Solving Lattice Point Problems
Using Rational Generating Functions

Kevin Woods
Oberlin College

5,0)

An Easy Start

Question: How many even numbers are there between 100 and
2507

An Easy Start

Question: How many even numbers are there between 100 and
2507

List them all:
100,102,104,106,108,110,112,114,116,118,120, 122,124,126, 128,

130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158,

160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188,

190, 292, 294, 296, 298, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218,

220,222,224, 226, 228,230, 232, 234, 236, 238, 240, 242, 244, 246, 248,
250

and count: 76.

An Easy Start

This is the wrong way to answer the question.

Another Easy One

Question: How many dots are in this picture?

Another Easy One

Question: How many dots are in this picture?

Count them: 76.
This is the best we can do.

Philosophy Class

The difference:

Philosophy Class

The difference:

The set of even numbers between 100 and 250 has a pattern that
we can take advantage of.

Theme of talk: Demonstrate a nice tool to take advantage of the
special structure of certain sets.

That tool is generating functions.

The Easy Problem, Redux
Given a set S C N, define the generating function
f(S;x) = Zxa.
acs

In example,

F(S:x) = x100 | 102 | 4104 4,248 4 250

100 __ 252
T 1-x2
Then |S| = f(S;1).
Use I'Hospital'’s rule:
f(5:1) = 20 =22 _ 46

-2

The Easy Problem, Redux
Given a set S C N, define the generating function
f(S;x) = Zx".
aes

In example,

F(S:x) = x100 1 x102 | 4104 4 248 4 250

100 __ 252
T 1-x2
Then |S| = f(S;1).
Use I'Hospital'’s rule:
f(5:1) = 20 =22 _ 46

-2

The Easy Problem, Redux
Given a set S C N, define the generating function
f(S;x) = Zx".
aes
In example,

F(S:x) = x100 | 102 | 4104 4,248 4 250

5100 _ 252

1—x2

Then |S| = f(S;1).

Use I'Hospital'’s rule:

100 — 252

f(5;1) = =

76.

The Easy Problem, Redux
Given a set S C N, define the generating function
f(S;x) = Zx".
aes

In example,

F(S:x) = x100 | 102 | 4104 4,248 4 250

100 __ 252
T 1-x2
Then |S| = f(S5;1).
Use I'Hospital'’s rule:
f(5:1) = 20 =22 _ 6

-2

The Frobenius Problem

Let a1, a0,...,ay be nonnegative integers such that
ged(a, az,...,a4) = 1. Let

S={Mai+ -+ Xgag: A\ € N}.

Question: What is the largest integer not in S7

Question: How many positive integers are not in 57

The Frobenius Problem

Example: a1 =3, ap = 7.

S =1{0,3,6,7,9,10,12,13,14,...}.

Question: What is the largest integer not in S7
Answer: 11.

Question: How many positive integers are not in S?
Answer: 6.

Generating Functions to the Rescue

Listing out the set is the “wrong” way to answer these questions,
because there's some structure we're not using.

Let's use generating functions.

F(S;x)=x"+x3 +x0 +x"+x%+x104 ...

As before, this can be rewritten as a nice rational function.

We will later show that
1— xo12

(1 —x21)(1 —x2)

f(S;x) =

Generating Functions to the Rescue

Listing out the set is the “wrong” way to answer these questions,
because there's some structure we're not using.

Let's use generating functions.

F(S;x) = X0+ x4+ x0 x5 + x10 4

As before, this can be rewritten as a nice rational function.

We will later show that
1— xo12

(1 —x21)(1 —x2)

f(S;x) =

Generating Functions to the Rescue

Listing out the set is the “wrong” way to answer these questions,
because there's some structure we're not using.

Let's use generating functions.

F(Six) =x"+ x> + X0+ x" + 57+ x4

As before, this can be rewritten as a nice rational function.

We will later show that
1 — xa12

(1 —x2)(1 — x2)

f(S;x) =

Generating Functions to the Rescue
Let T =N\ S (which is {1,2,4,5,8,11} in the example).

f(T,x)= % — f(S;x)

(1 —x)(1—x%2) — (1 —x)(1—x1%2)
(1—x)(1—x2)(1 — x*2) ’

The largest integer not in S is the degree of the polynomial
f(T; x), which is

(14 a1a2) — (1 + a1+ a2) = a1a2 — a1 — ao.

The number of positive integers not in S is f(T; 1), which is
(taking the limit as x — 1)

8132—31—22+1
5 .

Generating Functions to the Rescue
Let T =N\ S (which is {1,2,4,5,8,11} in the example).

F(T:x) = L—f(s %)

— (]-—X)(1—X)—(1—X)(1_X3122)
(1—x)(1—xa)(1—x=) :

The largest integer not in S is the degree of the polynomial
f(T; x), which is

(14 a1a2) — (1 + a1+ a2) = a1a2 — a1 — ao.

The number of positive integers not in S is f(T; 1), which is
(taking the limit as x — 1)

8132—31—22+1
5 .

Generating Functions to the Rescue
Let T =N\ S (which is {1,2,4,5,8,11} in the example).

F(T:x) = L—f(s %)

— (]-—X)(1—X)_(1—X)(1_X3122)
(1= x)(1 —xa)(1 — x*2) :

The largest integer not in S is the degree of the polynomial
f(T; x), which is

(1+a1a2) — (1 + a1+ a2) = a1a2 — a1 — ao.

The number of positive integers not in S is f(T; 1), which is
(taking the limit as x — 1)

8132—31—22+1
5 .

Generating Functions to the Rescue
Let T =N\ S (which is {1,2,4,5,8,11} in the example).

F(T:x) = L—f(s %)

:(]-—X)(l—X)—(1—X)(1_X8132)
(1—x)(1—x2)(1—x=) :

The largest integer not in S is the degree of the polynomial
f(T; x), which is

(L+a1a) — (1 + a1+ ap) = a1ap — a1 — ap.

The number of positive integers not in S is f(T; 1), which is
(taking the limit as x — 1)

8132—31—22+1
5 .

Generating Functions to the Rescue
Let T =N\ S (which is {1,2,4,5,8,11} in the example).

F(T:x) = L—f(s %)

— (]-—X)(l—X)—(1—X)(1_X8132)
(1= x)(1 —xa)(1 — x*2) :

The largest integer not in S is the degree of the polynomial
f(T; x), which is

(1+a1a2) —(1+a1+a)=aia—a; — a.

The number of positive integers not in S is f(T; 1), which is
(taking the limit as x — 1)

8132—31—32+1
5 .

Generating Functions to the Rescue
Let T =N\ S (which is {1,2,4,5,8,11} in the example).

F(T:x) = L—f(s %)

— (]-—X)(l—X)—(1—X)(1_X8132)
(1= x)(1 —xa)(1 — x*2) :

The largest integer not in S is the degree of the polynomial
f(T; x), which is

(14 a1a2) — (1 + a1+ a2) = a1a2 — a1 — ao.

The number of positive integers not in S is f(T; 1), which is
(taking the limit as x — 1)

aiay —a; —ax+1
2

What else?

Questions:

» What types of sets can be encoded as rational generating
functions?

» What types of sets can be encoded as short rational
generating functions, quickly?

If S C N, then let

f(S;x) = Z XPX52 e X

s=(s1,...,5n)ES

What else?

Question: When can a set be encoded as a rational generating
function?

Answer [W]: If and only if it can be written like

S={xeN | Vs eN,IpeN:
(3y1 + 5y2 —x > 0) and
(51 +2y2+3x<50r3y; —x=T7)},

using quantifiers (3 and V), boolean operations (and, or, not), and
linear (in)equalities (<, =, >).

These are sentences in the Presburger arithmetic.

What else?

Examples:

S={xeN | 3yeN: 2y =xand 100 < x < 250}.

S={xeN ‘ I EN,..., Iy EN:
X =ai\ + -+ aghq}-

A Computer Example

for i=0 to 5
for j=0 to i
Do something that requires i - j units of storage
end
end

Want to compute

Let
S={(i,j)eN*|i<5andj<i}.

> i

(i))es

We want

A Computer Example

for i=0 to 5
for j=0 to i
Do something that requires i - j units of storage
end
end

Want to compute

5 i
22 i
i=0 j=0
Let
S={(i,j)eN*|i<5andj<i}.
We want

> 0

(i))eSs

A Computer Example

Let's find £(S; x,y)

=1+x+-+x°y°

A Computer Example

A Computer Example

—~ _

+ +
3X2\|/
< 2
x T+
o=
L2

1
(1 =x)(1 = xy)

A Computer Example

(T+x+x2+x3+)

(Lxy+(xy)?+-)

A Computer Example

A Computer Example

(1 =x)(1 = xy)

(1=x)(1-y)

A Computer Example

+X6y7
(Txy+(xy)>+---)
(A4+y+y>+-)
X6y7
(1-x)(1-y)

A Computer Example

A Computer Example

We have o
F(Six,y)= Y xy.

(ij)es

We want

A Computer Example

We have o
f(S;x,y)= Z x'y.
(ij)es
We want
>
(ig)es
(92 =1 =1
mf(S:X,Y) Z ijix'"y!
(ij)es
Therefore we want
82
f .
8X8y (SVX,y) x=1,y=1

Summary

» We can often use patterns in seemingly complicated sets to
encode them compactly as generating functions.

» We can manipulate the generating functions to answer
questions about the sets.

Quick now!
Question: When can we find f(S; x) quickly?

We want an algorithm that inputs a Presburger sentence and
outputs f(S; x).

The input size is the number of bits needed to encode the input for
the algorithm.

The input size of a number a is approximately

log»(a).

An algorithm is polynomial time if there is a polynomial p such
that the algorithm runs in at most p(input size) steps.

polynomial time = quick

Quick now!
Question: When can we find f(S; x) quickly?

We want an algorithm that inputs a Presburger sentence and
outputs f(S;x).

The input size is the number of bits needed to encode the input for
the algorithm.

The input size of a number a is approximately

logs(a).

An algorithm is polynomial time if there is a polynomial p such
that the algorithm runs in at most p(input size) steps.

polynomial time = quick

Quick now!
Question: When can we find f(S; x) quickly?

We want an algorithm that inputs a Presburger sentence and
outputs f(S;x).

The input size is the number of bits needed to encode the input for
the algorithm.

The input size of a number a is approximately

log»(a).

An algorithm is polynomial time if there is a polynomial p such
that the algorithm runs in at most p(input size) steps.

polynomial time = quick

Good Algorithms

» If there are no quantifiers, there is a polynomial time
algorithm (if we fix the number of variables) [Barvinok].

» If only d's are needed to define S, there is a polynomial time
algorithm (if we fix the number of variables and linear
inequalities) [W].

No Quantifiers

This is like the previous example:

S={(i,j)eN*|i<5andj<i}

» Inclusion-Exclusion of cones [Brion]

» Not all cones are “nice” (unimodular):

No Quantifiers

This is like the previous example:

S={(i,j)eN*|i<5andj<i}

» Inclusion-Exclusion of cones [Brion]

» Not all cones are “nice” (unimodular):

unimodular decomposition [Barvinok]

No Quantifiers

This is like the previous example:

S={(i,j)eN*|i<5andj<i}

» Inclusion-Exclusion of cones [Brion]

» Not all cones are “nice” (unimodular):

unimodular decomposition [Barvinok]

No Quantifiers

This is like the previous example:

S={(i,j)eN*|i<5andj<i}

» Inclusion-Exclusion of cones [Brion]

» Not all cones are “nice” (unimodular):

unimodular decomposition [Barvinok]

Existential Quantifiers

Projections

S={ieN | 3jeN: (ij)eP}.

We need to compute generating functions for projections of
PNZ", where P is a polyhedron.

T(i,j)=1i, and S = T(P NZ?).

Existential Quantifiers
1-d Kernel

Example: Frobenius Problem with a; =2, a = 5.
P={(i,j): i,j >0}
T(i,j) =2i+5j. (1-d Kernel)

Then S = T(PNZ?).

Existential Quantifiers
1-d Kernel

Compute f(PNZ? x,y) =

[Barvinok|

T

Compute f(P N Z? 2, t°). Then xy/ s 2745

Existential Quantifiers
1-d Kernel

1
(1—2)(1-1t°)
=1+t OO B0

fF(PNZ2 2, t°) = =1+ 4+t)A+2+-0)

Existential Quantifiers
1-d Kernel

1
(1—1t2)(1—t%)
=142+t P+t B 2t

fF(PNZ2 2, t°) = =1+ 4+t)A+2+-0)

Existential Quantifiers
1-d Kernel

1

fF(PNZ2 2, t°) = =1+ 4+t)A+2+-0)

(1—1t2)(1—t%)
=142+t P+t B 2t

Problem: T is not 1-1 on P N Z2.

Existential Quantifiers
1-d Kernel

Let Q ={(i,j): i >5,j > 0}.

x3

2. x =
anEee) ==

th

F(RNZ? 1%, t°) = -2 _5)

Existential Quantifiers
1-d Kernel

Tisl-lon (P—Q)NZ2

f(S;t)=f(PNZ% 2,15 — F(QNZ% 12, 15)
1— th
(1—1¢2)(1—1t5)

Existential Quantifiers
1-d Kernel

Tisl-lon (P—Q)NZ2

f(S;t)=f(PNZ% 2,15 — F(QNZ% 12, 15)
1— th
(1—1t2)(1—t3)°

Existential Quantifiers
1-d Kernel

Why This Works: There are no gaps in the fibers of T.

Only works for 1-d kernel.

Existential Quantifiers
Higher-d Kernel

General situation: Use induction on the dimension of the kernel.

Must control the gaps.

Existential Quantifiers
Higher-d Kernel

A Tool:

Flatness Theorem (Khinchin): Convex objects that contain no
integer points are thin in some direction.

Existential Quantifiers
Higher-d Kernel

Looking at a fiber of the desired projection, suppose we project
onto the thinnest direction.

o T
5| X&e—

If there are large gaps,

Existential Quantifiers
Higher-d Kernel

Looking at a fiber of the desired projection, suppose we project
onto the thinnest direction.

gap

If there are large gaps,
Then there is a lattice-free polytope that is wide.
Contradiction.

Existential Quantifiers
Higher-d Kernel

5,0)

Look at a fiber of T(P), and pick the thinnest direction. That
direction gets projected out last (inductively).

Existential Quantifiers
Higher-d Kernel

5,0)

Complication: Different fibers have different thin directions.
Solution: Break things up into pieces [Kannan].

Applications

vV v vV v Vv Y

Frobenius problem [Barvinok-\W]|

Minimal Hilbert Bases [Barvinok-W]|

Hilbert series of rings generated by monomials [Barvinok-W/|
Test sets for integer programming [Barvinok-W]|

Integer programming gaps [Hosten-Sturmfels]

Reduced Grobner bases for toric ideals, and some related
computations [De Loera, et al]

Standard pairs and arithmetic degree of order ideals in integer
programming [Thomas-W]|

Ehrhart quasi-polynomials (and their period) [W]

Summary

» We can often use hidden structure in seemingly complicated
sets to encode them compactly as generating functions.

» We can manipulate the generating functions to answer
questions about the sets.

Summary

» We can often use hidden structure in seemingly complicated
sets to encode them compactly as generating functions.

» We can manipulate the generating functions to answer
questions about the sets.

» We can do many of these things quickly.

Thank You!

5,0)

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

» General sentences.

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

» General sentences.
Bad

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

» General sentences.
Bad

» Fix number of variables, no quantifiers.

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

» General sentences.
Bad

» Fix number of variables, no quantifiers.
Good [Barvinok]

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

» General sentences.
Bad

» Fix number of variables, no quantifiers.
Good [Barvinok]

» Fix number of variables, quantifiers allowed.

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

» General sentences.
Bad

» Fix number of variables, no quantifiers.
Good [Barvinok]

» Fix number of variables, quantifiers allowed.
Bad, even with a single quantifier [W; Schoning]

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

» General sentences.
Bad

» Fix number of variables, no quantifiers.
Good [Barvinok]

» Fix number of variables, quantifiers allowed.
Bad, even with a single quantifier [W; Schoning]

» Fix number of variables and inequalities, only 3 quantifiers.

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

» General sentences.
Bad

» Fix number of variables, no quantifiers.
Good [Barvinok]

» Fix number of variables, quantifiers allowed.
Bad, even with a single quantifier [W; Schoning]

» Fix number of variables and inequalities, only 3 quantifiers.
Good [W]

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

» General sentences.
Bad

Fix number of variables, no quantifiers.
Good [Barvinok]

Fix number of variables, quantifiers allowed.
Bad, even with a single quantifier [W; Schoning]

v

v

v

Fix number of variables and inequalities, only 3 quantifiers.
Good [W]

Fix number of variables and inequalities, mixed quantifiers.

v

The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

» General sentences.
Bad

Fix number of variables, no quantifiers.
Good [Barvinok]

Fix number of variables, quantifiers allowed.
Bad, even with a single quantifier [W; Schoning]

v

v

v

Fix number of variables and inequalities, only 3 quantifiers.
Good [W]

Fix number of variables and inequalities, mixed quantifiers.

v

Thank You!

5,0)

