Generating Functions and the Two Stamp Problem

Kevin Woods
Oberlin College

An Easy Start

Question: How many even numbers are there between 100 and 250?

An Easy Start

Question: How many even numbers are there between 100 and 250?

List them all:
$100,102,104,106,108,110,112,114,116,118,120,122,124,126,128$,
$130,132,134,136,138,140,142,144,146,148,150,152,154,156,158$, $160,162,164,166,168,170,172,174,176,178,180,182,184,186,188$, 190, 292, 294, 296, 298, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, $220,222,224,226,228,230,232,234,236,238,240,242,244,246,248$, 250
and count: 76.

An Easy Start

This is the wrong way to answer the question. Why?

An Easy Start

This is the wrong way to answer the question. Why?

Because there's a much faster way:

$$
\frac{250-100}{2}+1=76 .
$$

Another Easy One

Question: How many dots are in this picture?

Another Easy One

Question: How many dots are in this picture?

Count them: 76.
This is the best we can do.

Philosophy Class

What's the difference?

Philosophy Class

What's the difference?

The set of even numbers between 100 and 250 has a pattern that we can take advantage of.

Theme of talk: Demonstrate a nice tool to take advantage of the special structure of certain sets.

That tool is generating functions.

Generating Functions

Given a set $S \subseteq \mathbb{N}($ where $\mathbb{N}=\{0,1,2, \ldots\})$, define the generating function

$$
f(S ; x)=\sum_{a \in S} x^{a} .
$$

Example: $S=\mathbb{N}=\{0,1,2, \ldots\}$.
$f(S ; x)=1+x+x^{2}+x^{3}+\cdots$.
You've probably seen this before.

Generating Functions

Given a set $S \subseteq \mathbb{N}($ where $\mathbb{N}=\{0,1,2, \ldots\})$, define the generating function

$$
f(S ; x)=\sum_{a \in S} x^{a}
$$

Example: $S=\mathbb{N}=\{0,1,2, \ldots\}$.
$f(S ; x)=1+x+x^{2}+x^{3}+\cdots$.
You've probably seen this before.

Generating Functions

Given a set $S \subseteq \mathbb{N}($ where $\mathbb{N}=\{0,1,2, \ldots\})$, define the generating function

$$
f(S ; x)=\sum_{a \in S} x^{a}
$$

Example: $S=\mathbb{N}=\{0,1,2, \ldots\}$.
$f(S ; x)=1+x+x^{2}+x^{3}+\cdots$.
You've probably seen this before.

Generating Functions

Given a set $S \subseteq \mathbb{N}($ where $\mathbb{N}=\{0,1,2, \ldots\})$, define the generating function

$$
f(S ; x)=\sum_{a \in S} x^{a} .
$$

Example: $S=\mathbb{N}=\{0,1,2, \ldots\}$.
$f(S ; x)=1+x+x^{2}+x^{3}+\cdots$.
You've probably seen this before.

Generating Functions

Given a set $S \subseteq \mathbb{N}($ where $\mathbb{N}=\{0,1,2, \ldots\})$, define the generating function

$$
f(S ; x)=\sum_{a \in S} x^{a}
$$

Example: $S=\mathbb{N}=\{0,1,2, \ldots\}$.
$f(S ; x)=1+x+x^{2}+x^{3}+\cdots$.
You've probably seen this before.
This is the Taylor series expansion of $\frac{1}{1-x}$.

Generating Functions

Examples:
$S=\{100,102,104, \ldots\}$

$$
f(S ; x)=x^{100}+x^{102}+x^{104}+\cdots=\frac{x^{100}}{1-x^{2}}
$$

$S=\{252,254,256, \ldots\}$

$$
f(S ; x)=x^{252}+x^{254}+x^{256}+\cdots=\frac{x^{252}}{1-x^{2}}
$$

$S=\{100,102, \ldots, 250\}$

$$
f(S ; x)=\frac{x^{100}}{1-x^{2}}-\frac{x^{252}}{1-x^{2}}=\frac{x^{100}-x^{252}}{1-x^{2}}
$$

We've used the structure of the set to get a nice generating function.

Generating Functions

Examples:
$S=\{100,102,104, \ldots\}$

$$
f(S ; x)=x^{100}+x^{102}+x^{104}+\cdots=\frac{x^{100}}{1-x^{2}} .
$$

$S=\{252,254,256, \ldots\}$

$$
f(S ; x)=x^{252}+x^{254}+x^{256}+\cdots=\frac{x^{252}}{1-x^{2}} .
$$

$S=\{100,102, \ldots, 250\}$

$$
f(S ; x)=\frac{x^{100}}{1-x^{2}}-\frac{x^{252}}{1-x^{2}}=\frac{x^{100}-x^{252}}{1-x^{2}} .
$$

We've used the structure of the set to get a nice generating function.

Generating Functions

Examples:
$S=\{100,102,104, \ldots\}$

$$
f(S ; x)=x^{100}+x^{102}+x^{104}+\cdots=\frac{x^{100}}{1-x^{2}}
$$

$S=\{252,254,256, \ldots\}$

$$
f(S ; x)=x^{252}+x^{254}+x^{256}+\cdots=\frac{x^{252}}{1-x^{2}}
$$

$S=\{100,102, \ldots, 250\}$

$$
f(S ; x)=\frac{x^{100}}{1-x^{2}}-\frac{x^{252}}{1-x^{2}}=\frac{x^{100}-x^{252}}{1-x^{2}}
$$

We've used the structure of the set to get a nice generating function.

The Easy Problem, Redux

Let's use the generating function to answer our question

$$
\begin{aligned}
f(S ; 1) & =\sum_{a \in S} 1^{a} \\
& =|S| .
\end{aligned}
$$

We want

$$
f(S ; 1)=\left.\frac{x^{100}-x^{252}}{1-x^{2}}\right|_{x=1}
$$

Take the limit as $x \rightarrow 1$, using l'Hospital's rule:

$$
\begin{aligned}
f(S ; 1) & =\left.\frac{100 x^{99}-252 x^{251}}{-2 x}\right|_{x=1} \\
& =\frac{100-252}{-2} \\
& =76
\end{aligned}
$$

The Easy Problem, Redux

Let's use the generating function to answer our question

$$
\begin{aligned}
f(S ; 1) & =\sum_{a \in S} 1^{a} \\
& =|S| .
\end{aligned}
$$

We want

$$
f(S ; 1)=\left.\frac{x^{100}-x^{252}}{1-x^{2}}\right|_{x=1} .
$$

Take the limit as $x \rightarrow 1$, using l'Hospital's rule:

$$
\begin{aligned}
f(S ; 1) & =\left.\frac{100 x^{99}-252 x^{251}}{-2 x}\right|_{x=1} \\
& =\frac{100-252}{-2} \\
& =76
\end{aligned}
$$

The Easy Problem, Redux

Let's use the generating function to answer our question

$$
\begin{aligned}
f(S ; 1) & =\sum_{a \in S} 1^{a} \\
& =|S| .
\end{aligned}
$$

We want

$$
f(S ; 1)=\left.\frac{x^{100}-x^{252}}{1-x^{2}}\right|_{x=1} .
$$

Take the limit as $x \rightarrow 1$, using l'Hospital's rule:

$$
\begin{aligned}
f(S ; 1) & =\left.\frac{100 x^{99}-252 x^{251}}{-2 x}\right|_{x=1} \\
& =\frac{100-252}{-2} \\
& =76 .
\end{aligned}
$$

The Easy Problem, Redux

Note:

$$
S=\{x \in \mathbb{N} \mid \exists y \in \mathbb{N}: 2 y=x \text { and } 100 \leq x \leq 250\}
$$

Summary

- We can often use patterns in seemingly complicated sets to encode them compactly as generating functions.
- We can manipulate the generating functions to answer questions about the sets.

A Harder Problem

Question: If we have two denominations of postage stamp, a cents and b cents, what is the highest postal rate that we cannot pay exactly? (Assume $\operatorname{gcd}(a, b)=1$)

Example: $a=41, b=42$ (old and current 1st class stamps).
Example: $a=3, b=7$.
The set of rates we can pay is

$$
S=\{0,3,6,7,9,10,12,13,14, \ldots\} .
$$

Answer: 11.
Question: How many postal rates cannot be paid exactly? Answer: 6.

A Harder Problem

Question: If we have two denominations of postage stamp, a cents and b cents, what is the highest postal rate that we cannot pay exactly? (Assume $\operatorname{gcd}(a, b)=1$)

Example: $a=41, b=42$ (old and current 1st class stamps).
Example: $a=3, b=7$.
The set of rates we can pay is

$$
S=\{0,3,6,7,9,10,12,13,14, \ldots\}
$$

Answer: 11.

Question: How many postal rates cannot be paid exactly? Answer: 6.

A Harder Problem

Question: If we have two denominations of postage stamp, a cents and b cents, what is the highest postal rate that we cannot pay exactly? (Assume $\operatorname{gcd}(a, b)=1$)

Example: $a=41, b=42$ (old and current 1st class stamps).
Example: $a=3, b=7$.
The set of rates we can pay is

$$
S=\{0,3,6,7,9,10,12,13,14, \ldots\} .
$$

Answer: 11.

Question: How many postal rates cannot be paid exactly? Answer: 6.

A Harder Problem

Listing out the set is the "wrong" way to answer these questions, because there's some structure we're not using.

Let's use generating functions.

$$
f(S ; x)=1+x^{3}+x^{6}+x^{7}+x^{9}+x^{10}+\cdots
$$

As before, this is the Taylor series expansion for a nice function.

Let's find it.

Key: Split up S into pieces.

Solving the Harder Problem

Postal rates that can be paid using exactly
0 sevens: $0,3,6,9,12,15,18,21,24,27, \ldots$
1 seven: $\quad 7,10,13,16,19,22,25,28,31,34, \ldots$
2 sevens: $14,17,20,23,26,29,32,35,38,41, \ldots$
3 sevens: $21,24,27, \ldots$
4 sevens: $28,31,34, \ldots$

$$
\begin{aligned}
f(S ; x)= & 1+x^{3}+x^{6}+x^{9}+\cdots \\
& +x^{7}+x^{10}+x^{13}+x^{16}+\cdots \\
& +x^{14}+x^{17}+x^{20}+x^{23}+\cdots \\
= & \frac{1}{1-x^{3}}+\frac{x^{7}}{1-x^{3}}+\frac{x^{14}}{1-x^{3}} \\
= & \left(1+x^{7}+x^{14}\right) \frac{1}{1-x^{3}} \\
= & \frac{1-x^{21}}{1-x^{7}} \cdot \frac{1}{1-x^{3}}
\end{aligned}
$$

Solving the Harder Problem

Postal rates that can be paid using exactly
0 sevens: $\quad 0,3,6,9,12,15,18,21,24,27, \ldots$
1 seven: $7,10,13,16,19,22,25,28,31,34, \ldots$
2 sevens: $14,17,20,23,26,29,32,35,38,41, \ldots$
3 sevens: $21,24,27, \ldots$
4 sevens: $28,31,34, \ldots$

$$
\begin{aligned}
f(S ; x)= & 1+x^{3}+x^{6}+x^{9}+\cdots \\
& +x^{7}+x^{10}+x^{13}+x^{16}+\cdots \\
& +x^{14}+x^{17}+x^{20}+x^{23}+\cdots \\
= & \frac{1}{1-x^{3}}+\frac{x^{7}}{1-x^{3}}+\frac{x^{14}}{1-x^{3}} \\
= & \left(1+x^{7}+x^{14}\right) \frac{1}{1-x^{3}} \\
= & \frac{1-x^{21}}{1-x^{7}} \cdot \frac{1}{1-x^{3}}
\end{aligned}
$$

Solving the Harder Problem

Postal rates that can be paid using exactly
0 sevens: $\quad 0,3,6,9,12,15,18,21,24,27, \ldots$
1 seven: $7,10,13,16,19,22,25,28,31,34, \ldots$
2 sevens: $14,17,20,23,26,29,32,35,38,41, \ldots$
3 sevens: $21,24,27, \ldots$
4 sevens: $28,31,34, \ldots$

$$
\begin{aligned}
f(S ; x)= & 1+x^{3}+x^{6}+x^{9}+\cdots \\
& +x^{7}+x^{10}+x^{13}+x^{16}+\cdots \\
& +x^{14}+x^{17}+x^{20}+x^{23}+\cdots \\
= & \frac{1}{1-x^{3}}+\frac{x^{7}}{1-x^{3}}+\frac{x^{14}}{1-x^{3}} \\
= & \left(1+x^{7}+x^{14}\right) \frac{1}{1-x^{3}} \\
= & \frac{1-x^{21}}{1-x^{7}} \cdot \frac{1}{1-x^{3}}
\end{aligned}
$$

Solving the Harder Problem

Postal rates that can be paid using exactly
0 sevens: $\quad 0,3,6,9,12,15,18,21,24,27, \ldots$
1 seven: $\quad 7,10,13,16,19,22,25,28,31,34, \ldots$
2 sevens: $14,17,20,23,26,29,32,35,38,41, \ldots$
3 sevens: $21,24,27, \ldots$
4 sevens: $28,31,34, \ldots$

$$
\begin{aligned}
f(S ; x)= & 1+x^{3}+x^{6}+x^{9}+\cdots \\
& +x^{7}+x^{10}+x^{13}+x^{16}+\cdots \\
& +x^{14}+x^{17}+x^{20}+x^{23}+\cdots \\
= & \frac{1}{1-x^{3}}+\frac{x^{7}}{1-x^{3}}+\frac{x^{14}}{1-x^{3}} \\
= & \left(1+x^{7}+x^{14}\right) \frac{1}{1-x^{3}} \\
= & \frac{1-x^{21}}{1-x^{7}} \cdot \frac{1}{1-x^{3}}
\end{aligned}
$$

Solving the Harder Problem

Postal rates that can be paid using exactly
0 sevens: $\quad 0,3,6,9,12,15,18,21,24,27, \ldots$
1 seven: $7,10,13,16,19,22,25,28,31,34, \ldots$
2 sevens: $14,17,20,23,26,29,32,35,38,41, \ldots$
3 sevens: $21,24,27, \ldots$
4 sevens: $28,31,34, \ldots$

$$
\begin{aligned}
f(S ; x)= & 1+x^{3}+x^{6}+x^{9}+\cdots \\
& +x^{7}+x^{10}+x^{13}+x^{16}+\cdots \\
& +x^{14}+x^{17}+x^{20}+x^{23}+\cdots \\
= & \frac{1}{1-x^{3}}+\frac{x^{7}}{1-x^{3}}+\frac{x^{14}}{1-x^{3}} \\
= & \left(1+x^{7}+x^{14}\right) \frac{1}{1-x^{3}} \\
= & \frac{1-x^{21}}{1-x^{7}} \cdot \frac{1}{1-x^{3}}
\end{aligned}
$$

Solving the Harder Problem

Postal rates that can be paid using exactly
0 sevens: $0,3,6,9,12,15,18,21,24,27, \ldots$
1 seven: $\quad 7,10,13,16,19,22,25,28,31,34, \ldots$
2 sevens: $14,17,20,23,26,29,32,35,38,41, \ldots$
3 sevens: $21,24,27, \ldots$
4 sevens: $28,31,34, \ldots$

$$
\begin{aligned}
f(S ; x)= & 1+x^{3}+x^{6}+x^{9}+\cdots \\
& +x^{7}+x^{10}+x^{13}+x^{16}+\cdots \\
& +x^{14}+x^{17}+x^{20}+x^{23}+\cdots \\
= & \frac{1}{1-x^{3}}+\frac{x^{7}}{1-x^{3}}+\frac{x^{14}}{1-x^{3}} \\
= & \left(1+x^{7}+x^{14}\right) \frac{1}{1-x^{3}} \\
= & \frac{1-x^{21}}{1-x^{7}} \cdot \frac{1}{1-x^{3}}
\end{aligned}
$$

Solving the Harder Problem

Postal rates that can be paid using exactly
0 sevens: $\quad 0,3,6,9,12,15,18,21,24,27, \ldots$
1 seven: $7,10,13,16,19,22,25,28,31,34, \ldots$
2 sevens: $14,17,20,23,26,29,32,35,38,41, \ldots$
3 sevens: $21,24,27, \ldots$
4 sevens: $28,31,34, \ldots$

$$
\begin{aligned}
f(S ; x)= & 1+x^{3}+x^{6}+x^{9}+\cdots \\
& +x^{7}+x^{10}+x^{13}+x^{16}+\cdots \\
& +x^{14}+x^{17}+x^{20}+x^{23}+\cdots \\
= & \frac{1}{1-x^{3}}+\frac{x^{7}}{1-x^{3}}+\frac{x^{14}}{1-x^{3}} \\
= & \left(1+x^{7}+x^{14}\right) \frac{1}{1-x^{3}} \\
= & \frac{1-x^{21}}{1-x^{7}} \cdot \frac{1}{1-x^{3}}
\end{aligned}
$$

Solving the Harder Problem

Postal rates that can be paid using exactly
0 sevens: $\quad 0,3,6,9,12,15,18,21,24,27, \ldots$
1 seven: $7,10,13,16,19,22,25,28,31,34, \ldots$
2 sevens: $14,17,20,23,26,29,32,35,38,41, \ldots$
3 sevens: $21,24,27, \ldots$
4 sevens: $28,31,34, \ldots$

$$
\begin{aligned}
f(S ; x)= & 1+x^{3}+x^{6}+x^{9}+\cdots \\
& +x^{7}+x^{10}+x^{13}+x^{16}+\cdots \\
& +x^{14}+x^{17}+x^{20}+x^{23}+\cdots \\
= & \frac{1}{1-x^{3}}+\frac{x^{7}}{1-x^{3}}+\frac{x^{14}}{1-x^{3}} \\
= & \left(1+x^{7}+x^{14}\right) \frac{1}{1-x^{3}} \\
= & \frac{1-x^{21}}{1-x^{7}} \cdot \frac{1}{1-x^{3}}
\end{aligned}
$$

Solving the Harder Problem

Postal rates that can be paid using exactly
0 sevens: $\quad 0,3,6,9,12,15,18,21,24,27, \ldots$
1 seven: $7,10,13,16,19,22,25,28,31,34, \ldots$
2 sevens: $14,17,20,23,26,29,32,35,38,41, \ldots$
3 sevens: $21,24,27, \ldots$
4 sevens: $28,31,34, \ldots$

$$
\begin{aligned}
f(S ; x)= & 1+x^{3}+x^{6}+x^{9}+\cdots \\
& +x^{7}+x^{10}+x^{13}+x^{16}+\cdots \\
& +x^{14}+x^{17}+x^{20}+x^{23}+\cdots \\
= & \frac{1}{1-x^{3}}+\frac{x^{7}}{1-x^{3}}+\frac{x^{14}}{1-x^{3}} \\
= & \left(1+x^{7}+x^{14}\right) \frac{1}{1-x^{3}} \\
= & \frac{1-x^{21}}{1-x^{7}} \cdot \frac{1}{1-x^{3}}
\end{aligned}
$$

Solving the Harder Problem

Postal rates that can be paid using exactly
0 sevens: $\quad 0,3,6,9,12,15,18,21,24,27, \ldots$
1 seven: $7,10,13,16,19,22,25,28,31,34, \ldots$
2 sevens: $14,17,20,23,26,29,32,35,38,41, \ldots$
3 sevens: $21,24,27, \ldots$
4 sevens: $28,31,34, \ldots$

$$
\begin{aligned}
f(S ; x)= & 1+x^{3}+x^{6}+x^{9}+\cdots \\
& +x^{7}+x^{10}+x^{13}+x^{16}+\cdots \\
& +x^{14}+x^{17}+x^{20}+x^{23}+\cdots \\
= & \frac{1}{1-x^{3}}+\frac{x^{7}}{1-x^{3}}+\frac{x^{14}}{1-x^{3}} \\
= & \left(1+x^{7}+x^{14}\right) \frac{1}{1-x^{3}} \\
= & \frac{1-x^{21}}{1-x^{7}} \cdot \frac{1}{1-x^{3}}
\end{aligned}
$$

Solving the Harder Problem

In general

$$
f(S ; x)=\frac{1-x^{a b}}{\left(1-x^{a}\right)\left(1-x^{b}\right)}
$$

Let $T=\mathbb{N} \backslash S$, the set of postal rates that cannot be paid (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; x) & =\frac{1}{1-x}-f(S ; x) \\
& =\frac{\left(1-x^{a}\right)\left(1-x^{b}\right)-(1-x)\left(1-x^{a b}\right)}{(1-x)\left(1-x^{a}\right)\left(1-x^{b}\right)}
\end{aligned}
$$

The largest integer not in S is the degree of the polynomial $f(T ; x)$, which is

$$
(1+a b)-(1+a+b)=a b-a-b
$$

Solving the Harder Problem

In general

$$
f(S ; x)=\frac{1-x^{a b}}{\left(1-x^{a}\right)\left(1-x^{b}\right)}
$$

Let $T=\mathbb{N} \backslash S$, the set of postal rates that cannot be paid (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; x) & =\frac{1}{1-x}-f(S ; x) \\
& =\frac{\left(1-x^{a}\right)\left(1-x^{b}\right)-(1-x)\left(1-x^{a b}\right)}{(1-x)\left(1-x^{a}\right)\left(1-x^{b}\right)}
\end{aligned}
$$

The largest integer not in S is the degree of the polynomial $f(T ; x)$, which is

$$
(1+a b)-(1+a+b)=a b-a-b
$$

Solving the Harder Problem

In general

$$
f(S ; x)=\frac{1-x^{a b}}{\left(1-x^{a}\right)\left(1-x^{b}\right)}
$$

Let $T=\mathbb{N} \backslash S$, the set of postal rates that cannot be paid (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; x) & =\frac{1}{1-x}-f(S ; x) \\
& =\frac{\left(1-x^{a}\right)\left(1-x^{b}\right)-(1-x)\left(1-x^{a b}\right)}{(1-x)\left(1-x^{a}\right)\left(1-x^{b}\right)}
\end{aligned}
$$

The largest integer not in S is the degree of the polynomial $f(T ; x)$, which is

$$
(1+a b)-(1+a+b)=a b-a-b
$$

Solving the Harder Problem

In general

$$
f(S ; x)=\frac{1-x^{a b}}{\left(1-x^{a}\right)\left(1-x^{b}\right)}
$$

Let $T=\mathbb{N} \backslash S$, the set of postal rates that cannot be paid (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; x) & =\frac{1}{1-x}-f(S ; x) \\
& =\frac{\left(1-x^{a}\right)\left(1-x^{b}\right)-(1-x)\left(1-x^{a b}\right)}{(1-x)\left(1-x^{a}\right)\left(1-x^{b}\right)}
\end{aligned}
$$

The largest integer not in S is the degree of the polynomial $f(T ; x)$, which is

$$
(1+a b)-(1+a+b)=a b-a-b
$$

Solving the Harder Problem

In general

$$
f(S ; x)=\frac{1-x^{a b}}{\left(1-x^{a}\right)\left(1-x^{b}\right)}
$$

Let $T=\mathbb{N} \backslash S$, the set of postal rates that cannot be paid (which is $\{1,2,4,5,8,11\}$ in the example).

$$
\begin{aligned}
f(T ; x) & =\frac{1}{1-x}-f(S ; x) \\
& =\frac{\left(1-x^{a}\right)\left(1-x^{b}\right)-(1-x)\left(1-x^{a b}\right)}{(1-x)\left(1-x^{a}\right)\left(1-x^{b}\right)}
\end{aligned}
$$

The largest integer not in S is the degree of the polynomial $f(T ; x)$, which is

$$
(1+a b)-(1+a+b)=a b-a-b
$$

Solving the Harder Problem

$$
f(T ; x)=\frac{\left(1-x^{a}\right)\left(1-x^{b}\right)-(1-x)\left(1-x^{a b}\right)}{(1-x)\left(1-x^{a}\right)\left(1-x^{b}\right)}
$$

The number of postal rates that cannot be paid is $f(T ; 1)$, which is (taking the limit as $x \rightarrow 1$)

$$
\frac{a b-a-b+1}{2}
$$

Note:

$$
\begin{aligned}
S=\{x \in \mathbb{N} \mid & \exists \lambda_{1} \in \mathbb{N}, \exists \lambda_{2} \in \mathbb{N}: \\
& \left.x=a \lambda_{1}+b \lambda_{2}\right\}
\end{aligned}
$$

Summary

- We can often use patterns in seemingly complicated sets to encode them compactly as generating functions.
- We can manipulate the generating functions to answer questions about the sets.

Some Generalities

Note: For multi-dimensional sets S in \mathbb{N}^{d}, we can define

$$
f\left(S ; x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example:

$$
S=\{(0,0),(1,2),(3,2)\} .
$$

Then

$$
f(S ; x, y)=x^{0} y^{0}+x^{1} y^{2}+x^{3} y^{2}
$$

Some Generalities

Note: For multi-dimensional sets S in \mathbb{N}^{d}, we can define

$$
f\left(S ; x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example:

$$
S=\{(0,0),(1,2),(3,2)\} .
$$

Then

$$
f(S ; x, y)=x^{0} y^{0}+x^{1} y^{2}+x^{3} y^{2}
$$

Some Generalities

Note: For multi-dimensional sets S in \mathbb{N}^{d}, we can define

$$
f\left(S ; x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example:

$$
S=\{(0,0),(1,2),(3,2)\} .
$$

Then

$$
f(S ; x, y)=x^{0} y^{0}+x^{1} y^{2}+x^{3} y^{2}
$$

Some Generalities

Note: For multi-dimensional sets S in \mathbb{N}^{d}, we can define

$$
f\left(S ; x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example:

$$
S=\{(0,0),(1,2),(3,2)\} .
$$

Then

$$
f(S ; x, y)=x^{0} y^{0}+x^{1} y^{2}+x^{3} y^{2}
$$

Some Generalities

Question: When does a set have a "nice" generating function?
In particular, when does it have a generating function that is a Taylor series expansion of a rational function (that is, $\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomials)?

Some Generalities

Answer: If and only if it can be written like

$$
\begin{aligned}
S=\{x \in \mathbb{N} \mid & \forall y_{1} \in \mathbb{N}, \exists y_{2} \in \mathbb{N}: \\
& \left(3 y_{1}+5 y_{2}-x \geq 0\right) \text { and } \\
& \left.\left(5 y_{1}+2 y_{2}+3 x<5 \text { or } 3 y_{1}-x=7\right)\right\}
\end{aligned}
$$

using quantifiers (\exists and \forall), boolean operations (and, or, not), and linear (in)equalities $(\leq,=,>)$.

Examples:

$$
\begin{gathered}
S=\{x \in \mathbb{N} \mid \exists y \in \mathbb{N}: 2 y=x \text { and } 100 \leq x \leq 250\} \\
\qquad \begin{array}{c}
S=\left\{x \in \mathbb{N} \left\lvert\, \begin{array}{l}
\exists \lambda_{1} \in \mathbb{N}, \exists \lambda_{2} \in \mathbb{N}: \\
\\
\left.x=a \lambda_{1}+b \lambda_{2}\right\}
\end{array}\right.\right.
\end{array} .
\end{gathered}
$$

A Computer Example

```
for i=0 to 5
    for j=0 to i
        Do something that requires i\cdotj units of storage
    end
end
```

Want to compute

$$
\sum_{i=0}^{5} \sum_{j=0}^{i} i j
$$

Let

$$
S=\left\{(i, j) \in \mathbb{N}^{2} \mid i \leq 5 \text { and } j \leq i\right\} .
$$

We want

$$
\sum_{(i, j) \in S} i j .
$$

A Computer Example

$$
S=\left\{(i, j) \in \mathbb{N}^{2} \mid i \leq 5 \text { and } j \leq i\right\}
$$

We want

$$
\sum_{(i, j) \in S} i j .
$$

This is a discrete version of

$$
\iint_{T} s t d s d t
$$

where T is the triangle

$$
T=\left\{(s, t) \in \mathbb{R}_{\geq 0}^{2} \mid s \leq 5 \text { and } t \leq s\right\}
$$

A Computer Example

A Computer Example

We have

$$
f(S ; x, y)=\sum_{(i, j) \in S} x^{i} y^{j}
$$

We want

$$
\sum_{(i, j) \in S} i j
$$

A Computer Example

We have

$$
f(S ; x, y)=\sum_{(i, j) \in S} x^{i} y^{j}
$$

We want

$$
\begin{gathered}
\sum_{(i, j) \in S} i j \\
\frac{\partial^{2}}{\partial x \partial y} f(S ; x, y)=\sum_{(i, j) \in S} i j x^{i-1} y^{j-1}
\end{gathered}
$$

Therefore we want

$$
\left.\frac{\partial^{2}}{\partial x \partial y} f(S ; x, y)\right|_{x=1, y=1}=140
$$

Summary

- We can often use patterns in seemingly complicated sets to encode them compactly as generating functions.
- We can manipulate the generating functions to answer questions about the sets.

Good Algorithms

$$
\begin{aligned}
S=\{x \in \mathbb{N} \mid & \forall y_{1} \in \mathbb{N}, \exists y_{2} \in \mathbb{N}: \\
& \left(3 y_{1}+5 y_{2}-x \geq 0\right) \text { and } \\
& \left.\left(5 y_{1}+2 y_{2}+3 x<5 \text { or } 3 y_{1}-x=7\right)\right\},
\end{aligned}
$$

Question: Given a set S defined like this, how easy is it to find $f(S ; x)$?

Good Algorithms

- If there are no quantifiers, there is a "good" algorithm.
- If only \exists 's are needed to define S (or only \forall 's are needed), there is a theoretically good algorithm (but there are problems with actually implementing it).
- If both \exists 's and \forall 's are needed to define S, no one knows if there is a good algorithm or not.

Good Algorithms

Example: The Frobenius problem
Let $a_{1}, a_{2}, \ldots, a_{d}$ be nonnegative integers such that $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{d}\right)=1$. Let S be the set of postal rates we can pay with $a_{1}, a_{2}, \ldots, a_{d}$ cent stamps.

$$
\begin{aligned}
S=\{x \in \mathbb{N} \mid & \exists \lambda_{1} \in \mathbb{N}, \ldots, \exists \lambda_{d} \in \mathbb{N}: \\
& \left.x=a_{1} \lambda_{1}+\cdots+a_{d} \lambda_{d}\right\}
\end{aligned}
$$

- $d=2$: very nice formula, $a_{1} a_{2}-a_{1}-a_{2}$
- $d=3$: a decent formula
- $d \geq$ 4: probably no nice formula, need to use these generating function algorithms

Generating Functions of Another Sort

Given $S \subset \mathbb{N}$,

$$
f(S ; x)=\sum_{a \in S} x^{a}=\sum_{i=0}^{\infty} b_{i} x^{i}
$$

where

$$
b_{i}=\left\{\begin{array}{ll}
1 & \text { if } i \in S \\
0 & \text { if } i \notin S
\end{array} .\right.
$$

$\left\{b_{i}\right\}_{i=0}^{\infty}$ is an infinite sequence of 1's and 0's.
In general, let $\left\{b_{i}\right\}_{i=0}^{\infty}$ be any sequence of integers and define its generating function

$$
f(x)=\sum_{i=0}^{\infty} b_{i} x^{i}
$$

The Fibonacci Sequence

Take the Fibonacci sequence

$$
\begin{aligned}
& 1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots \\
& \text { where } b_{0}=b_{1}=1 \text { and } b_{i}=b_{i-1}+b_{i-2} \text { for } i \geq 2
\end{aligned}
$$

How fast does b_{i} grow as i increases? Can we find a formula for b_{i} ?

The Fibonacci Sequence

Take the Fibonacci sequence

$$
\begin{aligned}
& 1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots \\
& \text { where } b_{0}=b_{1}=1 \text { and } b_{i}=b_{i-1}+b_{i-2} \text { for } i \geq 2
\end{aligned}
$$

How fast does b_{i} grow as i increases? Can we find a formula for b_{i} ?

The Fibonacci Sequence

Take the Fibonacci sequence

$$
\begin{aligned}
& 1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots \\
& \text { where } b_{0}=b_{1}=1 \text { and } b_{i}=b_{i-1}+b_{i-2} \text { for } i \geq 2
\end{aligned}
$$

How fast does b_{i} grow as i increases? Can we find a formula for b_{i} ?

The Fibonacci Sequence

Take the Fibonacci sequence

$$
\begin{aligned}
& 1,1,2,3,5,8,13,21,34,55,89,144,233, \ldots \\
& \text { where } b_{0}=b_{1}=1 \text { and } b_{i}=b_{i-1}+b_{i-2} \text { for } i \geq 2
\end{aligned}
$$

How fast does b_{i} grow as i increases? Can we find a formula for b_{i} ?

The Fibonacci Sequence

$$
f(x)=1+1 x+2 x^{2}+3 x^{3}+5 x^{4} \quad+\cdots
$$

The Fibonacci Sequence

$$
\begin{array}{rlrrrrr}
f(x) & = & 1 & +1 x & +2 x^{2} & +3 x^{3} & +5 x^{4} \\
x f(x) & = & & 1 x & +1 x^{2} & +2 x^{3} & +3 x^{4} \\
& & +\cdots \\
x^{2} f(x) & = & & 1 x^{2} & +1 x^{3} & +2 x^{4} & +\cdots
\end{array}
$$

The Fibonacci Sequence

$$
\begin{array}{rlrrrrr}
f(x) & = & 1 & +1 x & +2 x^{2} & +3 x^{3} & +5 x^{4} \\
x f(x) & = & & 1 x & +1 x^{2} & +2 x^{3} & +3 x^{4} \\
& & +\cdots \\
x^{2} f(x) & = & & 1 x^{2} & +1 x^{3} & +2 x^{4} & +\cdots
\end{array}
$$

The Fibonacci Sequence

$$
\begin{aligned}
& f(x)=1+1 x+2 x^{2}+3 x^{3}+5 x^{4}+\cdots \\
& x f(x)=1 x+1 x^{2}+2 x^{3}+3 x^{4}+\cdots \\
& x^{2} f(x)=\quad 1 x^{2}+1 x^{3}+2 x^{4}+\cdots \\
& \left(x+x^{2}\right) f(x)=\quad 1 x+2 x^{2}+3 x^{3}+5 x^{4}+\cdots
\end{aligned}
$$

Then

$$
\left(x+x^{2}\right) f(x)+1=f(x)
$$

Solving for $f(x)$,

$$
\begin{gathered}
1=\left(1-x-x^{2}\right) f(x), \text { so } \\
f(x)=\frac{1}{1-x-x^{2}} .
\end{gathered}
$$

The Fibonacci Sequence

$$
\begin{array}{rlrlrl}
f(x) & = & 1 & +1 x & +2 x^{2} & +3 x^{3} \\
& +5 x^{4} & +\cdots \\
x f(x) & = & & 1 x+1 x^{2} & +2 x^{3} & +3 x^{4} \\
& +\cdots \\
x^{2} f(x) & = & & 1 x^{2} & +1 x^{3} & +2 x^{4}
\end{array}+\cdots .
$$

Then

$$
\left(x+x^{2}\right) f(x)+1=f(x)
$$

Solving for $f(x)$,

$$
\begin{gathered}
1=\left(1-x-x^{2}\right) f(x), \text { so } \\
f(x)=\frac{1}{1-x-x^{2}} .
\end{gathered}
$$

The Fibonacci Sequence

$$
\begin{array}{rlrlrl}
f(x) & = & 1 & +1 x & +2 x^{2} & +3 x^{3} \\
& +5 x^{4} & +\cdots \\
x f(x) & = & & 1 x+1 x^{2} & +2 x^{3} & +3 x^{4} \\
& +\cdots \\
x^{2} f(x) & = & & 1 x^{2} & +1 x^{3} & +2 x^{4}
\end{array}+\cdots .
$$

Then

$$
\left(x+x^{2}\right) f(x)+1=f(x)
$$

Solving for $f(x)$,

$$
\begin{gathered}
1=\left(1-x-x^{2}\right) f(x), \text { so } \\
f(x)=\frac{1}{1-x-x^{2}} .
\end{gathered}
$$

The Fibonacci Sequence

$$
f(x)=\frac{1}{1-x-x^{2}} .
$$

The Fibonacci Sequence

$$
f(x)=\frac{1}{1-x-x^{2}}
$$

Partial fractions: Let

$$
\begin{gathered}
s_{1}=\frac{1+\sqrt{5}}{2}=1.61803 \cdots \text { and } \\
s_{2}=\frac{1-\sqrt{5}}{2}=-0.61803 \cdots \\
f(x)=\frac{\frac{1}{\sqrt{5}}}{1-s_{1} x}+\frac{-\frac{1}{\sqrt{5}}}{1-s_{2} x} .
\end{gathered}
$$

The Fibonacci Sequence

$$
\left.\begin{array}{l}
\frac{1}{1-s_{1} x}=1+\left(s_{1} x\right)+\left(s_{1} x\right)^{2}+\left(s_{1} x\right)^{3}+\cdots=\sum_{i=0}^{\infty} s_{1}^{i} x^{i} \\
f(x)
\end{array}\right)=\frac{\frac{1}{\sqrt{5}}}{1-s_{1} x}+\frac{-\frac{1}{\sqrt{5}}}{1-s_{2} x} .
$$

Therefore $b_{i}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{i}$.

The Fibonacci Sequence

$$
\begin{aligned}
\frac{1}{1-s_{1} x}=1+ & \left(s_{1} x\right)+\left(s_{1} x\right)^{2}+\left(s_{1} x\right)^{3}+\cdots=\sum_{i=0}^{\infty} s_{1}^{i} x^{i} \\
f(x) & =\frac{\frac{1}{\sqrt{5}}}{1-s_{1} x}+\frac{-\frac{1}{\sqrt{5}}}{1-s_{2} x} \\
& =\frac{1}{\sqrt{5}} \sum_{i=0}^{\infty} s_{1}^{i} x^{i}-\frac{1}{\sqrt{5}} \sum_{i=0}^{\infty} s_{2}^{i} x^{i} \\
& =\sum_{i=0}^{\infty}\left(\frac{1}{\sqrt{5}} s_{1}^{i}-\frac{1}{\sqrt{5}} s_{2}^{i}\right) x^{i} \\
& =\sum_{i=0}^{\infty} b_{i} x^{i}
\end{aligned}
$$

Therefore $b_{i}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{i}$.

The Fibonacci Sequence

$$
\begin{aligned}
\frac{1}{1-s_{1} x}=1+ & \left(s_{1} x\right)+\left(s_{1} x\right)^{2}+\left(s_{1} x\right)^{3}+\cdots=\sum_{i=0}^{\infty} s_{1}^{i} x^{i} \\
f(x) & =\frac{\frac{1}{\sqrt{5}}}{1-s_{1} x}+\frac{-\frac{1}{\sqrt{5}}}{1-s_{2} x} \\
& =\frac{1}{\sqrt{5}} \sum_{i=0}^{\infty} s_{1}^{i} x^{i}-\frac{1}{\sqrt{5}} \sum_{i=0}^{\infty} s_{2}^{i} x^{i} \\
& =\sum_{i=0}^{\infty}\left(\frac{1}{\sqrt{5}} s_{1}^{i}-\frac{1}{\sqrt{5}} s_{2}^{i}\right) x^{i} \\
& =\sum_{i=0}^{\infty} b_{i} x^{i}
\end{aligned}
$$

Therefore $b_{i}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{i}$.

The Fibonacci Sequence

$$
\begin{aligned}
& \frac{1}{1-s_{1} x}=1+\left(s_{1} x\right)+\left(s_{1} x\right)^{2}+\left(s_{1} x\right)^{3}+\cdots=\sum_{i=0}^{\infty} s_{1}^{i} x^{i} \\
& \begin{aligned}
f(x) & =\frac{\frac{1}{\sqrt{5}}}{1-s_{1} x}+\frac{-\frac{1}{\sqrt{5}}}{1-s_{2} x} \\
& =\frac{1}{\sqrt{5}} \sum_{i=0}^{\infty} s_{1}^{i} x^{i}-\frac{1}{\sqrt{5}} \sum_{i=0}^{\infty} s_{2}^{i} x^{i} \\
& =\sum_{i=0}^{\infty}\left(\frac{1}{\sqrt{5}} s_{1}^{i}-\frac{1}{\sqrt{5}} s_{2}^{i}\right) x^{i} \\
& =\sum_{i=0}^{\infty} b_{i} x^{i}
\end{aligned}
\end{aligned}
$$

Therefore $b_{i}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{i}$.

The Fibonacci Sequence

$$
\begin{aligned}
& \frac{1}{1-s_{1} x}=1+\left(s_{1} x\right)+\left(s_{1} x\right)^{2}+\left(s_{1} x\right)^{3}+\cdots=\sum_{i=0}^{\infty} s_{1}^{i} x^{i} \\
& \begin{aligned}
f(x) & =\frac{\frac{1}{\sqrt{5}}}{1-s_{1} x}+\frac{-\frac{1}{\sqrt{5}}}{1-s_{2} x} \\
& =\frac{1}{\sqrt{5}} \sum_{i=0}^{\infty} s_{1}^{i} x^{i}-\frac{1}{\sqrt{5}} \sum_{i=0}^{\infty} s_{2}^{i} x^{i} \\
& =\sum_{i=0}^{\infty}\left(\frac{1}{\sqrt{5}} s_{1}^{i}-\frac{1}{\sqrt{5}} s_{2}^{i}\right) x^{i} \\
& =\sum_{i=0}^{\infty} b_{i} x^{i}
\end{aligned}
\end{aligned}
$$

Therefore $b_{i}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{i}$.

The Fibonacci Sequence

$$
\begin{aligned}
\frac{1}{1-s_{1} x}=1+ & \left(s_{1} x\right)+\left(s_{1} x\right)^{2}+\left(s_{1} x\right)^{3}+\cdots=\sum_{i=0}^{\infty} s_{1}^{i} x^{i} \\
f(x) & =\frac{\frac{1}{\sqrt{5}}}{1-s_{1} x}+\frac{-\frac{1}{\sqrt{5}}}{1-s_{2} x} \\
& =\frac{1}{\sqrt{5}} \sum_{i=0}^{\infty} s_{1}^{i} x^{i}-\frac{1}{\sqrt{5}} \sum_{i=0}^{\infty} s_{2}^{i} x^{i} \\
& =\sum_{i=0}^{\infty}\left(\frac{1}{\sqrt{5}} s_{1}^{i}-\frac{1}{\sqrt{5}} s_{2}^{i}\right) x^{i} \\
& =\sum_{i=0}^{\infty} b_{i} x^{i}
\end{aligned}
$$

Therefore $b_{i}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{i}$.

The Fibonacci Sequence

$$
b_{i}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{i}
$$

Note, b_{i} is about $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{i}$.

In many applications, we can't find a formula for b_{i} exactly, but can use the generating function to find a good approximation.

Danger!

We should have either made sure our generating function converged, or proven that it doesn't matter (either way works).

Example:

$$
\begin{aligned}
& s=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots \\
& \frac{1}{2} s= \\
& \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots
\end{aligned}
$$

Therefore

$$
\frac{1}{2} s+1=s
$$

and

$$
s=2
$$

Danger!

$$
\begin{aligned}
& s=1+2+4+8+\cdots \\
& 2 s=2+4+8+\cdots
\end{aligned}
$$

Therefore

$$
2 s+1=s,
$$

and

$$
s=-1
$$

Summary

- We can often use patterns in seemingly complicated sets to encode them compactly as generating functions.
- We can manipulate the generating functions to answer questions about the sets.

Summary

- We can often use patterns in seemingly complicated sequences to encode them compactly as generating functions.
- We can manipulate the generating functions to answer questions about the sequences.

