A Finite Calculus Approach to Ehrhart Polynomials

Kevin Woods, Oberlin College (joint work with Steven Sam, MIT)

Ehrhart Theory

Let $P \subseteq \mathbb{R}^{d}$ be a rational polytope

$$
L_{P}(t)=\# t P \cap \mathbb{Z}^{d}
$$

Ehrhart's Theorem:

$$
L_{p}(t)=c_{d}(t) t^{d}+c_{d-1}(t) t^{d-1}+\cdots+c_{0}(t)
$$

where $c_{i}(t)$ are periodic.
When P is integral, period $=1$, so $L_{p}(t)$ is a polynomial.

An Analogy

$L_{P}(t)$ is the discrete analog of volume

$$
\begin{gathered}
\sum_{a \in t P \cap \mathbb{Z}^{d}} 1=L_{P}(t) \\
\int_{t P} 1 d x=\operatorname{vol}(t P)=\operatorname{vol}(P) t^{d} . \\
L_{P}(t) \approx \operatorname{vol}(P) t^{d}
\end{gathered}
$$

Push the Analogy

Let Δ_{d} be the convex hull of

- the origin
- the standard basis vectors e_{i}.

Compute the volume of $t \Delta_{d}$

Push the Analogy

Let Δ_{d} be the convex hull of

- the origin
- the standard basis vectors e_{i}.

Compute the volume of $t \Delta_{d}$

$$
\operatorname{vol}\left(t \Delta_{d}\right)=\int_{0}^{t} \operatorname{vol}\left(s \Delta_{d-1}\right) d s
$$

Inductively,

$$
\operatorname{vol}\left(t \Delta_{d}\right)=\frac{t^{d}}{d!}
$$

Push the Analogy

Why it works so nice:

- \int_{0}^{t} is a linear operator.
- \int_{0}^{t} acts nicely on a basis of $\mathbb{R}[x]$.

$$
\int_{0}^{t} s^{n}=\frac{1}{n+1} t^{n+1}
$$

Push the Analogy

Discrete version:

$$
L_{\Delta_{d}}(t)=\sum_{s=0}^{t} L_{\Delta_{d-1}}(s)
$$

Inductively,

$$
L_{\Delta_{d}}(t)=\frac{(t+1)(t+2) \cdots(t+d)}{d!} .
$$

Push the Analogy

Why it works so nice:

- $\sum_{s=0}^{t}$ is a linear operator.
- $\sum_{s=0}^{t}$ acts nicely on a basis of $\mathbb{R}[x]$.

$$
\sum_{s=0}^{t} s^{\underline{n}}=\frac{1}{n+1}(t+1)^{\underline{n+1}}
$$

$$
\text { where } t \underline{n}=t(t-1)(t-2) \cdots(t-d+1) \text {. }
$$

Is it always this easy?

Is it always this easy?

No.

A Harder One

$$
L_{P}(t)=?
$$

A Harder One

$$
L_{P}(t)=?
$$

A Harder One

$$
L Q(s)=\left\lfloor\frac{s}{2}\right\rfloor+\left[-\frac{s}{2}\right\rceil=2\left\lfloor\frac{s+2}{2}\right\rfloor
$$

A Harder One

$$
\begin{aligned}
L_{Q}(s) & =\left\lfloor\frac{s}{2}\right\rfloor+\left[-\frac{s}{2}\right\rceil=2\left\lfloor\frac{s+2}{2}\right\rfloor \\
L_{P}(t) & =\sum_{s=0}^{2 t} L_{Q}(s) \\
& =\sum_{s=0}^{2 t} 2\left\lfloor\frac{s+2}{2}\right\rfloor \\
& =\text { a polynomial !!??!!! }
\end{aligned}
$$

A Harder One

$$
\begin{aligned}
L_{P}(t) & =\sum_{s=0}^{2 t} 2\left\lfloor\frac{s+2}{2}\right\rfloor \\
& =1+\sum_{r=1}^{t}\left(2\left\lfloor\frac{(2 r-1)+2}{2}\right\rfloor+2\left\lfloor\frac{2 r+2}{2}\right\rfloor\right) \\
& =1+\sum_{r=1}^{t} 4 r \\
& =4 r^{2}+4 r+1
\end{aligned}
$$

A Harder One

$$
\begin{aligned}
L_{P}(t) & =\sum_{s=0}^{2 t} 2\left\lfloor\frac{s+2}{2}\right\rfloor \\
& =1+\sum_{r=1}^{t}\left(2\left\lfloor\frac{(2 r-1)+2}{2}\right\rfloor+2\left\lfloor\frac{2 r+2}{2}\right\rfloor\right) \\
& =1+\sum_{r=1}^{t} 4 r \\
& =4 r^{2}+4 r+1
\end{aligned}
$$

A Harder One

$$
\begin{aligned}
L_{P}(t) & =\sum_{s=0}^{2 t} 2\left\lfloor\frac{s+2}{2}\right\rfloor \\
& =1+\sum_{r=1}^{t}\left(2\left\lfloor\frac{(2 r-1)+2}{2}\right\rfloor+2\left\lfloor\frac{2 r+2}{2}\right\rfloor\right) \\
& =1+\sum_{r=1}^{t} 4 r \\
& =4 r^{2}+4 r+1
\end{aligned}
$$

Is it always this easy?

Is it always this easy?

Yes.

Tools

- Quasi-polynomial version of finite calculus: If $f(s)$ is a quasi-polynomial with period r, then

$$
F(t)=\sum_{s=0}^{\left\lfloor\frac{a t}{b}\right\rfloor} f(s)
$$

is a quasi-polynomial with period

$$
\frac{r b}{\operatorname{gcd}(a, r)}
$$

Key: It's the smallest t such that $\frac{a t}{b}$ is integer multiple of r.

Tools

- Triangulation.

Summation only works for pyramids.

- Induction.

Need quasi-polynomial version even to get polynomial version.
Bug? Feature?

Periodicity! For Free!

Careful triangulation/induction immediately gives us:

Theorem (McMullen)
Given Ehrhart quasi-polynomial

$$
L_{P}(t)=c_{0}(t)+c_{1}(t) t+\cdots+c_{d}(t) t^{d}
$$

and given r and i such that the affine hull of $r F$ contains integer points, for all i-dimensional faces F. Then r is a period of $c_{i}(t)$.

Periodicity! For Free!

- Let \mathcal{D} be smallest positive integer such that $\mathcal{D} P$ is integral. Then \mathcal{D} is a period of each $c_{i}(t)$.
- If P is integral, $\mathcal{D}=1$ and $L_{P}(t)$ is a polynomial.
- If P is full-dimensional:

Affine hull of $1 \cdot P$ contains integer points.
Period of $c_{d}(t)$ is 1 .
$\left(c_{d}(t)=\operatorname{vol}(P)\right)$

Reciprocity! For Free!

Theorem (Ehrhart-Macdonald Reciprocity)
If P° is the relative interior of P and $L_{p \circ}(t)=\# t P^{\circ} \cap \mathbb{Z}^{d}$,

$$
L_{P^{\circ}}(t)=(-1)^{\operatorname{dim}(P)} L_{P}(-t) .
$$

Reciprocity! For Free!

Reciprocity in Finite Calculus
If $f(t)$ a (quasi-) polynomial,

$$
\sum_{s=0}^{n} f(s)
$$

is a (quasi-)polynomial, $F(n)$.

$$
\sum_{s=0}^{-n} f(s)
$$

Reciprocity! For Free!

Reciprocity in Finite Calculus
If $f(t)$ a (quasi-) polynomial,

$$
\sum_{s=0}^{n} f(s)
$$

is a (quasi-)polynomial, $F(n)$.

$$
\sum_{s=0}^{-n} f(s)=-\sum_{s=-n+1}^{-1} f(s)
$$

Reciprocity! For Free!

Reciprocity in Finite Calculus
If $f(t)$ a (quasi-) polynomial,

$$
\sum_{s=0}^{n} f(s)
$$

is a (quasi-)polynomial, $F(n)$.

$$
\begin{aligned}
\sum_{s=0}^{-n} f(s) & =-\sum_{s=-n+1}^{-1} f(s) \\
& =F(-n)
\end{aligned}
$$

Reciprocity! For Free!

$$
\begin{aligned}
L_{P^{\circ}}(t) & =\sum_{s=1}^{t-1} L_{Q^{\circ}}(s) \\
& =\sum_{s=1}^{t-1} \pm L_{Q}(-s) \\
& =\sum_{s=0}^{-t} \pm L_{Q}(s) \\
& = \pm L_{P}(-t)
\end{aligned}
$$

Reciprocity! For Free!

$$
\begin{aligned}
L_{P^{\circ}}(t) & =\sum_{s=1}^{t-1} L_{Q^{\circ}}(s) \\
& =\sum_{s=1}^{t-1} \pm L_{Q}(-s) \\
& =\sum_{s=0}^{-t} \pm L_{Q}(s) \\
& = \pm L_{P}(-t)
\end{aligned}
$$

Reciprocity! For Free!

$$
\begin{aligned}
L_{P^{\circ}}(t) & =\sum_{s=1}^{t-1} L_{Q^{\circ}}(s) \\
& =\sum_{s=1}^{t-1} \pm L_{Q}(-s) \\
& =\sum_{s=0}^{-t} \pm L_{Q}(s) \\
& = \pm L_{P}(-t)
\end{aligned}
$$

Reciprocity! For Free!

$$
\begin{aligned}
L_{P^{\circ}}(t) & =\sum_{s=1}^{t-1} L_{Q^{\circ}}(s) \\
& =\sum_{s=1}^{t-1} \pm L_{Q}(-s) \\
& =\sum_{s=0}^{-t} \pm L_{Q}(s) \\
& = \pm L_{P}(-t)
\end{aligned}
$$

Okay, Not Quite Free

You do have to be careful with the triangulation and Inclusion-Exclusion for reciprocity.

Need Euler characteristic, topologically or combinatorially.
True of most proofs (though check out irrational version, Beck-Sottile).

Context

Classic Proofs

- Ehrhart, Stanley (generating functions)
- McMullen (valuations)

Contemporary (simpler) Proofs

- Beck (partial fractions)
- Sam (full-dimensional Inclusion-Exclusion)

Context

Classic Proofs

- Ehrhart, Stanley (generating functions)
- McMullen (valuations)

Contemporary (simpler) Proofs

- Beck (partial fractions)
- Sam (full-dimensional Inclusion-Exclusion)

Context

Classic Proofs

- Ehrhart, Stanley (generating functions)
- McMullen (valuations)

Contemporary (simpler) Proofs

- Beck (partial fractions)
- Sam (full-dimensional Inclusion-Exclusion)

Context

Classic Proofs

- Ehrhart, Stanley (generating functions)
- McMullen (valuations)

Contemporary (simpler) Proofs

- Beck (partial fractions)
- Sam (full-dimensional Inclusion-Exclusion)

Context

Classic Proofs

- Ehrhart, Stanley (generating functions)
- McMullen (valuations)

Contemporary (simpler) Proofs

- Beck (partial fractions)
- Sam (full-dimensional Inclusion-Exclusion)

Context

Classic Proofs

- Ehrhart, Stanley (generating functions)
- McMullen (valuations)

Contemporary (simpler) Proofs

- Beck (partial fractions)
- Sam (full-dimensional Inclusion-Exclusion)

Context

Classic Proofs

- Ehrhart, Stanley (generating functions)
- McMullen (valuations)

Contemporary (simpler) Proofs

- Beck (partial fractions)
- Sam (full-dimensional Inclusion-Exclusion)

Context

Classic Proofs

- Ehrhart, Stanley (generating functions)
- McMullen (valuations)

Contemporary (simpler) Proofs

- Beck (partial fractions)
- Sam (full-dimensional Inclusion-Exclusion)

Context

Classic Proofs

- Ehrhart, Stanley (generating functions)
- McMullen (valuations)

Contemporary (simpler) Proofs

- Beck (partial fractions)
- Sam (full-dimensional Inclusion-Exclusion)

Context

Classic Proofs

- Ehrhart, Stanley (generating functions)
- McMullen (valuations)

Contemporary (simpler) Proofs

- Beck (partial fractions)
- Sam (full-dimensional Inclusion-Exclusion)

Context

Classic Proofs

- Ehrhart, Stanley (generating functions)
- McMullen (valuations)

Contemporary (simpler) Proofs

- Beck (partial fractions)
- Sam (full-dimensional Inclusion-Exclusion)

Questions

Should we pick a nice basis to write (quasi-)polynomial?

- $1, t+1,(t+1)(t+2) / 2, \ldots$

Questions

Should we pick a nice basis to write (quasi-)polynomial?

- $1, t+1,(t+1)(t+2) / 2, \ldots$
- $\binom{t+d}{d},\binom{t+d-1}{d}, \ldots,\binom{t}{d}$ (for polynomials of degree at most d)

Questions

Should we pick a nice basis to write (quasi-)polynomial?

- $1, t+1,(t+1)(t+2) / 2, \ldots$
- $\binom{t+d}{d},\binom{t+d-1}{d}, \ldots,\binom{t}{d}$ (for polynomials of degree at most d)

If

$$
L_{P}(t)=\sum_{j=0}^{d} h_{j}\binom{t+d-j}{d}
$$

then

$$
\sum_{s=0}^{\infty} L_{P}(s) t^{s}=\frac{h_{0}+h_{1} t+\cdots+h_{d} t^{d}}{(1-t)^{d+1}}
$$

Questions

Does this translate into an algorithm?

$$
\sum_{s=0}^{t}\left\lfloor\frac{2 s+3}{4}\right\rfloor=?
$$

Questions

Does this translate into an algorithm?

$$
\begin{gathered}
\sum_{s=0}^{t}\left\lfloor\frac{2 s+3}{4}\right\rfloor=? \\
\sum_{s=0}^{t}\left\lfloor\frac{2 s+3}{4}\right\rfloor \cdot\left\lfloor\frac{3 s+2}{5}\right\rfloor=?
\end{gathered}
$$

Questions

Does this translate into an algorithm?

$$
\begin{gathered}
\sum_{s=0}^{t}\left\lfloor\frac{2 s+3}{4}\right\rfloor=? \\
\sum_{s=0}^{t}\left\lfloor\frac{2 s+3}{4}\right\rfloor \cdot\left\lfloor\frac{3 s+2}{5}\right\rfloor=?
\end{gathered}
$$

Best I can say:

- Translate to/from generating functions (Verdoolaege-W).
- Apply Barvinok's algorithm.

Thank You!

