## Neighborhood Complexes and Rational Generating Functions

Kevin Woods, Oberlin College (joint work with Herbert Scarf, Yale University)



## Teaser \#1



Linear Programming: Given an $m \times d$ matrix A, an $m$-vector $b$, and a $d$-vector $c$, minimize $c \cdot x$ such that $A x \leq b$.

## Teaser \#1



Simplex Algorithm:

- Start at a vertex of the polytope $\{x: A x \leq b\}$.
- Step to new vertices until arrive at optimum.
- Allowable steps: along an edge of the polytope such that objective function decreases.


## Teaser \#1



Simplex Algorithm:

- Start at a vertex of the polytope $\{x: A x \leq b\}$.
- Step to new vertices until arrive at optimum.
- Allowable steps: along an edge of the polytope such that objective function decreases.


## Teaser \#1

Integer Programming:
minimize $c \cdot x$ such that $A x \leq b$ and $x$ is integral.


Question:

- Can we step between the feasible integer points and get to the optimum?
- What are the allowable steps?


## Teaser \#2

The Frobenius Problem:
Let $a_{1}, a_{2}, \ldots, a_{n}$ be nonnegative integers such that $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$. Let

$$
S=\left\{\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n}: \lambda_{i} \in \mathbb{N}\right\}
$$

Question: What is the largest integer not in $S$ ?
Question: How many positive integers are not in $S$ ?

## Teaser \#2

Example: $a_{1}=3, a_{2}=7$.

$$
S=\{0,3,6,7,9,10,12,13,14, \ldots\}
$$

Question: What is the largest integer not in $S$ ?
Answer: 11.

Question: How many positive integers are not in $S$ ?
Answer: 6.

## Teaser \#2

Given a set $S \subseteq \mathbb{N}$, define the generating function

$$
f(S ; t)=\sum_{a \in S} t^{a} .
$$

In example,

$$
f(S ; t)=t^{0}+t^{3}+t^{6}+t^{7}+t^{9}+t^{10}+\cdots
$$

We will shortly show

$$
f(S ; t)=\frac{1-t^{a_{1} a_{2}}}{\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)} .
$$

## Teaser \#2

Let $T=\mathbb{N} \backslash S$ (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; t) & =\frac{1}{1-t}-f(S ; t) \\
& =\frac{\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)-(1-t)\left(1-t^{a_{1} a_{2}}\right)}{(1-t)\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)}
\end{aligned}
$$

The largest integer not in $S$ is the degree of the polynomial $f(T ; x)$, which is

$$
\left(1+a_{1} a_{2}\right)-\left(1+a_{1}+a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}
$$

The number of positive integers not in $S$ is $f(T ; 1)$, which is (taking the limit as $t \rightarrow 1$ )

$$
\frac{a_{1} a_{2}-a_{1}-a_{2}+1}{2}
$$

[Sylvester].

## Teaser \#2

Let $T=\mathbb{N} \backslash S$ (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; t) & =\frac{1}{1-t}-f(S ; t) \\
& =\frac{\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)-(1-t)\left(1-t^{a_{1} a_{2}}\right)}{(1-t)\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)}
\end{aligned}
$$

The largest integer not in $S$ is the degree of the polynomial $f(T ; x)$, which is

$$
\left(1+a_{1} a_{2}\right)-\left(1+a_{1}+a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}
$$

The number of positive integers not in $S$ is $f(T ; 1)$, which is (taking the limit as $t \rightarrow 1$ )

$$
\frac{a_{1} a_{2}-a_{1}-a_{2}+1}{2}
$$

[Sylvester].

## Teaser \#2

Let $T=\mathbb{N} \backslash S$ (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; t) & =\frac{1}{1-t}-f(S ; t) \\
& =\frac{\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)-(1-t)\left(1-t^{a_{1} a_{2}}\right)}{(1-t)\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)}
\end{aligned}
$$

The largest integer not in $S$ is the degree of the polynomial $f(T ; x)$, which is

$$
\left(1+a_{1} a_{2}\right)-\left(1+a_{1}+a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}
$$

The number of positive integers not in $S$ is $f(T ; 1)$, which is (taking the limit as $t \rightarrow 1$ )

$$
\frac{a_{1} a_{2}-a_{1}-a_{2}+1}{2}
$$

[Sylvester].

## Teaser \#2

Let $T=\mathbb{N} \backslash S$ (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; t) & =\frac{1}{1-t}-f(S ; t) \\
& =\frac{\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)-(1-t)\left(1-t^{a_{1} a_{2}}\right)}{(1-t)\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)}
\end{aligned}
$$

The largest integer not in $S$ is the degree of the polynomial $f(T ; x)$, which is

$$
\left(1+a_{1} a_{2}\right)-\left(1+a_{1}+a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}
$$

The number of positive integers not in $S$ is $f(T ; 1)$, which is (taking the limit as $t \rightarrow 1$ )

$$
\frac{a_{1} a_{2}-a_{1}-a_{2}+1}{2}
$$

[Sylvester].

## Teaser \#2

Let $T=\mathbb{N} \backslash S$ (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; t) & =\frac{1}{1-t}-f(S ; t) \\
& =\frac{\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)-(1-t)\left(1-t^{a_{1} a_{2}}\right)}{(1-t)\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)}
\end{aligned}
$$

The largest integer not in $S$ is the degree of the polynomial $f(T ; x)$, which is

$$
\left(1+a_{1} a_{2}\right)-\left(1+a_{1}+a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}
$$

The number of positive integers not in $S$ is $f(T ; 1)$, which is (taking the limit as $t \rightarrow 1$ )

$$
\frac{a_{1} a_{2}-a_{1}-a_{2}+1}{2}
$$

[Sylvester].

## Teaser \#2

Let $T=\mathbb{N} \backslash S$ (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; t) & =\frac{1}{1-t}-f(S ; t) \\
& =\frac{\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)-(1-t)\left(1-t^{a_{1} a_{2}}\right)}{(1-t)\left(1-t^{a_{1}}\right)\left(1-t^{a_{2}}\right)}
\end{aligned}
$$

The largest integer not in $S$ is the degree of the polynomial $f(T ; x)$, which is

$$
\left(1+a_{1} a_{2}\right)-\left(1+a_{1}+a_{2}\right)=a_{1} a_{2}-a_{1}-a_{2}
$$

The number of positive integers not in $S$ is $f(T ; 1)$, which is (taking the limit as $t \rightarrow 1$ )

$$
\frac{a_{1} a_{2}-a_{1}-a_{2}+1}{2}
$$

[Sylvester].

## Teaser \#2

Proof by Example: Frobenius Problem with $a_{1}=2, a_{2}=5$.

$$
\begin{aligned}
\frac{1}{\left(1-t^{2}\right)\left(1-t^{5}\right)} & =\left(1+t^{2}+t^{4}+\cdots\right)\left(1+t^{5}+\cdots\right) \\
& =1+t^{2}+t^{4}+t^{5}+t^{6}+t^{7}+t^{8}+t^{9}+2 t^{10}+\cdots
\end{aligned}
$$

## Teaser \#2

Proof by Example: Frobenius Problem with $a_{1}=2, a_{2}=5$.


$$
\begin{aligned}
\frac{1}{\left(1-t^{2}\right)\left(1-t^{5}\right)} & =\left(1+t^{2}+t^{4}+\cdots\right)\left(1+t^{5}+\cdots\right) \\
& =1+t^{2}+t^{4}+t^{5}+t^{6}+t^{7}+t^{8}+t^{9}+2 t^{10}+\cdots
\end{aligned}
$$

Problem: These intervals may have more than one integer point.

## Teaser \#2

Proof by Example: Frobenius Problem with $a_{1}=2, a_{2}=5$.


Let $Q=\{(x, y): x \geq 5, y \geq 0\}$.
The points in $Q$ give us:

$$
\frac{t^{10}}{\left(1-t^{2}\right)\left(1-t^{5}\right)} .
$$

## Teaser \#2

Proof by Example: Frobenius Problem with $a_{1}=2, a_{2}=5$.


Each interval has only one integer point outside of $Q$ :

$$
\begin{aligned}
f(S ; t) & =\frac{1}{\left(1-t^{2}\right)\left(1-t^{5}\right)}-\frac{t^{10}}{\left(1-t^{2}\right)\left(1-t^{5}\right)} \\
& =\frac{1-t^{10}}{\left(1-t^{2}\right)\left(1-t^{5}\right)}
\end{aligned}
$$

## Teaser \#2

Proof by Example: Frobenius Problem with $a_{1}=2, a_{2}=5$.


Why This Works:
The structure of integer points in an interval is easy.

## Teaser \#2

What about the Frobenius problem with three generators?

Intervals become triangles.


## Parametric Polytopes

## Example: $a_{1}=3, a_{2}=4, a_{3}=5$.

In how many ways can a given $s$ be written with these generators?

## Parametric Polytopes

Example: $a_{1}=3, a_{2}=4, a_{3}=5$.
In how many ways can a given $s$ be written with these generators? Let

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
-1 & -2 & 1 \\
1 & -1 & -2 \\
0 & 2 & 1
\end{array}\right] . \\
{\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] A=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] .}
\end{gathered}
$$

Columns of $A$ form a basis for $\mathbb{Z}^{3}$, so $A \mathbb{Z}^{3}=\mathbb{Z}^{3}$. We will use $A$ as a change of basis.

Last two columns of $A$ are a basis for

$$
\Lambda=\left\{x \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] x=0\right\}
$$

## Parametric Polytopes

Example: $a_{1}=3, a_{2}=4, a_{3}=5$.
In how many ways can a given $s$ be written with these generators? Let

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
-1 & -2 & 1 \\
1 & -1 & -2 \\
0 & 2 & 1
\end{array}\right] . \\
{\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] A=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] .}
\end{gathered}
$$

Columns of $A$ form a basis for $\mathbb{Z}^{3}$, so $A \mathbb{Z}^{3}=\mathbb{Z}^{3}$. We will use $A$ as a change of basis.

Last two columns of $A$ are a basis for

$$
\Lambda=\left\{x \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] x=0\right\}
$$

## Parametric Polytopes

Example: $a_{1}=3, a_{2}=4, a_{3}=5$.
In how many ways can a given $s$ be written with these generators? Let

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
-1 & -2 & 1 \\
1 & -1 & -2 \\
0 & 2 & 1
\end{array}\right] . \\
{\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] A=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] .}
\end{gathered}
$$

Columns of $A$ form a basis for $\mathbb{Z}^{3}$, so $A \mathbb{Z}^{3}=\mathbb{Z}^{3}$. We will use $A$ as a change of basis.

Last two columns of $A$ are a basis for

$$
\Lambda=\left\{x \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] x=0\right\}
$$

## Parametric Polytopes

Example: $a_{1}=3, a_{2}=4, a_{3}=5$.
In how many ways can a given $s$ be written with these generators? Let

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
-1 & -2 & 1 \\
1 & -1 & -2 \\
0 & 2 & 1
\end{array}\right] . \\
{\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] A=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] .}
\end{gathered}
$$

Columns of $A$ form a basis for $\mathbb{Z}^{3}$, so $A \mathbb{Z}^{3}=\mathbb{Z}^{3}$. We will use $A$ as a change of basis.

Last two columns of $A$ are a basis for

$$
\Lambda=\left\{x \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] x=0\right\}
$$

## Parametric Polytopes

Number of ways $s$ can be written with these generators

$$
\begin{aligned}
& =\#\left\{\mathbf{x} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] \mathbf{x}=s \text { and } \mathbf{x} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] A \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}: A\left[\begin{array}{l}
s \\
u \\
v
\end{array}\right] \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}:\left[\begin{array}{cc}
2 & -1 \\
1 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \leq\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] s\right\}
\end{aligned}
$$

## Parametric Polytopes

Number of ways $s$ can be written with these generators

$$
\begin{aligned}
& =\#\left\{\mathbf{x} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] \mathbf{x}=s \text { and } \mathrm{x} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] A \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}: A\left[\begin{array}{l}
s \\
u \\
v
\end{array}\right] \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}:\left[\begin{array}{cc}
2 & -1 \\
1 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \leq\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] s\right\}
\end{aligned}
$$

## Parametric Polytopes

Number of ways $s$ can be written with these generators

$$
\begin{aligned}
& =\#\left\{\mathbf{x} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] \mathbf{x}=s \text { and } \mathbf{x} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] A \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}: A\left[\begin{array}{l}
s \\
u \\
v
\end{array}\right] \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}:\left[\begin{array}{cc}
2 & -1 \\
1 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \leq\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] s\right\}
\end{aligned}
$$

## Parametric Polytopes

Number of ways $s$ can be written with these generators

$$
\begin{aligned}
& =\#\left\{\mathbf{x} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] \mathbf{x}=s \text { and } \mathbf{x} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] A \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}: A\left[\begin{array}{l}
s \\
u \\
v
\end{array}\right] \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}:\left[\begin{array}{cc}
2 & -1 \\
1 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \leq\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] s\right\}
\end{aligned}
$$

## Parametric Polytopes

Number of ways $s$ can be written with these generators

$$
\begin{aligned}
& =\#\left\{\mathbf{x} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] \mathbf{x}=s \text { and } \mathbf{x} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] A \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}: A\left[\begin{array}{l}
s \\
u \\
v
\end{array}\right] \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}:\left[\begin{array}{cc}
2 & -1 \\
1 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \leq\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] s\right\}
\end{aligned}
$$

## Parametric Polytopes

Number of ways $s$ can be written with these generators

$$
\begin{aligned}
& =\#\left\{\mathbf{x} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] \mathbf{x}=s \text { and } \mathbf{x} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] A \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}: A\left[\begin{array}{l}
s \\
u \\
v
\end{array}\right] \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}:\left[\begin{array}{cc}
2 & -1 \\
1 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \leq\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] s\right\}
\end{aligned}
$$

## Parametric Polytopes

Number of ways $s$ can be written with these generators

$$
\begin{aligned}
& =\#\left\{\mathbf{x} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] \mathbf{x}=s \text { and } \mathbf{x} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] A \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{\mathbf{y} \in \mathbb{Z}^{3}:\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \mathbf{y}=s \text { and } A \mathbf{y} \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}: A\left[\begin{array}{l}
s \\
u \\
v
\end{array}\right] \geq \mathbf{0}\right\} \\
& =\#\left\{(u, v) \in \mathbb{Z}^{2}:\left[\begin{array}{cc}
2 & -1 \\
1 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right] \leq\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] s\right\}
\end{aligned}
$$

Parametric Polytope: Normal vectors to facets determined by matrix whose columns are a basis for $\Lambda$. They stay the same, but the right-hand-sides vary.

## Parametric Polytopes



## Neighbors

Fix $A$. Let $b$ vary.
Definition [Scarf]: $x, y \in \mathbb{Z}^{d}$ are neighbors if there exists a $b$ such that the polytope

$$
\{x: A x \leq b\}
$$

contains $x$ and $y$ but no other integer points.



## Neighbors

We will assume genericity: there are no ties.


Should $y_{1}$ or $y_{2}$ be a neighbor of $x$ ?
This can be fixed with some sort of tie-breaking rule.

## Neighbors

## Examples:

When $A$ is a $3 \times 2$ matrix:


When $A$ is a $2 \times 1$ matrix:


Neighbors are invariant under lattice translation.

## Teaser \#1, revisited

Stepping among integer solutions to $A x \leq b$ in order to minimize $c \cdot x$.

Find neighbors with respect to the inequalities

$$
\left[\begin{array}{l}
A \\
c
\end{array}\right] x \leq\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

(d can be anything).
These are exactly the correct set of allowable steps [Scarf].

## Teaser \#1, revisited



Given $x$ feasible, is it optimal?

## Teaser \#1, revisited



Given $x$ feasible, is it optimal? If not:

- This region contains integer points other than $x$.
- Shrink until there is only one other such point $y$.
- Then $y$ must be a neighbor of $x$. Step to $y$.


## Teaser \#1, revisited



Given $x$ feasible, is it optimal? If not:

- This region contains integer points other than $x$.
- Shrink until there is only one other such point $y$.
- Then $y$ must be a neighbor of $x$. Step to $y$.


## Teaser \#1, revisited



Given $x$ feasible, is it optimal? If not:

- This region contains integer points other than $x$.
- Shrink until there is only one other such point $y$.
- Then $y$ must be a neighbor of $x$. Step to $y$.

Teaser \#1, revisited


## Teaser \#1, revisited



There seems to be a 2-d complex hiding here.

## Neighborhood Complexes

Define [Scarf] the following simplicial complex with vertices in $\mathbb{Z}^{d}$ :

$$
\begin{gathered}
\left\{x_{1}, x_{2}, \cdots, x_{k}\right\} \subseteq \mathbb{Z}^{d} \text { is a face } \\
\text { if and only if }
\end{gathered}
$$

there exists a $b$ such that the polytope $\{x: A x \leq b\}$ contains the $x_{i}$ (on different facets), but no interior integer points.


This complex is invariant under lattice translations.

Neighborhood Complexes


## Living in $\mathbb{Z}^{m}$ Land

Let $\Lambda=A \mathbb{Z}^{d}$, a sublattice of $\mathbb{Z}^{m}$. It is often convenient to look at the complex on these vertices.

What $b \in \mathbb{Z}^{m}$ defines the smallest polytope $\{A x \leq b\}$ containing $x_{1}, \ldots, x_{k}$ ?

It is the smallest $b$ such that

$$
A x_{i} \leq b \text { for all } i
$$

We want

$$
b=\operatorname{coord}-\max \left(A x_{1}, \ldots, A x_{k}\right)
$$

The polytope defined by this $b$ should have no interior integer points.

## Living in $\mathbb{Z}^{m}$ Land

Let $\Lambda=A \mathbb{Z}^{d}$, a sublattice of $\mathbb{Z}^{m}$. It is often convenient to look at the complex on these vertices.

What $b \in \mathbb{Z}^{m}$ defines the smallest polytope $\{A x \leq b\}$ containing $x_{1}, \ldots, x_{k}$ ?

It is the smallest $b$ such that

$$
A x_{i} \leq b \text { for all } i
$$

We want

$$
b=\operatorname{coord}-\max \left(A x_{1}, \ldots, A x_{k}\right)
$$

The polytope defined by this $b$ should have no interior integer points.

## Living in $\mathbb{Z}^{m}$ Land

Let $\Lambda=A \mathbb{Z}^{d}$, a sublattice of $\mathbb{Z}^{m}$. It is often convenient to look at the complex on these vertices.

What $b \in \mathbb{Z}^{m}$ defines the smallest polytope $\{A x \leq b\}$ containing $x_{1}, \ldots, x_{k}$ ?

It is the smallest $b$ such that

$$
A x_{i} \leq b \text { for all } i
$$

We want

$$
b=\operatorname{coord}-\max \left(A x_{1}, \ldots, A x_{k}\right)
$$

The polytope defined by this $b$ should have no interior integer points.

## Living in $\mathbb{Z}^{m}$ Land

Let $\Lambda=A \mathbb{Z}^{d}$, a sublattice of $\mathbb{Z}^{m}$. It is often convenient to look at the complex on these vertices.

What $b \in \mathbb{Z}^{m}$ defines the smallest polytope $\{A x \leq b\}$ containing $x_{1}, \ldots, x_{k}$ ?

It is the smallest $b$ such that

$$
A x_{i} \leq b \text { for all } i
$$

We want

$$
b=\operatorname{coord}-\max \left(A x_{1}, \ldots, A x_{k}\right)
$$

The polytope defined by this $b$ should have no interior integer points.

## Living in $\mathbb{Z}^{m}$ Land

Let $\Lambda=A \mathbb{Z}^{d}$, a sublattice of $\mathbb{Z}^{m}$. It is often convenient to look at the complex on these vertices.

What $b \in \mathbb{Z}^{m}$ defines the smallest polytope $\{A x \leq b\}$ containing $x_{1}, \ldots, x_{k}$ ?

It is the smallest $b$ such that

$$
A x_{i} \leq b \text { for all } i
$$

We want

$$
b=\operatorname{coord}-\max \left(A x_{1}, \ldots, A x_{k}\right)
$$

The polytope defined by this $b$ should have no interior integer points.

## Living in $\mathbb{Z}^{m}$ Land

$\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{Z}^{d}$ is a face if and only if there is no $x \in \mathbb{Z}^{d}$ such that

$$
A x<\operatorname{coord}-\max \left(A x_{1}, \ldots, A x_{k}\right)
$$

$\left\{\lambda_{1}, \ldots, \lambda_{k}\right\} \subseteq \Lambda=A \mathbb{Z}^{d}$ is a face if and only if there is no $\lambda \in \Lambda$ such that

$$
\lambda<\operatorname{coord}-\max \left(\lambda_{1}, \ldots, \lambda_{k}\right)
$$

## Living in $\mathbb{Z}^{m}$ Land

$\left\{x_{1}, \ldots, x_{k}\right\} \subseteq \mathbb{Z}^{d}$ is a face if and only if there is no $x \in \mathbb{Z}^{d}$ such that

$$
A x<\operatorname{coord}-\max \left(A x_{1}, \ldots, A x_{k}\right)
$$

$\left\{\lambda_{1}, \ldots, \lambda_{k}\right\} \subseteq \Lambda=A \mathbb{Z}^{d}$ is a face if and only if there is no $\lambda \in \Lambda$ such that

$$
\lambda<\operatorname{coord}-\max \left(\lambda_{1}, \ldots, \lambda_{k}\right)
$$

## Living in $\mathbb{Z}^{m}$ Land

Example: $A$ is a $3 \times 2$ matrix.
$\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ a face iff no $\lambda \in \Lambda$ with $\lambda<\operatorname{coord}-\max \left(\lambda_{1}, \ldots, \lambda_{k}\right)$


## Living in $\mathbb{Z}^{m}$ Land

Example: $A$ is a $3 \times 2$ matrix.
$\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ a face iff no $\lambda \in \Lambda$ with $\lambda<\operatorname{coord}-\max \left(\lambda_{1}, \ldots, \lambda_{k}\right)$


## Living in $\mathbb{Z}^{m}$ Land

Example: $A$ is a $3 \times 2$ matrix.
$\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ a face iff no $\lambda \in \Lambda$ with $\lambda<\operatorname{coord}-\max \left(\lambda_{1}, \ldots, \lambda_{k}\right)$


## Living in $\mathbb{Z}^{m}$ Land

Example: $A$ is a $3 \times 2$ matrix.
$\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ a face iff no $\lambda \in \Lambda$ with $\lambda<\operatorname{coord}-\max \left(\lambda_{1}, \ldots, \lambda_{k}\right)$


## Living in $\mathbb{Z}^{m}$ Land

Example: $A$ is a $3 \times 2$ matrix.
$\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ a face iff no $\lambda \in \Lambda$ with $\lambda<\operatorname{coord}-\max \left(\lambda_{1}, \ldots, \lambda_{k}\right)$


## Living in $\mathbb{Z}^{m}$ Land

Example: $A$ is a $3 \times 2$ matrix.
$\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ a face iff no $\lambda \in \Lambda$ with $\lambda<\operatorname{coord}-\max \left(\lambda_{1}, \ldots, \lambda_{k}\right)$


## Living in $\mathbb{Z}^{m}$ Land

Example: $A$ is a $3 \times 2$ matrix.
$\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ a face iff no $\lambda \in \Lambda$ with $\lambda<\operatorname{coord}-\max \left(\lambda_{1}, \ldots, \lambda_{k}\right)$


## Living in $\mathbb{Z}^{m}$ Land

Example: $A$ is a $3 \times 2$ matrix.
$\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ a face iff no $\lambda \in \Lambda$ with $\lambda<\operatorname{coord}-\max \left(\lambda_{1}, \ldots, \lambda_{k}\right)$


## Living in $\mathbb{Z}^{m}$ Land

Neighborhood complexes seems to be determined by an ( $m-1$ )-dimensional surface living naturally in $\mathbb{R}^{m}$.


It is awfully wrinkled.

We can iron this out.

## A Geometric Realization

Example: $A=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.


## A Geometric Realization

Example: $A=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

Let $Q \subseteq \mathbb{R}^{m}$ be the convex hull of

$$
\mathbf{e}^{t \lambda}: \lambda \in \Lambda,
$$

for sufficiently large $t$.

The faces of $Q$ are the faces of the neighborhood complex [Bárány, Howe, Scarf, Shallcross].


## A Geometric Realization

Consequences:

- The neighborhood complex is contractible.
- The neighborhood complex is connected (this makes the "stepping" work in Teaser \#1).
- The Euler characteristic

$$
\text { (\# vertices - \# edges }+\# 2 \text {-faces - } \cdots \text { ) }
$$

is one.


## Teaser \#2, revisited

Frobenius Problem with $a_{1}=2, a_{2}=5$.

coefficient of $t^{s}$ in $f(S ; t)= \begin{cases}1 & \text { if } s \in S \\ 0 & \text { if } s \notin S\end{cases}$
$=\#$ vertices $-\#$ edges in complex
$f(S ; t)=\frac{1}{\left(1-t^{2}\right)\left(1-t^{5}\right)}-\frac{t^{10}}{\left(1-t^{2}\right)\left(1-t^{5}\right)}$.

## Teaser \#2, revisited

In general, let $M=\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$ be the matrix of generators of $S$.
Let $A$ be an $n \times(n-1)$ matrix whose columns form a basis for $\Lambda=\left\{x \in \mathbb{Z}^{n}: M x=0\right\}$.

Compute the neighborhood complex, $C$, of $A . C$ is lattice-invariant.

Let $\bar{C}$ contain one representative from each translation class of faces.

## Teaser \#2, revisited

In general, let $M=\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$ be the matrix of generators of $S$.
Let $A$ be an $n \times(n-1)$ matrix whose columns form a basis for $\Lambda=\left\{x \in \mathbb{Z}^{n}: M x=0\right\}$.

Compute the neighborhood complex, $C$, of $A$. $C$ is lattice-invariant.

Let $\bar{C}$ contain one representative from each translation class of faces.

## Teaser \#2, revisited

In general, let $M=\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$ be the matrix of generators of $S$.
Let $A$ be an $n \times(n-1)$ matrix whose columns form a basis for $\Lambda=\left\{x \in \mathbb{Z}^{n}: M x=0\right\}$.

Compute the neighborhood complex, $C$, of $A$. $C$ is lattice-invariant.

Let $\bar{C}$ contain one representative from each translation class of faces.

## Teaser \#2, revisited

In general, let $M=\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$ be the matrix of generators of $S$.
Let $A$ be an $n \times(n-1)$ matrix whose columns form a basis for $\Lambda=\left\{x \in \mathbb{Z}^{n}: M x=0\right\}$.

Compute the neighborhood complex, $C$, of $A . C$ is lattice-invariant.

Let $\bar{C}$ contain one representative from each translation class of faces.

## Teaser \#2, revisited

For each face $F=\left(x_{1}, \ldots, x_{k}\right) \in \bar{C}$, let

$$
\lambda_{F}^{\max }=\operatorname{coord}-\max \left(A x_{1}, \ldots, A x_{k}\right) .
$$

Then [Scarf, W]

$$
f(S ; t)=\frac{\sum_{F \in \bar{C}}(-1)^{\operatorname{dim} F} t^{M \lambda_{F}^{\max }}}{\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)} .
$$

## Teaser \#2, revisited

Example: For 3 generators, $\bar{C}$ has 2 triangles, 3 edges, and 1 vertex.


So $f(S ; t)$ has 6 monomials in numerator.

## Teaser \#2, revisited

## Extensions:

- Also applies [Scarf, W; Bayer, Sturmfels] to higher dimensional semigroups. E.g., if $S$ is generated by $(1,3)$, $(2,2)$, and $(3,1)$

$$
\begin{aligned}
f(S ; s, t) & =s^{0} t^{0}+s^{1} t^{3}+s^{2} t^{2}+s^{2} t^{6}+\cdots \\
& =\frac{1-s^{4} t^{4}}{\left(1-s^{1} t^{3}\right)\left(1-s^{2} t^{2}\right)\left(1-s^{3} t^{1}\right)}
\end{aligned}
$$

- Also applies [W] to any $S=T\left(P \cap \mathbb{Z}^{d}\right)$, where $P$ is a polytope and $T$ is a projection. E.g., $P=\mathbb{R}_{\geq 0}^{2}, T(x, y)=2 x+5 y$ is Frobenius problem with generators 2 and 5 .


## Teaser \#2, revisited

## Extensions:

- Also applies [Scarf, W; Bayer, Sturmfels] to higher dimensional semigroups. E.g., if $S$ is generated by $(1,3)$, $(2,2)$, and $(3,1)$

$$
\begin{aligned}
f(S ; s, t) & =s^{0} t^{0}+s^{1} t^{3}+s^{2} t^{2}+s^{2} t^{6}+\cdots \\
& =\frac{1-s^{4} t^{4}}{\left(1-s^{1} t^{3}\right)\left(1-s^{2} t^{2}\right)\left(1-s^{3} t^{1}\right)}
\end{aligned}
$$

- Also applies [W] to any $S=T\left(P \cap \mathbb{Z}^{d}\right)$, where $P$ is a polytope and $T$ is a projection. E.g., $P=\mathbb{R}_{\geq 0}^{2}, T(x, y)=2 x+5 y$ is Frobenius problem with generators 2 and 5 .


## Teaser \#2, revisited

## Extensions:

- Also applies [Scarf, W; Bayer, Sturmfels] to higher dimensional semigroups. E.g., if $S$ is generated by $(1,3)$, $(2,2)$, and $(3,1)$

$$
\begin{aligned}
f(S ; s, t) & =s^{0} t^{0}+s^{1} t^{3}+s^{2} t^{2}+s^{2} t^{6}+\cdots \\
& =\frac{1-s^{4} t^{4}}{\left(1-s^{1} t^{3}\right)\left(1-s^{2} t^{2}\right)\left(1-s^{3} t^{1}\right)}
\end{aligned}
$$

- Also applies [W] to any $S=T\left(P \cap \mathbb{Z}^{d}\right)$, where $P$ is a polytope and $T$ is a projection. E.g., $P=\mathbb{R}_{\geq 0}^{2}, T(x, y)=2 x+5 y$ is Frobenius problem with generators 2 and 5 .


## Teaser \#2, revisited

## Extensions:

- Also applies [Scarf, W; Bayer, Sturmfels] to higher dimensional semigroups. E.g., if $S$ is generated by $(1,3)$, $(2,2)$, and $(3,1)$

$$
\begin{aligned}
f(S ; s, t) & =s^{0} t^{0}+s^{1} t^{3}+s^{2} t^{2}+s^{2} t^{6}+\cdots \\
& =\frac{1-s^{4} t^{4}}{\left(1-s^{1} t^{3}\right)\left(1-s^{2} t^{2}\right)\left(1-s^{3} t^{1}\right)}
\end{aligned}
$$

- Also applies [W] to any $S=T\left(P \cap \mathbb{Z}^{d}\right)$, where $P$ is a polytope and $T$ is a projection. E.g., $P=\mathbb{R}_{\geq 0}^{2}, T(x, y)=2 x+5 y$ is Frobenius problem with generators 2 and 5 .


## The Frobenius Number

Question: What is the largest integer that isn't in the semigroup generated by $a_{1}, \ldots, a_{n}$ ?

Let $p(t)$ be the numerator of $f(S ; t)$.
Let $M=\operatorname{deg}(p)$. $M$ corresponds to the depth of the "deepest hole" in this picture.


## The Frobenius Number

Let $T=\mathbb{Z}_{\geq 0} \backslash S$.

$$
\begin{aligned}
f(T ; t) & =\frac{1}{1-t}-\frac{p(t)}{\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)} \\
& =\frac{\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)-(1-t) p(t)}{(1-t)\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)} .
\end{aligned}
$$

The largest integer not in $S$ is the degree of the polynomial $f(T ; x)$, which is

$$
(1+\operatorname{deg}(p))-\left(1+a_{1}+\cdots+a_{n}\right)=M-a_{1}-\cdots-a_{n}
$$

[Scarf, Shallcross].

## The Frobenius Number

Let $T=\mathbb{Z}_{\geq 0} \backslash S$.

$$
\begin{aligned}
f(T ; t) & =\frac{1}{1-t}-\frac{p(t)}{\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)} \\
& =\frac{\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)-(1-t) p(t)}{(1-t)\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)} .
\end{aligned}
$$

The largest integer not in $S$ is the degree of the polynomial $f(T ; x)$, which is

$$
(1+\operatorname{deg}(p))-\left(1+a_{1}+\cdots+a_{n}\right)=M-a_{1}-\cdots-a_{n}
$$

[Scarf, Shallcross].

## The Frobenius Number

Let $T=\mathbb{Z}_{\geq 0} \backslash S$.

$$
\begin{aligned}
f(T ; t) & =\frac{1}{1-t}-\frac{p(t)}{\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)} \\
& =\frac{\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)-(1-t) p(t)}{(1-t)\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)} .
\end{aligned}
$$

The largest integer not in $S$ is the degree of the polynomial $f(T ; x)$, which is

$$
(1+\operatorname{deg}(p))-\left(1+a_{1}+\cdots+a_{n}\right)=M-a_{1}-\cdots-a_{n}
$$

[Scarf, Shallcross].

## The Frobenius Number

Let $T=\mathbb{Z}_{\geq 0} \backslash S$.

$$
\begin{aligned}
f(T ; t) & =\frac{1}{1-t}-\frac{p(t)}{\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)} \\
& =\frac{\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)-(1-t) p(t)}{(1-t)\left(1-t^{a_{1}}\right) \cdots\left(1-t^{a_{n}}\right)} .
\end{aligned}
$$

The largest integer not in $S$ is the degree of the polynomial $f(T ; x)$, which is

$$
(1+\operatorname{deg}(p))-\left(1+a_{1}+\cdots+a_{n}\right)=M-a_{1}-\cdots-a_{n}
$$

[Scarf, Shallcross].

## What Now?

Neighbors of small matrices well understood:

- $m \times 1$ matrices: trivial (1 dimensional).
- $3 \times 2$ matrices [Scarf]: triangles tiling plane.
- $m \times 2$ matrices [Scarf]: the set of neighbors of the origin lie in a small number of intervals.
- $4 \times 3$ matrices [Shallcross]: the set of neighbors lie in a small number of 2-d polytopes.
- Beyond? Unknown!! Lovász conjectured the set on neighbors lie in a small number of $(d-1)$-dimensional polytopes.


## What Now?

Understanding the structure of neighborhood complexes would lead to algorithms for computing these generating functions.

The only known polynomial time (for fixed dimension) algorithm [Barvinok, W] fares poorly in practice:

- It takes a hammer to the geometry, but does it in polynomial time.
- Neighborhood complexes preserve the geometry beautifully, but don't have (known) polynomial-size structure.
A practical algorithm would need to treat the geometry more gently.


## What Now?

Understanding the structure of neighborhood complexes would lead to algorithms for computing these generating functions.

The only known polynomial time (for fixed dimension) algorithm [Barvinok, W] fares poorly in practice:

- It takes a hammer to the geometry, but does it in polynomial time.
- Neighborhood complexes preserve the geometry beautifully, but don't have (known) polynomial-size structure.
A practical algorithm would need to treat the geometry more gently.


## What Now?

Understanding the structure of neighborhood complexes would lead to algorithms for computing these generating functions.

The only known polynomial time (for fixed dimension) algorithm [Barvinok, W] fares poorly in practice:

- It takes a hammer to the geometry, but does it in polynomial time.
- Neighborhood complexes preserve the geometry beautifully, but don't have (known) polynomial-size structure.
A practical algorithm would need to treat the geometry more gently.


## Thank You!



