
Computing Shapley Value in Supermodular
Coalitional Games

David Liben-Nowell (CS, Carleton College),
Alexa Sharp (CS, Oberlin College),
Tom Wexler (CS, Oberlin College),

Kevin Woods (Math, Oberlin College).

Beth Chris

DebEd

Al

A Game

Players are in a social network
(edges = friends).

Deciding whether to adopt a social
technology (cell phone plan, Google+).

Each player has a cost, c , to adopt.

Beth Chris

DebEd

Al

Each player gets benefit, b, for each friend who has also adopted.

A Game

Players are in a social network
(edges = friends).

Deciding whether to adopt a social
technology (cell phone plan, Google+).

Each player has a cost, c , to adopt.

Beth Chris

DebEd

Al

Each player gets benefit, b, for each friend who has also adopted.

A Game

Players are in a social network
(edges = friends).

Deciding whether to adopt a social
technology (cell phone plan, Google+).

Each player has a cost, c , to adopt.

Beth Chris

DebEd

Al

Each player gets benefit, b, for each friend who has also adopted.

A Game

Example: b = 9, c = 7.

All players want to adopt.

Leaf players have utility b − c = 2.
Al has utility 4b − c = 29.

total surplus: 8b − 5c = 37.

Beth Chris

DebEd

Al

A Game

Example: b = 9, c = 7.

All players want to adopt.

Leaf players have utility b − c = 2.
Al has utility 4b − c = 29.

total surplus: 8b − 5c = 37.

Beth Chris

DebEd

Al

A Game

Example: b = 9, c = 7.

All players want to adopt.

Leaf players have utility b − c = 2.
Al has utility 4b − c = 29.

total surplus: 8b − 5c = 37.

Beth Chris

DebEd

Al

A Game

Example: b = 9, c = 7.

All players want to adopt.

Leaf players have utility b − c = 2.
Al has utility 4b − c = 29.

total surplus: 8b − 5c = 37.

Beth Chris

DebEd

Al

A Game

Example: b = 9, c = 10.

Leaf players do not want to adopt.

But total surplus is: 8b − 5c = 22.

Beth Chris

DebEd

Al

Al should pay the other players to entice them.

How much?

How should the total surplus be divided?

A Game

Example: b = 9, c = 10.

Leaf players do not want to adopt.

But total surplus is: 8b − 5c = 22.

Beth Chris

DebEd

Al

Al should pay the other players to entice them.

How much?

How should the total surplus be divided?

A Game

Example: b = 9, c = 10.

Leaf players do not want to adopt.

But total surplus is: 8b − 5c = 22.

Beth Chris

DebEd

Al

Al should pay the other players to entice them.

How much?

How should the total surplus be divided?

Coalitional Games

Definition: For any subset, S , of
players, associate a value, v(S).

In Example:
v(ABCDE) = 22,
v(ABCD) = 14,
v(ABC) = 6,
v(BCDE) = 0,
v(AB) = 0,
v(∅) = 0, by convention.

Beth Chris

DebEd

Al

That is, v(S) is the maximum total surplus if some subset of S
adopts.

Coalitional Games

Definition: For any subset, S , of
players, associate a value, v(S).

In Example:
v(ABCDE) = 22,
v(ABCD) = 14,
v(ABC) = 6,
v(BCDE) = 0,
v(AB) = 0,
v(∅) = 0, by convention.

Beth Chris

DebEd

Al

That is, v(S) is the maximum total surplus if some subset of S
adopts.

Coalitional Games

Definition: For any subset, S , of
players, associate a value, v(S).

In Example:
v(ABCDE) = 22,
v(ABCD) = 14,
v(ABC) = 6,
v(BCDE) = 0,
v(AB) = 0,
v(∅) = 0, by convention.

Beth Chris

DebEd

Al

That is, v(S) is the maximum total surplus if some subset of S
adopts.

Coalitional Games

Definition: For any subset, S , of
players, associate a value, v(S).

In Example:
v(ABCDE) = 22,
v(ABCD) = 14,
v(ABC) = 6,
v(BCDE) = 0,
v(AB) = 0,
v(∅) = 0, by convention.

Beth Chris

DebEd

Al

That is, v(S) is the maximum total surplus if some subset of S
adopts.

Coalitional Games

Definition: For any subset, S , of
players, associate a value, v(S).

In Example:
v(ABCDE) = 22,
v(ABCD) = 14,
v(ABC) = 6,
v(BCDE) = 0,
v(AB) = 0,
v(∅) = 0, by convention.

Beth Chris

DebEd

Al

That is, v(S) is the maximum total surplus if some subset of S
adopts.

Coalitional Games

Definition: For any subset, S , of
players, associate a value, v(S).

In Example:
v(ABCDE) = 22,
v(ABCD) = 14,
v(ABC) = 6,
v(BCDE) = 0,
v(AB) = 0,
v(∅) = 0, by convention.

Beth Chris

DebEd

Al

That is, v(S) is the maximum total surplus if some subset of S
adopts.

Coalitional Games

Definition: For any subset, S , of
players, associate a value, v(S).

In Example:
v(ABCDE) = 22,
v(ABCD) = 14,
v(ABC) = 6,
v(BCDE) = 0,
v(AB) = 0,
v(∅) = 0, by convention.

Beth Chris

DebEd

Al

That is, v(S) is the maximum total surplus if some subset of S
adopts.

Coalitional Games

Definition: For any subset, S , of
players, associate a value, v(S).

In Example:
v(ABCDE) = 22,
v(ABCD) = 14,
v(ABC) = 6,
v(BCDE) = 0,
v(AB) = 0,
v(∅) = 0, by convention.

Beth Chris

DebEd

Al

That is, v(S) is the maximum total surplus if some subset of S
adopts.

Shapley Value

Imagine players arrive in some order, σ.

Player receives marginal contribution:
what he adds to players already present.

Examples:

Beth Chris

DebEd

Al

σ = ABCDE . m.c. of Chris: v(ABC)− v(AB) = 6− 0 = 6.
σ = ABDCE . m.c. of Chris: v(ABDC)− v(ABD) = 14− 6 = 8.

Shapley Value for player i : the average, over all permutations, of
the marginal contribution of player i .

In example, Al gets 8.4, leaf players get 3.4.
Can we efficiently compute Shapley values, in general?

Shapley Value

Imagine players arrive in some order, σ.

Player receives marginal contribution:
what he adds to players already present.

Examples:

Beth Chris

DebEd

Al

σ = ABCDE . m.c. of Chris: v(ABC)− v(AB) = 6− 0 = 6.
σ = ABDCE . m.c. of Chris: v(ABDC)− v(ABD) = 14− 6 = 8.

Shapley Value for player i : the average, over all permutations, of
the marginal contribution of player i .

In example, Al gets 8.4, leaf players get 3.4.
Can we efficiently compute Shapley values, in general?

Shapley Value

Imagine players arrive in some order, σ.

Player receives marginal contribution:
what he adds to players already present.

Examples:

Beth Chris

DebEd

Al

σ = ABCDE . m.c. of Chris: v(ABC)− v(AB) = 6− 0 = 6.
σ = ABDCE . m.c. of Chris: v(ABDC)− v(ABD) = 14− 6 = 8.

Shapley Value for player i : the average, over all permutations, of
the marginal contribution of player i .

In example, Al gets 8.4, leaf players get 3.4.
Can we efficiently compute Shapley values, in general?

Shapley Value

Imagine players arrive in some order, σ.

Player receives marginal contribution:
what he adds to players already present.

Examples:

Beth Chris

DebEd

Al

σ = ABCDE . m.c. of Chris: v(ABC)− v(AB) = 6− 0 = 6.
σ = ABDCE . m.c. of Chris: v(ABDC)− v(ABD) = 14− 6 = 8.

Shapley Value for player i : the average, over all permutations, of
the marginal contribution of player i .

In example, Al gets 8.4, leaf players get 3.4.
Can we efficiently compute Shapley values, in general?

Shapley Value

Imagine players arrive in some order, σ.

Player receives marginal contribution:
what he adds to players already present.

Examples:

Beth Chris

DebEd

Al

σ = ABCDE . m.c. of Chris: v(ABC)− v(AB) = 6− 0 = 6.
σ = ABDCE . m.c. of Chris: v(ABDC)− v(ABD) = 14− 6 = 8.

Shapley Value for player i : the average, over all permutations, of
the marginal contribution of player i .

In example, Al gets 8.4, leaf players get 3.4.
Can we efficiently compute Shapley values, in general?

Supermodular Games

Definition: For all S ,T , v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T).
or: For all S ⊆ T , for all i /∈ T ,

v(T ∪ {i})− v(T) ≥ v(S ∪ {i})− v(S).

Increasing marginal contributions.

Examples:

I Our game.

I Multicast tree game: building a path to a source.

I Anything with Bandwagon effect.

Given that a game is supermodular, can we efficiently compute its
Shapley values?

Supermodular Games

Definition: For all S ,T , v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T).
or: For all S ⊆ T , for all i /∈ T ,

v(T ∪ {i})− v(T) ≥ v(S ∪ {i})− v(S).

Increasing marginal contributions.

Examples:

I Our game.

I Multicast tree game: building a path to a source.

I Anything with Bandwagon effect.

Given that a game is supermodular, can we efficiently compute its
Shapley values?

Supermodular Games

Definition: For all S ,T , v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T).
or: For all S ⊆ T , for all i /∈ T ,

v(T ∪ {i})− v(T) ≥ v(S ∪ {i})− v(S).

Increasing marginal contributions.

Examples:

I Our game.

I Multicast tree game: building a path to a source.

I Anything with Bandwagon effect.

Given that a game is supermodular, can we efficiently compute its
Shapley values?

Supermodular Games

Definition: For all S ,T , v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T).
or: For all S ⊆ T , for all i /∈ T ,

v(T ∪ {i})− v(T) ≥ v(S ∪ {i})− v(S).

Increasing marginal contributions.

Examples:

I Our game.

I Multicast tree game: building a path to a source.

I Anything with Bandwagon effect.

Given that a game is supermodular, can we efficiently compute its
Shapley values?

Supermodular Games

Definition: For all S ,T , v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T).
or: For all S ⊆ T , for all i /∈ T ,

v(T ∪ {i})− v(T) ≥ v(S ∪ {i})− v(S).

Increasing marginal contributions.

Examples:

I Our game.

I Multicast tree game: building a path to a source.

I Anything with Bandwagon effect.

Given that a game is supermodular, can we efficiently compute its
Shapley values?

Supermodular Games

Definition: For all S ,T , v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T).
or: For all S ⊆ T , for all i /∈ T ,

v(T ∪ {i})− v(T) ≥ v(S ∪ {i})− v(S).

Increasing marginal contributions.

Examples:

I Our game.

I Multicast tree game: building a path to a source.

I Anything with Bandwagon effect.

Given that a game is supermodular, can we efficiently compute its
Shapley values?

Shapley Value for Supermodular Games

Assume oracle access to v(·).

Bad Example: Let C be a collection of subsets of {1, . . . , n}, each
of cardinality n/2.

vC(A) =


0 if |A| < n/2,

0 if |A| = n/2 and A /∈ C,
1 if |A| = n/2 and A ∈ C,
2|A| − n if |A| > n/2.

Supermodular.

Slightly different C’s yield slightly different Shapley values.
Exact computation needs >

(n
n/2

)
oracle calls.

Too much wiggle room.

How about approximating?

Shapley Value for Supermodular Games

Assume oracle access to v(·).

Bad Example: Let C be a collection of subsets of {1, . . . , n}, each
of cardinality n/2.

vC(A) =


0 if |A| < n/2,

0 if |A| = n/2 and A /∈ C,
1 if |A| = n/2 and A ∈ C,
2|A| − n if |A| > n/2.

Supermodular.

Slightly different C’s yield slightly different Shapley values.
Exact computation needs >

(n
n/2

)
oracle calls.

Too much wiggle room.

How about approximating?

Shapley Value for Supermodular Games

Assume oracle access to v(·).

Bad Example: Let C be a collection of subsets of {1, . . . , n}, each
of cardinality n/2.

vC(A) =


0 if |A| < n/2,

0 if |A| = n/2 and A /∈ C,
1 if |A| = n/2 and A ∈ C,
2|A| − n if |A| > n/2.

Supermodular.

Slightly different C’s yield slightly different Shapley values.
Exact computation needs >

(n
n/2

)
oracle calls.

Too much wiggle room.

How about approximating?

Shapley Value for Supermodular Games

Assume oracle access to v(·).

Bad Example: Let C be a collection of subsets of {1, . . . , n}, each
of cardinality n/2.

vC(A) =


0 if |A| < n/2,

0 if |A| = n/2 and A /∈ C,
1 if |A| = n/2 and A ∈ C,
2|A| − n if |A| > n/2.

Supermodular.

Slightly different C’s yield slightly different Shapley values.
Exact computation needs >

(n
n/2

)
oracle calls.

Too much wiggle room.

How about approximating?

Shapley Value for Supermodular Games

Assume oracle access to v(·).

Bad Example: Let C be a collection of subsets of {1, . . . , n}, each
of cardinality n/2.

vC(A) =


0 if |A| < n/2,

0 if |A| = n/2 and A /∈ C,
1 if |A| = n/2 and A ∈ C,
2|A| − n if |A| > n/2.

Supermodular.

Slightly different C’s yield slightly different Shapley values.
Exact computation needs >

(n
n/2

)
oracle calls.

Too much wiggle room.

How about approximating?

Shapley Value for Supermodular Games

Assume oracle access to v(·).

Bad Example: Let C be a collection of subsets of {1, . . . , n}, each
of cardinality n/2.

vC(A) =


0 if |A| < n/2,

0 if |A| = n/2 and A /∈ C,
1 if |A| = n/2 and A ∈ C,
2|A| − n if |A| > n/2.

Supermodular.

Slightly different C’s yield slightly different Shapley values.
Exact computation needs >

(n
n/2

)
oracle calls.

Too much wiggle room.

How about approximating?

Shapley Value for Supermodular Games

Assume oracle access to v(·).

Bad Example: Let C be a collection of subsets of {1, . . . , n}, each
of cardinality n/2.

vC(A) =


0 if |A| < n/2,

0 if |A| = n/2 and A /∈ C,
1 if |A| = n/2 and A ∈ C,
2|A| − n if |A| > n/2.

Supermodular.

Slightly different C’s yield slightly different Shapley values.
Exact computation needs >

(n
n/2

)
oracle calls.

Too much wiggle room.

How about approximating?

Shapley Value for Supermodular Games

Assume oracle access to v(·).

Bad Example: Let C be a collection of subsets of {1, . . . , n}, each
of cardinality n/2.

vC(A) =


0 if |A| < n/2,

0 if |A| = n/2 and A /∈ C,
1 if |A| = n/2 and A ∈ C,
2|A| − n if |A| > n/2.

Supermodular.
Slightly different C’s yield slightly different Shapley values.
Exact computation needs >

(n
n/2

)
oracle calls.

Too much wiggle room.

How about approximating?

Shapley Value for Supermodular Games

Assume oracle access to v(·).

Bad Example: Let C be a collection of subsets of {1, . . . , n}, each
of cardinality n/2.

vC(A) =


0 if |A| < n/2,

0 if |A| = n/2 and A /∈ C,
1 if |A| = n/2 and A ∈ C,
2|A| − n if |A| > n/2.

Supermodular.
Slightly different C’s yield slightly different Shapley values.
Exact computation needs >

(n
n/2

)
oracle calls.

Too much wiggle room. How about approximating?

Shapley Value for Supermodular Games

Probabilistic Algorithm: For some m, choose m permutations,
uniformly at random, and average the marginal contributions of a
player.

Theorem: For supermodular games, oracle access, this gives a fully
polynomial-time randomized approximation scheme (FPRAS).

For n players, given ε > 0, let m = 4n(n − 1)/ε2 ∈ poly(n, 1/ε).

With probability 3/4, the computed values of all players will be
within a 1± ε multiplicative factor of the correct values.

To replace 3/4 with 1− δ, need m ∈ poly(n, 1/ε, log(1/δ)).

Shapley Value for Supermodular Games

Probabilistic Algorithm: For some m, choose m permutations,
uniformly at random, and average the marginal contributions of a
player.

Theorem: For supermodular games, oracle access, this gives a fully
polynomial-time randomized approximation scheme (FPRAS).

For n players, given ε > 0, let m = 4n(n − 1)/ε2 ∈ poly(n, 1/ε).

With probability 3/4, the computed values of all players will be
within a 1± ε multiplicative factor of the correct values.

To replace 3/4 with 1− δ, need m ∈ poly(n, 1/ε, log(1/δ)).

Shapley Value for Supermodular Games

Probabilistic Algorithm: For some m, choose m permutations,
uniformly at random, and average the marginal contributions of a
player.

Theorem: For supermodular games, oracle access, this gives a fully
polynomial-time randomized approximation scheme (FPRAS).

For n players, given ε > 0, let m = 4n(n − 1)/ε2 ∈ poly(n, 1/ε).

With probability 3/4, the computed values of all players will be
within a 1± ε multiplicative factor of the correct values.

To replace 3/4 with 1− δ, need m ∈ poly(n, 1/ε, log(1/δ)).

Shapley Value for Supermodular Games

Probabilistic Algorithm: For some m, choose m permutations,
uniformly at random, and average the marginal contributions of a
player.

Theorem: For supermodular games, oracle access, this gives a fully
polynomial-time randomized approximation scheme (FPRAS).

For n players, given ε > 0, let m = 4n(n − 1)/ε2 ∈ poly(n, 1/ε).

With probability 3/4, the computed values of all players will be
within a 1± ε multiplicative factor of the correct values.

To replace 3/4 with 1− δ, need m ∈ poly(n, 1/ε, log(1/δ)).

Shapley Value for Supermodular Games

Probabilistic Algorithm: For some m, choose m permutations,
uniformly at random, and average the marginal contributions of a
player.

Theorem: For supermodular games, oracle access, this gives a fully
polynomial-time randomized approximation scheme (FPRAS).

For n players, given ε > 0, let m = 4n(n − 1)/ε2 ∈ poly(n, 1/ε).

With probability 3/4, the computed values of all players will be
within a 1± ε multiplicative factor of the correct values.

To replace 3/4 with 1− δ, need m ∈ poly(n, 1/ε, log(1/δ)).

Shapley Value for Supermodular Games

Key: Supermodularity implies that can’t get huge values with tiny
probability.

Indeed, largest marginal contribution is when player appears last,
which happens with probability 1/n.

Assumption: v({i}) ≥ 0, for all i .
Quick Fix: If want to fairly allocate gains from cooperation, game
should have v({i}) = 0, anyway.

Shapley Value for Supermodular Games

Key: Supermodularity implies that can’t get huge values with tiny
probability.

Indeed, largest marginal contribution is when player appears last,
which happens with probability 1/n.

Assumption: v({i}) ≥ 0, for all i .
Quick Fix: If want to fairly allocate gains from cooperation, game
should have v({i}) = 0, anyway.

Shapley Value for Supermodular Games

Key: Supermodularity implies that can’t get huge values with tiny
probability.

Indeed, largest marginal contribution is when player appears last,
which happens with probability 1/n.

Assumption: v({i}) ≥ 0, for all i .
Quick Fix: If want to fairly allocate gains from cooperation, game
should have v({i}) = 0, anyway.

Shapley Value for Supermodular Games

Key: Supermodularity implies that can’t get huge values with tiny
probability.

Indeed, largest marginal contribution is when player appears last,
which happens with probability 1/n.

Assumption: v({i}) ≥ 0, for all i .
Quick Fix: If want to fairly allocate gains from cooperation, game
should have v({i}) = 0, anyway.

Shapley Value for Supermodular Games

Theorem:

I No deterministic algorithm can do as well as poly(n, 1/ε).

I No other probabilistic algorithm can do better than
poly(n, 1/ε).

I Doesn’t depend on P 6= NP.

Similar bad example as before shows these facts.

The Kernel
In example, suppose have decided to
allocate 6 to Al and 4 to each leaf
player.

Beth can threaten Al that she will
“go alone”,

Beth Chris

DebEd

Al

Cost of threat to Beth: 4− 0 = 4.

Best threats are in equilibrium. Called the kernel.

The Kernel
In example, suppose have decided to
allocate 6 to Al and 4 to each leaf
player.

Beth can threaten Al that she will
“go alone”,

Beth Chris

DebEd

Al

Cost of threat to Beth: 4− 0 = 4.

Best threats are in equilibrium. Called the kernel.

The Kernel
In example, suppose have decided to
allocate 6 to Al and 4 to each leaf
player.

Beth can threaten Al that she will
“go alone”,

Beth Chris

DebEd

Al

Cost of threat to Beth: 4− 0 = 4.

Al can threaten Beth that he will go alone, cost to him: 6.

Best threats are in equilibrium. Called the kernel.

The Kernel
In example, suppose have decided to
allocate 6 to Al and 4 to each leaf
player.

Beth can threaten Al that she will
“go alone”,

Beth Chris

DebEd

Al

Cost of threat to Beth: 4− 0 = 4.

Or Al can threaten that he will only cooperate with C, D, and E.

Then v(ACDE) = 14, but Al must continue paying C, D, and E
each 4, leaving 2 for himself.
Cost of threat to Al: 6− 2 = 4.

Best threats are in equilibrium. Called the kernel.

The Kernel
In example, suppose have decided to
allocate 6 to Al and 4 to each leaf
player.

Beth can threaten Al that she will
“go alone”,

Beth Chris

DebEd

Al

Cost of threat to Beth: 4− 0 = 4.

Or Al can threaten that he will only cooperate with C, D, and E.
Then v(ACDE) = 14, but Al must continue paying C, D, and E
each 4, leaving 2 for himself.
Cost of threat to Al: 6− 2 = 4.

Best threats are in equilibrium. Called the kernel.

The Kernel
In example, suppose have decided to
allocate 6 to Al and 4 to each leaf
player.

Beth can threaten Al that she will
“go alone”,

Beth Chris

DebEd

Al

Cost of threat to Beth: 4− 0 = 4.

Or Al can threaten that he will only cooperate with C, D, and E.
Then v(ACDE) = 14, but Al must continue paying C, D, and E
each 4, leaving 2 for himself.
Cost of threat to Al: 6− 2 = 4.

Best threats are in equilibrium. Called the kernel.

The Kernel
In example, suppose have decided to
allocate 6 to Al and 4 to each leaf
player.

Beth can threaten Al that she will
“go alone”,

Beth Chris

DebEd

Al

Cost of threat to Beth: 4− 0 = 4.

Or Al can threaten that he will only cooperate with C, D, and E.
Then v(ACDE) = 14, but Al must continue paying C, D, and E
each 4, leaving 2 for himself.
Cost of threat to Al: 6− 2 = 4.

Best threats are in equilibrium. Called the kernel.

The Kernel

Kernel exists and is unique for supermodular games [Shapley].

Kernel = Stable Outcome,
Shapley = Fair Outcome.

Unlike Shapley value, kernel of supermodular games can be exactly
computed, in polynomial time [Kuipers].

Key Difference:

I Shapley value depends on the values of all 2n subsets.

I Kernel only depends on the values of the n(n− 1) best threats
of player i to player j .

The Kernel

Kernel exists and is unique for supermodular games [Shapley].

Kernel = Stable Outcome,
Shapley = Fair Outcome.

Unlike Shapley value, kernel of supermodular games can be exactly
computed, in polynomial time [Kuipers].

Key Difference:

I Shapley value depends on the values of all 2n subsets.

I Kernel only depends on the values of the n(n− 1) best threats
of player i to player j .

The Kernel

Kernel exists and is unique for supermodular games [Shapley].

Kernel = Stable Outcome,
Shapley = Fair Outcome.

Unlike Shapley value, kernel of supermodular games can be exactly
computed, in polynomial time [Kuipers].

Key Difference:

I Shapley value depends on the values of all 2n subsets.

I Kernel only depends on the values of the n(n− 1) best threats
of player i to player j .

The Kernel

Kernel exists and is unique for supermodular games [Shapley].

Kernel = Stable Outcome,
Shapley = Fair Outcome.

Unlike Shapley value, kernel of supermodular games can be exactly
computed, in polynomial time [Kuipers].

Key Difference:

I Shapley value depends on the values of all 2n subsets.

I Kernel only depends on the values of the n(n− 1) best threats
of player i to player j .

The Kernel

Kernel exists and is unique for supermodular games [Shapley].

Kernel = Stable Outcome,
Shapley = Fair Outcome.

Unlike Shapley value, kernel of supermodular games can be exactly
computed, in polynomial time [Kuipers].

Key Difference:

I Shapley value depends on the values of all 2n subsets.

I Kernel only depends on the values of the n(n− 1) best threats
of player i to player j .

Open Questions

I For specific supermodular games, like our example, can the
Shapley value be computed efficiently?

I For our example game, how is the Shapley value related to the
structure of the graph?

Open Questions

I For specific supermodular games, like our example, can the
Shapley value be computed efficiently?

I For our example game, how is the Shapley value related to the
structure of the graph?

Thank You!

Beth Chris

DebEd

Al

