j) \in \mathbb{N}^{2} \mid i \leq 5 \text { and } j \leq i\right\} .
$$

- Inclusion-Exclusion of cones [Brion]
- Not all cones are "nice" (unimodular):

unimodular decomposition [Barvinok]

No Quantifiers

This is like the previous example:

$$
S=\left\{(i, j) \in \mathbb{N}^{2} \mid i \leq 5 \text { and } j \leq i\right\} .
$$

- Inclusion-Exclusion of cones [Brion]
- Not all cones are "nice" (unimodular):

unimodular decomposition [Barvinok]

Existential Quantifiers

Projections

$$
S=\{i \in \mathbb{N} \mid \exists j \in \mathbb{N}:(i, j) \in P\}
$$

We need to compute generating functions for projections of $P \cap \mathbb{Z}^{n}$, where P is a polyhedron.

$$
T(i, j)=i, \text { and } S=T\left(P \cap \mathbb{Z}^{2}\right)
$$

Existential Quantifiers

1-d Kernel

Example: Frobenius Problem with $a_{1}=2, a_{2}=5$.
$P=\{(i, j): i, j \geq 0\}$
$T(i, j)=2 i+5 j$. (1-d Kernel)
Then $S=T\left(P \cap \mathbb{Z}^{2}\right)$.

Existential Quantifiers

1-d Kernel

Compute $f\left(P \cap \mathbb{Z}^{2} ; x, y\right)=\frac{1}{(1-x)(1-y)}$. [Barvinok]

Compute $f\left(P \cap \mathbb{Z}^{2} ; t^{2}, t^{5}\right)$. Then $x^{i} y^{j} \mapsto t^{2 i+5 j}$.

Existential Quantifiers

1-d Kernel

$$
\begin{aligned}
f\left(P \cap \mathbb{Z}^{2} ; t^{2}, t^{5}\right) & =\frac{1}{\left(1-t^{2}\right)\left(1-t^{5}\right)}=\left(1+t^{2}+t^{4}+\cdots\right)\left(1+t^{5}+\cdots\right) \\
& =1+t^{2}+t^{4}+t^{5}+t^{6}+t^{7}+t^{8}+t^{9}+\cdots
\end{aligned}
$$

Existential Quantifiers

1-d Kernel

$$
\begin{aligned}
f\left(P \cap \mathbb{Z}^{2} ; t^{2}, t^{5}\right) & =\frac{1}{\left(1-t^{2}\right)\left(1-t^{5}\right)}=\left(1+t^{2}+t^{4}+\cdots\right)\left(1+t^{5}+\cdots\right) \\
& =1+t^{2}+t^{4}+t^{5}+t^{6}+t^{7}+t^{8}+t^{9}+2 t^{10}+\cdots
\end{aligned}
$$

Existential Quantifiers

1-d Kernel

$$
\begin{aligned}
f\left(P \cap \mathbb{Z}^{2} ; t^{2}, t^{5}\right) & =\frac{1}{\left(1-t^{2}\right)\left(1-t^{5}\right)}=\left(1+t^{2}+t^{4}+\cdots\right)\left(1+t^{5}+\cdots\right) \\
& =1+t^{2}+t^{4}+t^{5}+t^{6}+t^{7}+t^{8}+t^{9}+2 t^{10}+\cdots
\end{aligned}
$$

Problem: $\quad T$ is not 1 -1 on $P \cap \mathbb{Z}^{2}$.

Existential Quantifiers

1-d Kernel

$$
\text { Let } Q=\{(i, j): i \geq 5, j \geq 0\}
$$

$$
\begin{aligned}
f\left(Q \cap \mathbb{Z}^{2} ; x, y\right) & =\frac{x^{5}}{(1-x)(1-y)} \\
f\left(Q \cap \mathbb{Z}^{2} ; t^{2}, t^{5}\right) & =\frac{t^{10}}{\left(1-t^{2}\right)\left(1-t^{5}\right)}
\end{aligned}
$$

Existential Quantifiers

1-d Kernel

T is 1-1 on $(P-Q) \cap \mathbb{Z}^{2}$.

$$
\begin{aligned}
f(S ; t) & =f\left(P \cap \mathbb{Z}^{2} ; t^{2}, t^{5}\right)-f\left(Q \cap \mathbb{Z}^{2} ; t^{2}, t^{5}\right) \\
& =\frac{1-t^{10}}{\left(1-t^{2}\right)\left(1-t^{5}\right)}
\end{aligned}
$$

Existential Quantifiers

1-d Kernel

T is $1-1$ on $(P-Q) \cap \mathbb{Z}^{2}$.

$$
\begin{aligned}
f(S ; t) & =f\left(P \cap \mathbb{Z}^{2} ; t^{2}, t^{5}\right)-f\left(Q \cap \mathbb{Z}^{2} ; t^{2}, t^{5}\right) \\
& =\frac{1-t^{10}}{\left(1-t^{2}\right)\left(1-t^{5}\right)}
\end{aligned}
$$

Existential Quantifiers

1-d Kernel

Why This Works: There are no gaps in the fibers of T.

Only works for 1-d kernel.

Existential Quantifiers

Higher-d Kernel

General situation: Use induction on the dimension of the kernel.

Must control the gaps.

Existential Quantifiers

Higher-d Kernel

A Tool:

Flatness Theorem (Khinchin): Convex objects that contain no integer points are thin in some direction.

Existential Quantifiers

Higher-d Kernel

Looking at a fiber of the desired projection, suppose we project onto the thinnest direction.

If there are large gaps,

Existential Quantifiers

Higher-d Kernel

Looking at a fiber of the desired projection, suppose we project onto the thinnest direction.

If there are large gaps,
Then there is a lattice-free polytope that is wide. Contradiction.

Existential Quantifiers

Higher-d Kernel

Look at a fiber of $T(P)$, and pick the thinnest direction. That direction gets projected out last (inductively).

Existential Quantifiers

Higher-d Kernel

Complication: Different fibers have different thin directions. Solution: Break things up into pieces [Kannan].

Applications

- Frobenius problem [Barvinok-W]
- Minimal Hilbert Bases [Barvinok-W]
- Hilbert series of rings generated by monomials [Barvinok-W]
- Test sets for integer programming [Barvinok-W]
- Integer programming gaps [Hoșten-Sturmfels]
- Reduced Gröbner bases for toric ideals, and some related computations [De Loera, et al.]
- Standard pairs and arithmetic degree of order ideals in integer programming [Thomas-W]
- Ehrhart quasi-polynomials (and their period) [W]

Summary

- We can often use hidden structure in seemingly complicated sets to encode them compactly as generating functions.
- We can manipulate the generating functions to answer questions about the sets.

Summary

- We can often use hidden structure in seemingly complicated sets to encode them compactly as generating functions.
- We can manipulate the generating functions to answer questions about the sets.
- We can do many of these things quickly.

Thank You!

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

- General sentences.

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

- General sentences.

Bad

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

- General sentences.

Bad

- Fix number of variables, no quantifiers.

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

- General sentences.

Bad

- Fix number of variables, no quantifiers.

Good [Barvinok]

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

- General sentences.

Bad

- Fix number of variables, no quantifiers.

Good [Barvinok]

- Fix number of variables, quantifiers allowed.

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

- General sentences.

Bad

- Fix number of variables, no quantifiers.

Good [Barvinok]

- Fix number of variables, quantifiers allowed. Bad, even with a single quantifier [W; Schöning]

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

- General sentences.

Bad

- Fix number of variables, no quantifiers.

Good [Barvinok]

- Fix number of variables, quantifiers allowed.

Bad, even with a single quantifier [W; Schöning]

- Fix number of variables and inequalities, only \exists quantifiers.

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

- General sentences.

Bad

- Fix number of variables, no quantifiers.

Good [Barvinok]

- Fix number of variables, quantifiers allowed. Bad, even with a single quantifier [W; Schöning]
- Fix number of variables and inequalities, only \exists quantifiers.

Good [W]

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

- General sentences.

Bad

- Fix number of variables, no quantifiers.

Good [Barvinok]

- Fix number of variables, quantifiers allowed.

Bad, even with a single quantifier [W; Schöning]

- Fix number of variables and inequalities, only \exists quantifiers.

Good [W]

- Fix number of variables and inequalities, mixed quantifiers.

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

- General sentences.

Bad

- Fix number of variables, no quantifiers.

Good [Barvinok]

- Fix number of variables, quantifiers allowed.

Bad, even with a single quantifier [W; Schöning]

- Fix number of variables and inequalities, only \exists quantifiers.

Good [W]

- Fix number of variables and inequalities, mixed quantifiers.
?????

Thank You!

