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Teaser #1

Linear Programming: Given an m × d matrix A, an m-vector b,
and a d-vector c ,

minimize c · x such that Ax ≤ b.



Teaser #1

Simplex Algorithm:

I Start at a vertex of the polytope {x : Ax ≤ b}.
I Step to new vertices until arrive at optimum.

I Allowable steps: along an edge of the polytope such that
objective function decreases.
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Teaser #1

Integer Programming:

minimize c · x such that Ax ≤ b and x is integral.

Question:

I Can we step between the feasible integer points and get to the
optimum?

I What are the allowable steps?



Teaser #2

The Frobenius Problem:

Let a1, a2, . . . , an be nonnegative integers such that
gcd(a1, a2, . . . , an) = 1. Let

S = {λ1a1 + · · ·+ λnan : λi ∈ N}.

Question: What is the largest integer not in S?

Question: How many positive integers are not in S?



Teaser #2

Example: a1 = 3, a2 = 7.

S = {0, 3, 6, 7, 9, 10, 12, 13, 14, . . .}.

Question: What is the largest integer not in S?
Answer: 11.

Question: How many positive integers are not in S?
Answer: 6.



Teaser #2

Given a set S ⊆ N, define the generating function

f (S ; t) =
∑
a∈S

ta.

In example,

f (S ; t) = t0 + t3 + t6 + t7 + t9 + t10 + · · ·

We will shortly show

f (S ; t) =
1− ta1a2

(1− ta1)(1− ta2)
.



Teaser #2
Let T = N \ S (which is {1, 2, 4, 5, 8, 11} in the example).

f (T ; t) =
1

1− t
− f (S ; t)

=
(1− ta1)(1− ta2)− (1− t)(1− ta1a2)

(1− t)(1− ta1)(1− ta2)
.

The largest integer not in S is the degree of the polynomial
f (T ; x), which is

(1 + a1a2)− (1 + a1 + a2) = a1a2 − a1 − a2.

The number of positive integers not in S is f (T ; 1), which is
(taking the limit as t → 1)

a1a2 − a1 − a2 + 1

2

[Sylvester].
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Teaser #2

Proof by Example: Frobenius Problem with a1 = 2, a2 = 5.

2x+5y=3 2x+5y=10 2x+5y=17 2x+5y=22

1

(1− t2)(1− t5)
= (1 + t2 + t4 + · · · )(1 + t5 + · · · )

= 1 + t2 + t4 + t5 + t6 + t7 + t8 + t9 + 2t10 + · · ·

Problem: These intervals may have more than one integer point.
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Teaser #2
Proof by Example: Frobenius Problem with a1 = 2, a2 = 5.

Q

Let Q = {(x , y) : x ≥ 5, y ≥ 0}.

The points in Q give us:

t10

(1− t2)(1− t5)
.



Teaser #2
Proof by Example: Frobenius Problem with a1 = 2, a2 = 5.

Q

Each interval has only one integer point outside of Q:

f (S ; t) =
1

(1− t2)(1− t5)
− t10

(1− t2)(1− t5)

=
1− t10

(1− t2)(1− t5)
.



Teaser #2

Proof by Example: Frobenius Problem with a1 = 2, a2 = 5.

Q

Why This Works:
The structure of integer points in an interval is easy.



Teaser #2
What about the Frobenius problem with three generators?

Intervals become triangles.



Parametric Polytopes
Example: a1 = 3, a2 = 4, a3 = 5.

In how many ways can a given s be written with these generators?

Let

A =

−1 −2 1
1 −1 −2
0 2 1

 .
[
3 4 5

]
A =

[
1 0 0

]
.

Columns of A form a basis for Z3, so AZ3 = Z3. We will use A as
a change of basis.

Last two columns of A are a basis for

Λ =
{
x ∈ Z3 :

[
3 4 5

]
x = 0

}
.
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Parametric Polytopes

Number of ways s can be written with these generators

=#
{
x ∈ Z3 :

[
3 4 5

]
x = s and x ≥ 0

}
=#

{
y ∈ Z3 :

[
3 4 5

]
Ay = s and Ay ≥ 0

}
=#

{
y ∈ Z3 :

[
1 0 0

]
y = s and Ay ≥ 0

}
=#

(u, v) ∈ Z2 : A

s
u
v

 ≥ 0


=#

(u, v) ∈ Z2 :

 2 −1
1 2
−2 −1

[u
v

]
≤

−1
1
0

 s



Parametric Polytope: Normal vectors to facets determined by
matrix whose columns are a basis for Λ. They stay the same, but
the right-hand-sides vary.
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Parametric Polytopes



Neighbors

Fix A. Let b vary.

Definition [Scarf]: x , y ∈ Zd are neighbors if there exists a b such
that the polytope

{x : Ax ≤ b}

contains x and y but no other integer points.



Neighbors

We will assume genericity: there are no ties.

y1y y2y

x

Should y1 or y2 be a neighbor of x?

This can be fixed with some sort of tie-breaking rule.



Neighbors

Examples:
When A is a 3× 2 matrix:

When A is a 2× 1 matrix:

Neighbors are invariant under lattice translation.



Teaser #1, revisited

Stepping among integer solutions to Ax ≤ b
in order to minimize c · x .

Find neighbors with respect to the inequalities[
A
c

]
x ≤

[
b
d

]
(d can be anything).

These are exactly the correct set of allowable steps [Scarf].



Teaser #1, revisited

c

x

Given x feasible, is it optimal?

If not:

I This region contains integer points
other than x .

I Shrink until there is only one other
such point y .

I Then y must be a neighbor of x .
Step to y .
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Neighborhood Complexes

Define [Scarf] the following simplicial complex with vertices in Zd :

{x1, x2, · · · , xk} ⊆ Zd is a face
if and only if

there exists a b such that the polytope {x : Ax ≤ b} contains the
xi (on different facets), but no interior integer points.

This complex is invariant under lattice translations.



Neighborhood Complexes



Living in Zm Land

Let Λ = AZd , a sublattice of Zm. It is often convenient to look at
the complex on these vertices.

What b ∈ Zm defines the smallest polytope {Ax ≤ b} containing
x1, . . . , xk?

It is the smallest b such that

Axi ≤ b for all i .

We want
b = coord-max(Ax1, . . . ,Axk).

The polytope defined by this b should have no interior integer
points.
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Living in Zm Land

{x1, . . . , xk} ⊆ Zd is a face if and only if there is no x ∈ Zd such
that

Ax < coord-max(Ax1, . . . ,Axk).

{λ1, . . . , λk} ⊆ Λ = AZd is a face if and only if there is no λ ∈ Λ
such that

λ < coord-max(λ1, . . . , λk).
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Example: A is a 3× 2 matrix.
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Living in Zm Land

Neighborhood complexes seems to be determined by an
(m − 1)-dimensional surface living naturally in Rm.

It is awfully wrinkled.

We can iron this out.



A Geometric Realization

Example: A =

[
−1
1

]
.

Let Q ⊆ Rm be the convex hull
of

etλ : λ ∈ Λ,

for sufficiently large t.

The faces of Q are the faces of
the neighborhood complex
[Bárány, Howe, Scarf, Shallcross].

(0,0)

(2,-2)

(-2,2)
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A Geometric Realization
Consequences:

I The neighborhood complex is contractible.
I The neighborhood complex is connected (this makes the

“stepping” work in Teaser #1).
I The Euler characteristic

(# vertices - # edges + #2-faces - · · · )
is one.



Teaser #2, revisited

Frobenius Problem with a1 = 2, a2 = 5.

Q

coefficient of ts in f (S ; t) =

{
1 if s ∈ S

0 if s /∈ S

= # vertices − # edges in complex

f (S ; t) =
1

(1− t2)(1− t5)
− t10

(1− t2)(1− t5)
.



Teaser #2, revisited

In general, let M =
[
a1 · · · an

]
be the matrix of generators of S .

Let A be an n × (n − 1) matrix whose columns form a basis for
Λ = {x ∈ Zn : Mx = 0}.

Compute the neighborhood complex, C , of A. C is
lattice-invariant.

Let C contain one representative from each translation class of
faces.
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Teaser #2, revisited

For each face F = (x1, . . . , xk) ∈ C , let

λmax
F = coord-max(Ax1, . . . ,Axk).

Then [Scarf, W]

f (S ; t) =

∑
F∈C (−1)dim F tMλmax

F

(1− ta1) · · · (1− tan)
.



Teaser #2, revisited

Example: For 3 generators, C has 2 triangles, 3 edges, and 1
vertex.

So f (S ; t) has 6 monomials in numerator.



Teaser #2, revisited

Extensions:

I Also applies [Scarf, W; Bayer, Sturmfels] to higher
dimensional semigroups. E.g., if S is generated by (1, 3),
(2, 2), and (3, 1)

f (S ; s, t) = s0t0 + s1t3 + s2t2 + s2t6 + · · ·

=
1− s4t4

(1− s1t3)(1− s2t2)(1− s3t1)

I Also applies [W] to any S = T (P ∩Zd), where P is a polytope
and T is a projection. E.g., P = R2

≥0, T (x , y) = 2x + 5y is
Frobenius problem with generators 2 and 5.
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The Frobenius Number
Question: What is the largest integer that isn’t in the semigroup
generated by a1, . . . , an?

Let p(t) be the numerator of f (S ; t).

Let M = deg(p). M corresponds to the depth of the
“deepest hole” in this picture.



The Frobenius Number

Let T = Z≥0 \ S .

f (T ; t) =
1

1− t
− p(t)

(1− ta1) · · · (1− tan)

=
(1− ta1) · · · (1− tan) − (1− t)p(t)

(1− t)(1− ta1) · · · (1− tan)
.

The largest integer not in S is the degree of the polynomial
f (T ; x), which is

(1 + deg(p))− (1 + a1 + · · ·+ an) = M − a1 − · · · − an

[Scarf, Shallcross].
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What Now?

Neighbors of small matrices well understood:

I m × 1 matrices: trivial (1 dimensional).

I 3× 2 matrices [Scarf]: triangles tiling plane.

I m× 2 matrices [Scarf]: the set of neighbors of the origin lie in
a small number of intervals.

I 4× 3 matrices [Shallcross]: the set of neighbors lie in a small
number of 2-d polytopes.

I Beyond? Unknown!! Lovász conjectured the set on neighbors
lie in a small number of (d − 1)-dimensional polytopes.



What Now?

Understanding the structure of neighborhood complexes would lead
to algorithms for computing these generating functions.

The only known polynomial time (for fixed dimension) algorithm
[Barvinok, W] fares poorly in practice:

I It takes a hammer to the geometry, but does it in polynomial
time.

I Neighborhood complexes preserve the geometry beautifully,
but don’t have (known) polynomial-size structure.

A practical algorithm would need to treat the geometry more
gently.
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Thank You!


