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A Game
Players are in a social network
(edges = friends).

Deciding whether to adopt a social
technology (cell phone plan, Google+).

Each player has a cost, ¢, to adopt.
Each player gets benefit, b, for each friend who has also adopted.
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Example: b=9, ¢ = 10.
Leaf players do not want to adopt.

But total surplus is: 8b — 5¢ = 22.

Al should pay the other players to entice them.
How much?

How should the total surplus be divided?
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Imagine players arrive in some order, o.

Player receives marginal contribution:
what he adds to players already present.

d

Examples:
o =ABCDE. m.c. of Chris: v(ABC) — v(AB) =6 —0=6.
o = ABDCE. m.c. of Chris: v(ABDC) — v(ABD) = 14 — 6 = 8.
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Examples:
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» Multicast tree game: building a path to a source.

» Anything with Bandwagon effect.
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Supermodular.
Slightly different C's yield slightly different Shapley values.

Exact computation needs > (n'/’2) oracle calls.

Too much wiggle room. How about approximating?
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Theorem: For supermodular games, oracle access, this gives a fully
polynomial-time randomized approximation scheme (FPRAS).
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Key: Supermodularity implies that can't get huge values with tiny
probability.

Indeed, largest marginal contribution is when player appears last,
which happens with probability 1/n.

Assumption: v({i}) >0, for all i.
Quick Fix: If want to fairly allocate gains from cooperation, game
should have v({i}) = 0, anyway.
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Shapley Value for Supermodular Games

Theorem:
» No deterministic algorithm can do as well as poly(n, 1/¢).

» No other probabilistic algorithm can do better than
poly(n,1/e).
» Doesn't depend on P £ NP.

Similar bad example as before shows these facts.
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In example, suppose have decided to
allocate 6 to Al and 4 to each leaf
player.

Beth can threaten Al that she will
“go alone”,

Cost of threat to Beth: 4 — 0 = 4.

Or Al can threaten that he will only cooperate with C, D, and E.
Then v(ACDE) = 14, but Al must continue paying C, D, and E
each 4, leaving 2 for himself.

Cost of threat to Al: 6 —2 = 4.

Best threats are in equilibrium. Called the kernel.
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Kernel = Stable Outcome,
Shapley = Fair Outcome.

Unlike Shapley value, kernel of supermodular games can be exactly
computed, in polynomial time [Kuipers].

Key Difference:
» Shapley value depends on the values of all 2" subsets.

» Kernel only depends on the values of the n(n — 1) best threats
of player i to player j.
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Thank You!




