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An Easy Start

Question: How many even numbers are there between 100 and
250?

List them all:

100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128,

130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158,

160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188,

190, 292, 294, 296, 298, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218,

220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248,

250

and count: 76.
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An Easy Start

This is the wrong way to answer the question.



Another Easy One

Question: How many dots are in this picture?

Count them: 76.
This is the best we can do.
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Philosophy Class

The difference:

The set of even numbers between 100 and 250 has a pattern that
we can take advantage of.

Theme of talk: Demonstrate a nice tool to take advantage of the
special structure of certain sets.

That tool is generating functions.
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The Easy Problem, Redux

Given a set S ⊆ N, define the generating function

f (S ; x) =
∑
a∈S

xa.

In example,

f (S ; x) = x100 + x102 + x104 + · · ·+ x248 + x250

=
x100 − x252

1− x2
.

Then |S | = f (S ; 1).

Use l’Hospital’s rule:

f (S ; 1) =
100− 252

−2
= 76.
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The Frobenius Problem

Let a1, a2, . . . , ad be nonnegative integers such that
gcd(a1, a2, . . . , ad) = 1. Let

S = {λ1a1 + · · ·+ λdad : λi ∈ N}.

Question: What is the largest integer not in S?

Question: How many positive integers are not in S?



The Frobenius Problem

Example: a1 = 3, a2 = 7.

S = {0, 3, 6, 7, 9, 10, 12, 13, 14, . . .}.

Question: What is the largest integer not in S?
Answer: 11.

Question: How many positive integers are not in S?
Answer: 6.



Generating Functions to the Rescue

Listing out the set is the “wrong” way to answer these questions,
because there’s some structure we’re not using.

Let’s use generating functions.

f (S ; x) = x0 + x3 + x6 + x7 + x9 + x10 + · · ·

As before, this can be rewritten as a nice rational function.

We will later show that

f (S ; x) =
1− xa1a2

(1− xa1)(1− xa2)
.
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Generating Functions to the Rescue
Let T = N \ S (which is {1, 2, 4, 5, 8, 11} in the example).

f (T ; x) =
1

1− x
− f (S ; x)

=
(1− xa1)(1− xa2)− (1− x)(1− xa1a2)

(1− x)(1− xa1)(1− xa2)
.

The largest integer not in S is the degree of the polynomial
f (T ; x), which is

(1 + a1a2)− (1 + a1 + a2) = a1a2 − a1 − a2.

The number of positive integers not in S is f (T ; 1), which is
(taking the limit as x → 1)

a1a2 − a1 − a2 + 1

2
.
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What else?

Questions:

I What types of sets can be encoded as rational generating
functions?

I What types of sets can be encoded as short rational
generating functions, quickly?

If S ⊆ Nn, then let

f (S ; x) =
∑

s=(s1,...,sn)∈S

x s1
1 x s2

2 · · · x
sn
n .



What else?

Question: When can a set be encoded as a rational generating
function?

Answer [W]: If and only if it can be written like

S = {x ∈ N
∣∣∣ ∀y1 ∈ N, ∃y2 ∈ N :

(3y1 + 5y2 − x ≥ 0) and

(5y1 + 2y2 + 3x < 5 or 3y1 − x = 7)},

using quantifiers (∃ and ∀), boolean operations (and, or, not), and
linear (in)equalities (≤, =, >).

These are sentences in the Presburger arithmetic.



What else?

Examples:

S = {x ∈ N
∣∣ ∃y ∈ N : 2y = x and 100 ≤ x ≤ 250}.

S = {x ∈ N
∣∣∣ ∃λ1 ∈ N, . . . ,∃λd ∈ N :

x = a1λ1 + · · ·+ adλd}.



A Computer Example

for i=0 to 5
for j=0 to i

Do something that requires i · j units of storage
end

end

Want to compute
5∑

i=0

i∑
j=0

ij .

Let
S = {(i , j) ∈ N2

∣∣ i ≤ 5 and j ≤ i}.

We want ∑
(i ,j)∈S

ij .



A Computer Example

for i=0 to 5
for j=0 to i

Do something that requires i · j units of storage
end

end

Want to compute
5∑

i=0

i∑
j=0

ij .

Let
S = {(i , j) ∈ N2

∣∣ i ≤ 5 and j ≤ i}.

We want ∑
(i ,j)∈S

ij .



A Computer Example

Let’s find f (S ; x , y)

= 1 +x + · · ·+x5y5



A Computer Example



A Computer Example

x5y2 = (x)3(xy)2

(1+x+x2+x3+· · · )

·(1+xy+(xy)2+· · · )

=
1

(1− x)(1− xy)



A Computer Example

x5y2 = (x)3(xy)2
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=
1

(1− x)(1− xy)



A Computer Example

−x6

·(1 + x + x2 + · · · )

·(1 + y + y2 + · · · )

= − x6

(1− x)(1− y)



A Computer Example

1

(1− x)(1− xy)

− x6

(1− x)(1− y)



A Computer Example

+x6y7

·(1+xy+(xy)2+· · · )

·(1 + y + y2 + · · · )

=
x6y7

(1− xy)(1− y)



A Computer Example

f (S ; x , y) =

1

(1− x)(1− xy)

− x6

(1− x)(1− y)

+
x6y7

(1− xy)(1− y)
.



A Computer Example

We have
f (S ; x , y) =

∑
(i ,j)∈S

x iy j .

We want ∑
(i ,j)∈S

ij .

∂2

∂x∂y
f (S ; x , y) =

∑
(i ,j)∈S

ijx i−1y j−1.

Therefore we want

∂2

∂x∂y
f (S ; x , y)

∣∣∣
x=1,y=1

= 140.
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Summary

I We can often use patterns in seemingly complicated sets to
encode them compactly as generating functions.

I We can manipulate the generating functions to answer
questions about the sets.



Quick now!

Question: When can we find f (S ; x) quickly?

We want an algorithm that inputs a Presburger sentence and
outputs f (S ; x).

The input size is the number of bits needed to encode the input for
the algorithm.

The input size of a number a is approximately

log2(a).

An algorithm is polynomial time if there is a polynomial p such
that the algorithm runs in at most p(input size) steps.

polynomial time = quick
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Good Algorithms

I If there are no quantifiers, there is a polynomial time
algorithm (if we fix the number of variables) [Barvinok].

I If only ∃’s are needed to define S , there is a polynomial time
algorithm (if we fix the number of variables and linear
inequalities) [W].



No Quantifiers
This is like the previous example:

S = {(i , j) ∈ N2
∣∣ i ≤ 5 and j ≤ i}.

I Inclusion-Exclusion of cones [Brion]

I Not all cones are “nice” (unimodular):

unimodular decomposition [Barvinok]
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Existential Quantifiers
Projections

S = {i ∈ N
∣∣∣ ∃j ∈ N : (i , j) ∈ P}.

We need to compute generating functions for projections of
P ∩ Zn, where P is a polyhedron.

T (i , j) = i , and S = T (P ∩ Z2).



Existential Quantifiers
1-d Kernel

Example: Frobenius Problem with a1 = 2, a2 = 5.

P = {(i , j) : i , j ≥ 0}

T (i , j) = 2i + 5j . (1-d Kernel)

Then S = T (P ∩ Z2).



Existential Quantifiers
1-d Kernel

Compute f (P ∩ Z2; x , y) = 1
(1−x)(1−y) . [Barvinok]

Compute f (P ∩ Z2; t2, t5). Then x iy j 7→ t2i+5j .



Existential Quantifiers
1-d Kernel

f (P ∩ Z2; t2, t5) =
1

(1− t2)(1− t5)
= (1 + t2 + t4 + · · · )(1 + t5 + · · · )

= 1 + t2 + t4 + t5 + t6 + t7 + t8 + t9 + · · ·

Problem: T is not 1-1 on P ∩ Z2

.
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Existential Quantifiers
1-d Kernel

T(i,j)=3 T(i,j)=10 T(i,j)=17 T(i,j)=22

f (P ∩ Z2; t2, t5) =
1

(1− t2)(1− t5)
= (1 + t2 + t4 + · · · )(1 + t5 + · · · )

= 1 + t2 + t4 + t5 + t6 + t7 + t8 + t9 + 2t10 + · · ·

Problem: T is not 1-1 on P ∩ Z2.



Existential Quantifiers
1-d Kernel

Let Q = {(i , j) : i ≥ 5, j ≥ 0}.

f (Q ∩ Z2; x , y) =
x5

(1− x)(1− y)
.

f (Q ∩ Z2; t2, t5) =
t10

(1− t2)(1− t5)
.



Existential Quantifiers
1-d Kernel

T is 1-1 on (P − Q) ∩ Z2.

f (S ; t) = f (P ∩ Z2; t2, t5)− f (Q ∩ Z2; t2, t5)

=
1− t10

(1− t2)(1− t5)
.



Existential Quantifiers
1-d Kernel

T is 1-1 on (P − Q) ∩ Z2.

f (S ; t) = f (P ∩ Z2; t2, t5)− f (Q ∩ Z2; t2, t5)

=
1− t10

(1− t2)(1− t5)
.



Existential Quantifiers
1-d Kernel

Why This Works: There are no gaps in the fibers of T .

Only works for 1-d kernel.



Existential Quantifiers
Higher-d Kernel

General situation: Use induction on the dimension of the kernel.

Must control the gaps.



Existential Quantifiers
Higher-d Kernel

A Tool:

Flatness Theorem (Khinchin): Convex objects that contain no
integer points are thin in some direction.



Existential Quantifiers
Higher-d Kernel

Looking at a fiber of the desired projection, suppose we project
onto the thinnest direction.

g
a
p T

If there are large gaps,

Then there is a lattice-free polytope that is wide.
Contradiction.
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Existential Quantifiers
Higher-d Kernel
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T(x,y,z)=x

Look at a fiber of T (P), and pick the thinnest direction. That
direction gets projected out last (inductively).



Existential Quantifiers
Higher-d Kernel
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Complication: Different fibers have different thin directions.
Solution: Break things up into pieces [Kannan].



Applications

I Frobenius problem [Barvinok-W]

I Minimal Hilbert Bases [Barvinok-W]

I Hilbert series of rings generated by monomials [Barvinok-W]

I Test sets for integer programming [Barvinok-W]

I Integer programming gaps [Hoşten-Sturmfels]

I Reduced Gröbner bases for toric ideals, and some related
computations [De Loera, et al.]

I Standard pairs and arithmetic degree of order ideals in integer
programming [Thomas-W]

I Ehrhart quasi-polynomials (and their period) [W]



Summary

I We can often use hidden structure in seemingly complicated
sets to encode them compactly as generating functions.

I We can manipulate the generating functions to answer
questions about the sets.

I We can do many of these things quickly.
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The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

I General sentences.

Bad

I Fix number of variables, no quantifiers.

Good [Barvinok]

I Fix number of variables, quantifiers allowed.

Bad, even with a single quantifier [W; Schöning]

I Fix number of variables and inequalities, only ∃ quantifiers.

Good [W]

I Fix number of variables and inequalities, mixed quantifiers.

?????
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I Fix number of variables and inequalities, only ∃ quantifiers.

Good [W]

I Fix number of variables and inequalities, mixed quantifiers.

?????



The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

I General sentences.
Bad

I Fix number of variables, no quantifiers.
Good [Barvinok]

I Fix number of variables, quantifiers allowed.

Bad, even with a single quantifier [W; Schöning]
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I Fix number of variables and inequalities, only ∃ quantifiers.

Good [W]

I Fix number of variables and inequalities, mixed quantifiers.

?????



The Good, the Bad, and the

Presburger sentences from an algorithmic perspective:

I General sentences.
Bad

I Fix number of variables, no quantifiers.
Good [Barvinok]

I Fix number of variables, quantifiers allowed.
Bad, even with a single quantifier [W; Schöning]
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