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An Easy Start

Question: How many even numbers are there between 100 and
2507



An Easy Start

Question: How many even numbers are there between 100 and
2507

List them all:
100,102,104,106,108,110,112,114,116,118,120, 122,124,126, 128,

130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158,

160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188,

190, 292, 294, 296, 298, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218,

220,222,224, 226, 228,230, 232, 234, 236, 238, 240, 242, 244, 246, 248,
250

and count: 76.



An Easy Start

This is the wrong way to answer the question.
Why?



An Easy Start

This is the wrong way to answer the question.
Why?

Because there's a much faster way:

250 — 100

1=76.
5 +



Another Easy One

Question: How many dots are in this picture?



Another Easy One

Question: How many dots are in this picture?

Count them: 76.
This is the best we can do.



Philosophy Class

What's the difference?



Philosophy Class

What's the difference?

The set of even numbers between 100 and 250 has a pattern that
we can take advantage of.

Theme of talk: Demonstrate a nice tool to take advantage of the
special structure of certain sets.

That tool is generating functions.



Generating Functions

Given a set S C N (where N = {0,1,2,...}), define the generating

function
f(S;x) = Z x?2.

aes

Example: S=N={0,1,2,...}.
F(S;x)=1+x+x>+x3+---.

You've probably seen this before.
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Generating Functions

Given a set S C N (where N = {0,1,2,...}), define the generating

function
f(S;x) = Zxa.

aes

Example: S=N={0,1,2,...}.
F(S;x)=1+x+x>+x3+---.
You've probably seen this before.

This is the Taylor series expansion of 1%
X



Generating Functions

Examples:
S ={100,102,104,...}

£(S; x) — x100 4 102 104, _ ﬂ
’ 1—x2
S = {252,254,256, ...}
f(S'X):X252+X254+X256+---: ﬁ
, 1—x2
S ={100,102,...,250}
F(5:x) »100 %252 5100 _ 252
) = _ _
' 1—x2 1-—x2 1—x2

We've used the structure of the set to get a nice generating
function.
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Generating Functions

Examples:
S ={100,102,104,...}

f(SX) = XlOO +X102 +X104 + e = ﬂ
’ 1—x2
S = {252,254, 256,.. .}
f(S'X):X252+X254+X256+---: ﬁ
, 1—x2
S = {100,102, ..., 250}
f'(S ) XlOO X252 X100 o X252
X ) = — =
' 1-x2 1-—x2 1—x2

We've used the structure of the set to get a nice generating
function.



The Easy Problem, Redux

Let's use the generating function to answer our question

F(S;1)=> 1°

aes

= [5].

We want
5100 _ 252

f(S;1) = B

X:l'

Take the limit as x — 1, using I'Hospital’s rule:

99 251
£(5:1) = 100x _—2)2<52X
100 — 252
=2
= 76.

x=1
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The Easy Problem, Redux

Let's use the generating function to answer our question

fF(S;1)=>)_1°
aes

=1.

We want
5100 _ 252

f(S;1) = B

X:1'

Take the limit as x — 1, using I'Hospital’s rule:

99 251
£(5:1) = 100x 7;)2(52X
100 — 252
22
=76.

x=1



The Easy Problem, Redux

Note:

S={xeN ‘ Jy e N: 2y = x and 100 < x < 250}.



Summary

» We can often use patterns in seemingly complicated sets to
encode them compactly as generating functions.

» We can manipulate the generating functions to answer
questions about the sets.



A Harder Problem

Question: If we have two denominations of postage stamp, a cents
and b cents, what is the highest postal rate that we cannot pay
exactly? (Assume gcd(a, b) = 1)

Example: a =41, b =42 (old and current 1st class stamps).

Example: a=3, b=17.
The set of rates we can pay is

5={0,3,6,7,9,10,12,13,14, .. .}.

Answer: 11.

Question: How many postal rates cannot be paid exactly?
Answer: 6.
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Question: If we have two denominations of postage stamp, a cents
and b cents, what is the highest postal rate that we cannot pay
exactly? (Assume gcd(a, b) = 1)

Example: a =41, b =42 (old and current 1st class stamps).

Example: a=3, b=17.
The set of rates we can pay is

5={0,3,6,7,9,10,12,13,14,...}.
Answer: 11.

Question: How many postal rates cannot be paid exactly?
Answer: 6.



A Harder Problem

Listing out the set is the “wrong” way to answer these questions,
because there's some structure we're not using.

Let's use generating functions.

F(S;x)=1+x3+x+x"+x7 +x10 ...

As before, this is the Taylor series expansion for a nice function.
Let's find it.

Key: Split up S into pieces.



Solving the Harder Problem
Postal rates that can be paid using exactly

0 sevens: 0,3,6,9,12,15,18,21,24,27, ...
1 seven: 7,10,13,16,19,22,25,28,31,34, ...

2 sevens: 14,17,20,23,26,29,32,35,38,41, ...

3 sevens: 21,2427, ...
4 sevens: 28,31,34,...

FS;x)=1+x3+x0+x%+.-.
T X104 13 16
Lol AT 20 23
1 X7 14
17X3+17X3+1*X3

=(1+x"+x%

1—x83
1— x2t 1
1—x7 1—x83
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Solving the Harder Problem
Postal rates that can be paid using exactly

0 sevens: 0,3,6,9,12,15,18,21,24,27,...
1 seven: 7,10,13,16,19,22,25,28,31,34, ...

2 sevens: 14,17,20,23,26,29,32,35,38,41, ...
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x4 AT 20 23
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Solving the Harder Problem
In general
1— xab

f(S;x) = = x)(1 = xB)"

Let T =N\ S, the set of postal rates that cannot be paid (which
is {1,2,4,5,8,11} in the example).
A(Tix) = 1~ F(5i%)
i x) = —f(Six
1—x

(1 —x?)(1 —xP) — (1 — x)(1 — x?b)
(1 —x)(1—x2)(1—xb) '

The largest integer not in S is the degree of the polynomial
f(T; x), which is

(1+ab)—(1+a+b)=ab—a—b.
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Solving the Harder Problem

In general
1— Xab

59 = Ty )

Let T =N\ S, the set of postal rates that cannot be paid (which
is {1,2,4,5,8,11} in the example).
A(Tix) = 1~ F(5i%)
i x) = —f(Six
1—x

(1 —x?)(1 —xP) — (1 — x)(1 — x?b)
(1 —x)(1—x2)(1—xb) '

The largest integer not in S is the degree of the polynomial
f(T; x), which is

(1+ab)—(1+a+b)=ab—a—b.



Solving the Harder Problem

—x)(1 — xP) — (1 — x)(1 — x?b)

¢
T =g ga ey )

The number of postal rates that cannot be paid is f(T; 1), which
is (taking the limit as x — 1)

ab—a—b+1
—

Note:

S={xeN | 3\ eN3neN:
x:a)\1+b)\2}.



Summary

» We can often use patterns in seemingly complicated sets to
encode them compactly as generating functions.

» We can manipulate the generating functions to answer
questions about the sets.



Some Generalities

Note: For multi-dimensional sets S in N9, we can define

. § : ay a a
f(s,Xl,Xg,...,Xd): X11X22~~-de.

(a1,a2,...,aq)€S

Example:
5 =1{(0,0),(1,2),(3,2)}.

Then
F(Six,y) = x%° + xy? + %y
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Some Generalities

Note: For multi-dimensional sets S in N9, we can define

. — ai a2 ad
f(S;x1,x2,...,Xq) = E XP X5 X

(a1,a2,...,a4)€S

Example:
5 =1{(0,0),(1,2),(3,2)}.

Then
F(S;x,y) = x%0 + xy? + x3y2



Some Generalities

Question: When does a set have a “nice” generating function?

In particular, when does it have a generating function that is a
Taylor series expansion of a rational function (that is, %, where

p(x) and g(x) are polynomials)?



Some Generalities

Answer: If and only if it can be written like

S={xeN | VyyeN,IpeN:
(3y1 + 5y2 —x > 0) and
(51 +2y2+3x<50r3y; —x=7)},

using quantifiers (3 and V), boolean operations (and, or, not), and
linear (in)equalities (<, =, >).

Examples:

S={xeN ‘ Jy e N: 2y = x and 100 < x < 250}.

S={xeN | 3 eN, I eN:
X:a>\1+b)\2}.



A Computer Example

for i=0 to 5
for j=0 to i
Do something that requires i - j units of storage
end
end

Want to compute

5 i
22 i
i=0 j=0
Let
S={(i,j)eN*|i<5andj<i}.
We want

> i

(ij)es



A Computer Example

S={(i,j)eN*|i<5andj<i}

> i

(ij)es

We want

This is a discrete version of

// st ds dft,
-

T:{(s,t)ERzzo |s§53ndt§s}.

where T is the triangle



A Computer Example

Let's find £(S; x,y)

=1+x+-+x°y°
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A Computer Example

)

(L x+Hx2 43+ -

(Lxy+(xy)*+-

(1—=x)(1—xy)




A Computer Example

(Lx+x2 43+ --)

(Lbxy+(xy)?+ )
1
(1 =x)(1 = xy)




A Computer Example

XX XXX
XX X X X
X X » »x
X n u »
3 u( n(




A Computer Example

XX XX
X X X
X X

(1=x)(1—xy)

(1=x)(1—-y)



A Computer Example

3 u(

)

8

) +x%y"
(LTxy+(xy)*+ )
(A4+y+y>+-)

Xby7
1-x)(1-y)




A Computer Example




A Computer Example

We have o
F(Six,y)= Y xy.

(ij)es

We want



A Computer Example

We have o
f(S;x,y)= Z x'y.
(ij)es
We want
>
(ig)es
0? i—1. j—1
il e
axgy (Six:Y) Z X'y
(ij)es
Therefore we want
82
f(S; x, = 140.
8x8y ( x y) x=1,y=1




Summary

» We can often use patterns in seemingly complicated sets to
encode them compactly as generating functions.

» We can manipulate the generating functions to answer
questions about the sets.



Good Algorithms

S={xeN | Vyy eN, Iy eN:

(3y1 +5y2 —x > 0) and
(5y1 +2y2+3x <bor3y; —x=7)},

Question: Given a set S defined like this, how easy is it to find
f(S;x)?



Good Algorithms

» If there are no quantifiers, there is a “good” algorithm.

» If only 3's are needed to define S (or only V's are needed),
there is a theoretically good algorithm (but there are problems
with actually implementing it).

» If both d's and V's are needed to define S, no one knows if
there is a good algorithm or not.



Good Algorithms

Example: The Frobenius problem

Let a1, a0, ...,ay be nonnegative integers such that
ged(ag, az,...,a4) = 1. Let S be the set of postal rates we can
pay with aj, as, ..., aq cent stamps.

S={xeN | 3neN,..., I eN:
X =aiA1 + -+ agAd}.

» d = 2: very nice formula, ajap — a; — a»
» d = 3: a decent formula

» d > 4: probably no nice formula, need to use these generating
function algorithms



Generating Functions of Another Sort

Given S C N,

f(S;x)= Zxa = iojb,-xi7
=0

aes i=

, _J1ifies
"o ifigs’

{bi}2, is an infinite sequence of 1's and 0's.

where

In general, let {b;}?°, be any sequence of integers and define its

generating function
o0
f(x) = Z bix'.
i=0



The Fibonacci Sequence

Take the Fibonacci sequence
1,1,2,3,5,8,13,21,34,55,89,144,233,...
where bg = by = 1 and b; = bj_1 + bj_5 for i > 2.

How fast does b; grow as i increases? Can we find a formula for b;?
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The Fibonacci Sequence

Take the Fibonacci sequence
1,1,2,3,5,8,13,21,34,55,89,144, 233,...

where bg = by = 1 and b; = bj_1 + bj_5 for i > 2.

How fast does b; grow as i increases? Can we find a formula for b;?
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f(x)= 1 +1x +2x2 4+3x3  +5x*  +--.
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f(x)= 1 +1x
xf(x) = 1x
x?f(x) =

+2x2
+1x2
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The Fibonacci Sequence

= 1 +1x +2x2  +3x3  +5x4

f(x)
xf(x) = Ix +1x%2 +2x3 +3x*
x?f(x) = Ix2 +1x3 +2x*
(x +x?)f(x) = Ix +2x2 +3x3 +5x*

T+



The Fibonacci Sequence

= 1 +1x +2x2  +3x3  +5x4

f(x)
xf(x) = Ix +1x%2 +2x3 +3x*
x?f(x) = Ix2 +1x3 +2x*
(x +x2)f(x) = Ix +2x2 +3x3 +5x*
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The Fibonacci Sequence

= 1 +1x +2x2  +3x3  +5x4

f(x)
xf(x) = Ix +1x%2 +2x3 +3x*
x?f(x) = Ix2 +1x3 +2x*
(x +x2)f(x) = Ix +2x2 +3x3 +5x*
Then
(x +xH)f(x) + 1= f(x)

4+ 4+ +



The Fibonacci Sequence

f(x) =

1—x—x2’



The Fibonacci Sequence

Flx) = —

Partial fractions: Let

1—x—x2’

1
_1HVE ) 6is03-

- and

= 1_\/5:—0.61803--.




The Fibonacci Sequence

(o]
=1+ (s1x) + (s1¥)> + (51x)> + - = > s1x'.
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The Fibonacci Sequence
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o 14 (s1x) + (s51x)% + (s1x)° Z six’.
1 1
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The Fibonacci Sequence

1
1—51X

_ B 5
f(X)_l—slx 1— sx
1 & 1
= — $1x —
NP RN
_i(ls Sf>XI
EACERGE

Therefore b; = - (%) —



The Fibonacci Sequence

i 1 (145 i
Note, b; is about 7 ( : ) )

In many applications, we can't find a formula for b; exactly, but
can use the generating function to find a good approximation.



Danger!

We should have either made sure our generating function
converged, or proven that it doesn't matter (either way works).

Example:
s =1 +3 +3 +§ +
R
Therefore )
—s+1=s
2 + ’
and



Danger!

s =1 42 +4 +8 +--
2s = 2 +4 48 +---
Therefore
2s+1=s5s,
and

s=-—1.



Summary

» We can often use patterns in seemingly complicated
sets to encode them compactly as generating functions.

» We can manipulate the generating functions to answer
questions about the sets.
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