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An Easy Start

Question: How many even numbers are there between 100 and
250?

List them all:

100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128,

130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158,

160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188,

190, 292, 294, 296, 298, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218,

220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248,

250

and count: 76.
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An Easy Start

This is the wrong way to answer the question.
Why?

Because there’s a much faster way:

250− 100

2
+ 1 = 76.
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Question: How many dots are in this picture?

Count them: 76.
This is the best we can do.
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Philosophy Class

What’s the difference?

The set of even numbers between 100 and 250 has a pattern that
we can take advantage of.

Theme of talk: Demonstrate a nice tool to take advantage of the
special structure of certain sets.

That tool is generating functions.
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Generating Functions

Given a set S ⊆ N (where N = {0, 1, 2, . . .}), define the generating
function

f (S ; x) =
∑
a∈S

xa.

Example: S = N = {0, 1, 2, . . .}.

f (S ; x) = 1 + x + x2 + x3 + · · · .

You’ve probably seen this before.

This is the Taylor series expansion of 1
1−x .
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Generating Functions
Examples:
S = {100, 102, 104, . . .}

f (S ; x) = x100 + x102 + x104 + · · · =
x100

1− x2
.

S = {252, 254, 256, . . .}

f (S ; x) = x252 + x254 + x256 + · · · =
x252

1− x2
.

S = {100, 102, . . . , 250}

f (S ; x) =
x100

1− x2
− x252

1− x2
=

x100 − x252

1− x2
.

We’ve used the structure of the set to get a nice generating
function.
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The Easy Problem, Redux
Let’s use the generating function to answer our question

f (S ; 1) =
∑
a∈S

1a

= |S |.

We want

f (S ; 1) =
x100 − x252

1− x2

∣∣∣
x=1

.

Take the limit as x → 1, using l’Hospital’s rule:

f (S ; 1) =
100x99 − 252x251

−2x

∣∣∣
x=1

=
100− 252

−2

= 76.
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The Easy Problem, Redux

Note:

S = {x ∈ N
∣∣ ∃y ∈ N : 2y = x and 100 ≤ x ≤ 250}.



Summary

I We can often use patterns in seemingly complicated sets to
encode them compactly as generating functions.

I We can manipulate the generating functions to answer
questions about the sets.



A Harder Problem

Question: If we have two denominations of postage stamp, a cents
and b cents, what is the highest postal rate that we cannot pay
exactly? (Assume gcd(a, b) = 1)

Example: a = 41, b = 42 (old and current 1st class stamps).

Example: a = 3, b = 7.
The set of rates we can pay is

S = {0, 3, 6, 7, 9, 10, 12, 13, 14, . . .}.

Answer: 11.

Question: How many postal rates cannot be paid exactly?
Answer: 6.
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A Harder Problem

Listing out the set is the “wrong” way to answer these questions,
because there’s some structure we’re not using.

Let’s use generating functions.

f (S ; x) = 1 + x3 + x6 + x7 + x9 + x10 + · · ·

As before, this is the Taylor series expansion for a nice function.

Let’s find it.

Key: Split up S into pieces.



Solving the Harder Problem
Postal rates that can be paid using exactly

0 sevens: 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, . . .
1 seven: 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, . . .
2 sevens: 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, . . .
3 sevens: 21, 24, 27, . . .
4 sevens: 28, 31, 34, . . .

f (S ; x) = 1 + x3 + x6 + x9 + · · ·
+ x7 + x10 + x13 + x16 + · · ·
+ x14 + x17 + x20 + x23 + · · ·

=
1

1− x3
+

x7

1− x3
+

x14

1− x3

= (1 + x7 + x14)
1

1− x3

=
1− x21

1− x7
· 1

1− x3
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Solving the Harder Problem
In general

f (S ; x) =
1− xab

(1− xa)(1− xb)
.

Let T = N \ S , the set of postal rates that cannot be paid (which
is {1, 2, 4, 5, 8, 11} in the example).

f (T ; x) =
1

1− x
− f (S ; x)

=
(1− xa)(1− xb)− (1− x)(1− xab)

(1− x)(1− xa)(1− xb)
.

The largest integer not in S is the degree of the polynomial
f (T ; x), which is

(1 + ab)− (1 + a + b) = ab − a− b.
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Solving the Harder Problem

f (T ; x) =
(1− xa)(1− xb)− (1− x)(1− xab)

(1− x)(1− xa)(1− xb)

The number of postal rates that cannot be paid is f (T ; 1), which
is (taking the limit as x → 1)

ab − a− b + 1

2
.

Note:

S = {x ∈ N
∣∣ ∃λ1 ∈ N, ∃λ2 ∈ N :

x = aλ1 + bλ2}.



Summary

I We can often use patterns in seemingly complicated sets to
encode them compactly as generating functions.

I We can manipulate the generating functions to answer
questions about the sets.



Some Generalities

Note: For multi-dimensional sets S in Nd , we can define

f (S ; x1, x2, . . . , xd) =
∑

(a1,a2,...,ad )∈S

xa1
1 xa2

2 · · · x
ad
d .

Example:
S =

{
(0, 0), (1, 2), (3, 2)

}
.

Then
f (S ; x , y) = x0y0 + x1y2 + x3y2.
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Some Generalities

Question: When does a set have a “nice” generating function?

In particular, when does it have a generating function that is a
Taylor series expansion of a rational function (that is, p(x)

q(x) , where

p(x) and q(x) are polynomials)?



Some Generalities

Answer: If and only if it can be written like

S = {x ∈ N
∣∣∣ ∀y1 ∈ N, ∃y2 ∈ N :

(3y1 + 5y2 − x ≥ 0) and

(5y1 + 2y2 + 3x < 5 or 3y1 − x = 7)},

using quantifiers (∃ and ∀), boolean operations (and, or, not), and
linear (in)equalities (≤, =, >).

Examples:

S = {x ∈ N
∣∣ ∃y ∈ N : 2y = x and 100 ≤ x ≤ 250}.

S = {x ∈ N
∣∣ ∃λ1 ∈ N, ∃λ2 ∈ N :

x = aλ1 + bλ2}.



A Computer Example

for i=0 to 5
for j=0 to i

Do something that requires i · j units of storage
end

end

Want to compute
5∑

i=0

i∑
j=0

ij .

Let
S = {(i , j) ∈ N2

∣∣ i ≤ 5 and j ≤ i}.

We want ∑
(i ,j)∈S

ij .



A Computer Example

S = {(i , j) ∈ N2
∣∣ i ≤ 5 and j ≤ i}.

We want ∑
(i ,j)∈S

ij .

This is a discrete version of∫∫
T

st ds dt,

where T is the triangle

T = {(s, t) ∈ R2
≥0

∣∣s ≤ 5 and t ≤ s}.



A Computer Example

Let’s find f (S ; x , y)

= 1 +x + · · ·+x5y5



A Computer Example



A Computer Example

x5y2 = (x)3(xy)2

(1+x+x2+x3+· · · )

·(1+xy+(xy)2+· · · )

=
1

(1− x)(1− xy)
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=
1

(1− x)(1− xy)



A Computer Example

−x6

·(1 + x + x2 + · · · )

·(1 + y + y2 + · · · )

= − x6

(1− x)(1− y)



A Computer Example

1

(1− x)(1− xy)

− x6

(1− x)(1− y)



A Computer Example

+x6y7

·(1+xy+(xy)2+· · · )

·(1 + y + y2 + · · · )

=
x6y7

(1− xy)(1− y)



A Computer Example

f (S ; x , y) =

1

(1− x)(1− xy)

− x6

(1− x)(1− y)

+
x6y7

(1− xy)(1− y)
.



A Computer Example

We have
f (S ; x , y) =

∑
(i ,j)∈S

x iy j .

We want ∑
(i ,j)∈S

ij .

∂2

∂x∂y
f (S ; x , y) =

∑
(i ,j)∈S

ijx i−1y j−1.

Therefore we want

∂2

∂x∂y
f (S ; x , y)

∣∣∣
x=1,y=1

= 140.
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Summary

I We can often use patterns in seemingly complicated sets to
encode them compactly as generating functions.

I We can manipulate the generating functions to answer
questions about the sets.



Good Algorithms

S = {x ∈ N
∣∣∣ ∀y1 ∈ N, ∃y2 ∈ N :

(3y1 + 5y2 − x ≥ 0) and

(5y1 + 2y2 + 3x < 5 or 3y1 − x = 7)},

Question: Given a set S defined like this, how easy is it to find
f (S ; x)?



Good Algorithms

I If there are no quantifiers, there is a “good” algorithm.

I If only ∃’s are needed to define S (or only ∀’s are needed),
there is a theoretically good algorithm (but there are problems
with actually implementing it).

I If both ∃’s and ∀’s are needed to define S , no one knows if
there is a good algorithm or not.



Good Algorithms

Example: The Frobenius problem

Let a1, a2, . . . , ad be nonnegative integers such that
gcd(a1, a2, . . . , ad) = 1. Let S be the set of postal rates we can
pay with a1, a2, . . . , ad cent stamps.

S = {x ∈ N
∣∣∣ ∃λ1 ∈ N, . . . ,∃λd ∈ N :

x = a1λ1 + · · ·+ adλd}.

I d = 2: very nice formula, a1a2 − a1 − a2

I d = 3: a decent formula

I d ≥ 4: probably no nice formula, need to use these generating
function algorithms



Generating Functions of Another Sort

Given S ⊂ N,

f (S ; x) =
∑
a∈S

xa =
∞∑
i=0

bix
i ,

where

bi =

{
1 if i ∈ S

0 if i /∈ S
.

{bi}∞i=0 is an infinite sequence of 1’s and 0’s.

In general, let {bi}∞i=0 be any sequence of integers and define its
generating function

f (x) =
∞∑
i=0

bix
i .



The Fibonacci Sequence

Take the Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

where b0 = b1 = 1 and bi = bi−1 + bi−2 for i ≥ 2.

How fast does bi grow as i increases? Can we find a formula for bi?
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The Fibonacci Sequence

f (x) = 1 +1x +2x2 +3x3 +5x4 + · · ·

xf (x) = 1x + 1x2 + 2x3 + 3x4 + · · ·
x2f (x) = 1x2 + 1x3 + 2x4 + · · ·

(x + x2)f (x) = 1x + 2x2 + 3x3 + 5x4 + · · ·

Then
(x + x2)f (x) + 1 = f (x).

Solving for f (x),

1 = (1− x − x2)f (x), so

f (x) =
1

1− x − x2
.
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The Fibonacci Sequence

f (x) =
1

1− x − x2
.

Partial fractions: Let

s1 =
1 +
√

5

2
= 1.61803 · · · and

s2 =
1−
√

5

2
= −0.61803 · · · .

f (x) =

1√
5

1− s1x
+
− 1√

5

1− s2x
.
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1− s1x
= 1 + (s1x) + (s1x)2 + (s1x)3 + · · · =
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1x
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The Fibonacci Sequence

bi = 1√
5

(
1+
√

5
2

)i
− 1√

5

(
1−
√

5
2

)i
.

Note, bi is about 1√
5

(
1+
√

5
2

)i
.

In many applications, we can’t find a formula for bi exactly, but
can use the generating function to find a good approximation.



Danger!

We should have either made sure our generating function
converged, or proven that it doesn’t matter (either way works).

Example:
s = 1 +1

2 +1
4 +1

8 + · · ·

1
2s = 1

2 +1
4 +1

8 + · · ·

Therefore
1

2
s + 1 = s,

and
s = 2.



Danger!

s = 1 +2 +4 +8 + · · ·

2s = 2 +4 +8 + · · ·

Therefore
2s + 1 = s,

and
s = −1.



Summary

I We can often use patterns in seemingly complicated
sets to encode them compactly as generating functions.

I We can manipulate the generating functions to answer
questions about the sets.
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