Primitive Sets and Inference Functions: Pure and Applied Combinatorics

Kevin Woods, Oberlin College (joint work with Sergi Elizalde, Dartmouth)

Two Stories

Pure Story: Geometry of Numbers
Applied Story: Inference for Bayesian networks

The Pure Story

Question: What proportion of $(a, b) \in \mathbb{Z}^{2}$ are visible from the origin?

i.e., a and b relatively prime
i.e., (a, b) is a basis for the lattice $\operatorname{span}_{\mathbb{R}}(a, b) \cap \mathbb{Z}^{2}$.

Moral Proof

$$
\begin{aligned}
\text { Probability } & =\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{25}\right) \cdots \\
& =\frac{1}{\prod_{p \text { prime }} 1 /\left(1-p^{-2}\right)} \\
& =\frac{1}{\sum_{i=1}^{\infty} i^{-2}} \\
& =\frac{1}{\zeta(2)}
\end{aligned}
$$

Immoral proof is not too bad either.

Moral Proof

$$
\begin{aligned}
\text { Probability } & =\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{25}\right) \ldots \\
& =\frac{1}{\prod_{p \text { prime }} 1 /\left(1-p^{-2}\right)} \\
& =\frac{1}{\sum_{i=1}^{\infty} i^{-2}} \\
& =\frac{1}{\zeta(2)}
\end{aligned}
$$

Immoral proof is not too bad either.

Moral Proof

$$
\begin{aligned}
\text { Probability } & =\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{25}\right) \cdots \\
& =\frac{1}{\prod_{p \text { prime }} 1 /\left(1-p^{-2}\right)} \\
& =\frac{1}{\sum_{i=1}^{\infty} i^{-2}} \\
& =\frac{1}{\zeta(2)}
\end{aligned}
$$

Immoral proof is not too bad either.

Moral Proof

$$
\begin{aligned}
\text { Probability } & =\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{25}\right) \cdots \\
& =\frac{1}{\prod_{p \text { prime }} 1 /\left(1-p^{-2}\right)} \\
& =\frac{1}{\sum_{i=1}^{\infty} i^{-2}} \\
& =\frac{1}{\zeta(2)}
\end{aligned}
$$

Immoral proof is not too bad either.

Generalizing

The probability that a point in \mathbb{Z}^{d} is visible from the origin is $1 / \zeta(d)$. [Nymann, 1974]
$S=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\} \subseteq \mathbb{Z}^{d}$ is primitive if it is a basis for

$$
\operatorname{span}_{\mathbb{R}}(S) \cap \mathbb{Z}^{d}
$$

The probability that S is primitive is

$$
\frac{1}{\zeta(d) \zeta(d-1) \cdots \zeta(d-m+1)}
$$

[Elizalde, W]

Moral proof

Write S as rows of a matrix:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]
$$

Column operations (over \mathbb{Z}) don't change primitivity.

$$
\left[\begin{array}{ccc}
\operatorname{gcd}(a, b, c) & 0 & 0 \\
d^{\prime} & e^{\prime} & f^{\prime}
\end{array}\right]
$$

Must have $\operatorname{gcd}(a, b, c)=1$ (probability $1 / \zeta(3))$.

$$
\left[\begin{array}{ccc}
\operatorname{gcd}(a, b, c) & 0 & 0 \\
d^{\prime} & \operatorname{gcd}\left(e^{\prime}, f^{\prime}\right) & 0
\end{array}\right]
$$

Must have $\operatorname{gcd}\left(e^{\prime}, f^{\prime}\right)=1$ (probability $\left.1 / \zeta(2)\right)$.

Moral proof

Write S as rows of a matrix:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]
$$

Column operations (over \mathbb{Z}) don't change primitivity.

$$
\left[\begin{array}{ccc}
\operatorname{gcd}(a, b, c) & 0 & 0 \\
d^{\prime} & e^{\prime} & f^{\prime}
\end{array}\right]
$$

Must have $\operatorname{gcd}(a, b, c)=1$ (probability $1 / \zeta(3))$.

$$
\left[\begin{array}{ccc}
\operatorname{gcd}(a, b, c) & 0 & 0 \\
d^{\prime} & \operatorname{gcd}\left(e^{\prime}, f^{\prime}\right) & 0
\end{array}\right]
$$

Must have $\operatorname{gcd}\left(e^{\prime}, f^{\prime}\right)=1$ (probability $\left.1 / \zeta(2)\right)$.

Moral proof

Write S as rows of a matrix:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]
$$

Column operations (over \mathbb{Z}) don't change primitivity.

$$
\left[\begin{array}{ccc}
\operatorname{gcd}(a, b, c) & 0 & 0 \\
d^{\prime} & e^{\prime} & f^{\prime}
\end{array}\right]
$$

Must have $\operatorname{gcd}(a, b, c)=1$ (probability $1 / \zeta(3))$.

$$
\left[\begin{array}{ccc}
\operatorname{gcd}(a, b, c) & 0 & 0 \\
d^{\prime} & \operatorname{gcd}\left(e^{\prime}, f^{\prime}\right) & 0
\end{array}\right]
$$

Must have $\operatorname{gcd}\left(e^{\prime}, f^{\prime}\right)=1$ (probability $\left.1 / \zeta(2)\right)$.

Immoral proof

Difficult, but interesting

- Triangulations
- Volumes of cross sections of d-cubes [Ball, 1989]
- Prime number theorem

Applied Story

This has it backwards. The applied story came first.

It uses combinatorial tools, but also inspired the previous combinatorial result.

Recombination

Given: Genomes of parent strains:

AAAAAA
CCCCCC

Observed: Child strain
ATACCC

Inference: Explanation of what recombination happened.

Recombination

Given: Genomes of parent strains:
AAAAAA

Observed: Child strain
ATACCC

Inference: Explanation of what recombination happened.
Tradeoff between recombination and mutation.

Recombination

Given: Genomes of parent strains:
AAAAAA

Observed: Child strain
ATACCC

Inference: Explanation of what recombination happened.
Tradeoff between recombination and mutation.

Recombination

Given R and M, the costs of a recombination event or a mutation.
Minimize $R \cdot r+M \cdot m$ over all possible explanations ($r=$ number of recombinations, $m=$ number of mutations).

Recombination

Given R and M, the costs of a recombination event or a mutation.

Minimize $R \cdot r+M \cdot m$ over all possible explanations ($r=$ number of recombinations, $m=$ number of mutations).

This is one example of inference in a Bayesian network / graphical model.

Inference Functions

Given R and M and a length n,
Inference Function is a map
Input: Length n DNA sequence (the child)
Output: Best possible explanation
Different R and M may give different inference functions.
There seem to be

$$
\left(2^{n}\right)^{4^{n}}
$$

possible functions.

No Worries

Actually, there are only $\mathrm{O}\left(n^{2}\right)$ inference functions.
In general, this is $\mathrm{O}\left(n^{d(d-1)}\right)$, where d is the number of parameters. [Elizalde, W]

No Worries

Actually, there are only $\mathrm{O}\left(n^{2}\right)$ inference functions.
In general, this is $\mathrm{O}\left(n^{d(d-1)}\right)$, where d is the number of parameters. [Elizalde, W]

Example: For binary HMM's of length 5, there are
1461501637330902918203684832716283019655932542976
potential functions.

No Worries

Actually, there are only $\mathrm{O}\left(n^{2}\right)$ inference functions.
In general, this is $\mathrm{O}\left(n^{d(d-1)}\right)$, where d is the number of parameters. [Elizalde, W]

Example: For binary HMM's of length 5, there are
1461501637330902918203684832716283019655932542976
potential functions.
Only

$$
5266
$$

are actually inference functions. [Weibel]

Relation to Combinatorics

Translate to statement about Minkowski sums of polytopes:
The sum of a huge number of polytopes may have surprisingly few vertices. [Gritzmann, Sturmfels, 1993]

Relation to Combinatorics

Translate to statement about Minkowski sums of polytopes:
The sum of a huge number of polytopes may have surprisingly few vertices. [Gritzmann, Sturmfels, 1993]

In proving that the $\mathrm{O}\left(n^{d(d-1)}\right)$ bound is tight, needed to know that a positive fraction of choices of

$$
\left\{s_{1}, \cdots, s_{m}\right\} \subseteq \mathbb{Z}^{d}
$$

are primitive.

Translation to polytopes

Parents:

AAA

CCC
Given Child:

TAC

8 possible explanations.

Graph (r, m) for each explanation.

Translation to polytopes

Example: $R=2, M=1$
Minimize

$$
2 r+1 m
$$

over all points.
Linear Programming!

Translation to polytopes

Two different inference functions (for different R, M).

Translation to polytopes

Theorem (Gritzmann, Sturmfels)
Let $P_{1}, P_{2}, \ldots, P_{k}$ be polytopes in \mathbb{R}^{d}, and let m denote the number of non-parallel edges of P_{1}, \ldots, P_{k}. Then the number of vertices of $P_{1}+\cdots+P_{k}$ is at most

$$
2 \sum_{j=0}^{d-1}\binom{m-1}{j} .
$$

Note that this bound is independent of the number k of polytopes.

