A Finite Calculus Approach to Ehrhart Polynomials

Kevin Woods, Oberlin College (joint work with Steven Sam, MIT)

$$\int_{s=0}^{t} s^{n} = \frac{1}{n+1} t^{n+1} \frac{1}{t+n} \frac{1}{1+n} = \frac{n}{u} s \sum_{\substack{n=s \\ 0=s}}^{1-1} s \frac{1}{u+1} \frac{1}{t+n} = \frac{n}{u} s \int_{0-s}^{1-s} t^{n+1} \frac{1}{t+n} dt = \frac{n}{u} s \int_{0-s}^{1-s} t^{n+1} dt = \frac{n}{u} s \int_{0-s}^{1-s} t^{n+1}$$

Ehrhart Theory

Let $P \subseteq \mathbb{R}^d$ be a rational polytope

$$L_P(t) = \#tP \cap \mathbb{Z}^d$$

Ehrhart's Theorem:

$$L_p(t) = c_d(t)t^d + c_{d-1}(t)t^{d-1} + \cdots + c_0(t),$$

where $c_i(t)$ are periodic.

When P is integral, period = 1, so $L_p(t)$ is a polynomial.

An Analogy

 $L_P(t)$ is the discrete analog of volume

$$\sum_{a \in tP \cap \mathbb{Z}^d} 1 = L_P(t).$$

$$\int_{tP} 1 \, dx = \operatorname{vol}(tP) = \operatorname{vol}(P) t^d.$$

$$L_P(t) \approx \operatorname{vol}(P)t^d$$

.

Let Δ_d be the convex hull of

- ▶ the origin
- ▶ the standard basis vectors e_i .

Compute the volume of $t\Delta_d$

Let Δ_d be the convex hull of

- ▶ the origin
- ▶ the standard basis vectors e_i.

Compute the volume of $t\Delta_d$

$$\operatorname{vol}(t\Delta_d) = \int_0^t \operatorname{vol}(s\Delta_{d-1}) \, ds$$

Inductively,

$$\operatorname{vol}(t\Delta_d) = rac{t^d}{d!}.$$

Why it works so nice:

- $ightharpoonup \int_0^t$ is a linear operator.
- ▶ \int_0^t acts nicely on a basis of $\mathbb{R}[x]$.

$$\int_0^t s^n = \frac{1}{n+1} t^{n+1}.$$

Discrete version:

$$L_{\Delta_d}(t) = \sum_{s=0}^t L_{\Delta_{d-1}}(s).$$

Inductively,

$$L_{\Delta_d}(t) = \frac{(t+1)(t+2)\cdots(t+d)}{d!}.$$

Why it works so nice:

- $ightharpoonup \sum_{s=0}^{t}$ is a linear operator.
- $ightharpoonup \sum_{s=0}^{t}$ acts nicely on a basis of $\mathbb{R}[x]$.

$$\sum_{s=0}^{t} s^{\underline{n}} = \frac{1}{n+1} (t+1)^{\underline{n+1}},$$

where
$$t^{\underline{n}} = t(t-1)(t-2)\cdots(t-d+1)$$
.

Is it always this easy?

No.

 $L_P(t) = ?$

$$L_P(t) = ?$$

$$L_Q(s) = \left\lfloor \frac{s}{2} \right\rfloor + \left\lceil -\frac{s}{2} \right\rceil = 2 \left\lfloor \frac{s+2}{2} \right\rfloor$$

$$L_{Q}(s) = \left\lfloor \frac{s}{2} \right\rfloor + \left\lceil -\frac{s}{2} \right\rceil = 2 \left\lfloor \frac{s+2}{2} \right\rfloor$$
$$L_{P}(t) = \sum_{s=0}^{2t} L_{Q}(s)$$
$$= \sum_{s=0}^{2t} 2 \left\lfloor \frac{s+2}{2} \right\rfloor$$

= a polynomial !!??!!

$$L_{P}(t) = \sum_{s=0}^{2t} 2 \left\lfloor \frac{s+2}{2} \right\rfloor$$

$$= 1 + \sum_{r=1}^{t} \left(2 \left\lfloor \frac{(2r-1)+2}{2} \right\rfloor + 2 \left\lfloor \frac{2r+2}{2} \right\rfloor \right)$$

$$= 1 + \sum_{r=1}^{t} 4r$$

$$= 4r^{2} + 4r + 1$$

$$L_{P}(t) = \sum_{s=0}^{2t} 2 \left\lfloor \frac{s+2}{2} \right\rfloor$$

$$= 1 + \sum_{r=1}^{t} \left(2 \left\lfloor \frac{(2r-1)+2}{2} \right\rfloor + 2 \left\lfloor \frac{2r+2}{2} \right\rfloor \right)$$

$$= 1 + \sum_{r=1}^{t} 4r$$

$$= 4r^{2} + 4r + 1$$

$$L_{P}(t) = \sum_{s=0}^{2t} 2 \left\lfloor \frac{s+2}{2} \right\rfloor$$

$$= 1 + \sum_{r=1}^{t} \left(2 \left\lfloor \frac{(2r-1)+2}{2} \right\rfloor + 2 \left\lfloor \frac{2r+2}{2} \right\rfloor \right)$$

$$= 1 + \sum_{r=1}^{t} 4r$$

$$= 4r^{2} + 4r + 1$$

Is it always this easy?

Yes.

Tools

▶ Quasi-polynomial version of finite calculus: If f(s) is a quasi-polynomial with period r, then

$$F(t) = \sum_{s=0}^{\left\lfloor \frac{at}{b} \right\rfloor} f(s)$$

is a quasi-polynomial with period

$$\frac{rb}{\gcd(a,r)}$$
.

Key: It's the smallest t such that $\frac{at}{b}$ is integer multiple of r.

Tools

► Triangulation.

Summation only works for pyramids.

Induction.
 Need quasi-polynomial version even to get polynomial version.

Bug? Feature?

Periodicity! For Free!

Careful triangulation/induction immediately gives us:

Theorem (McMullen)

Given Ehrhart quasi-polynomial

$$L_P(t) = c_0(t) + c_1(t)t + \cdots + c_d(t)t^d,$$

and given r and i such that the affine hull of rF contains integer points, for all i-dimensional faces F. Then r is a period of $c_i(t)$.

Periodicity! For Free!

- Let \mathcal{D} be smallest positive integer such that \mathcal{DP} is integral. Then \mathcal{D} is a period of each $c_i(t)$.
- ▶ If P is integral, $\mathcal{D} = 1$ and $L_P(t)$ is a polynomial.
- If P is full-dimensional: Affine hull of $1 \cdot P$ contains integer points. Period of $c_d(t)$ is 1. $(c_d(t) = \text{vol}(P))$

Theorem (Ehrhart-Macdonald Reciprocity)

If P° is the relative interior of P and $L_{P^{\circ}}(t) = \#tP^{\circ} \cap \mathbb{Z}^d$,

$$L_{P^{\circ}}(t)=(-1)^{\dim(P)}L_{P}(-t).$$

Reciprocity in Finite Calculus If f(t) a (quasi-)polynomial,

$$\sum_{s=0}^{n} f(s)$$

is a (quasi-)polynomial, F(n).

$$\sum_{s=0}^{-n} f(s)$$

Reciprocity in Finite Calculus If f(t) a (quasi-)polynomial,

$$\sum_{s=0}^{n} f(s)$$

is a (quasi-)polynomial, F(n).

$$\sum_{s=0}^{-n} f(s) = -\sum_{s=-n+1}^{-1} f(s)$$

Reciprocity in Finite Calculus If f(t) a (quasi-)polynomial,

$$\sum_{s=0}^{n} f(s)$$

is a (quasi-)polynomial, F(n).

$$\sum_{s=0}^{-n} f(s) = -\sum_{s=-n+1}^{-1} f(s)$$
$$= F(-n)$$

$$egin{aligned} L_{P^{\circ}}(t) &= \sum_{s=1}^{t-1} L_{Q^{\circ}}(s) \ &= \sum_{s=1}^{t-1} \pm L_{Q}(-s) \ &= \sum_{s=0}^{-t} \pm L_{Q}(s) \ &= \pm L_{P}(-t) \end{aligned}$$

$$egin{aligned} L_{P^\circ}(t) &= \sum_{s=1}^{t-1} L_{Q^\circ}(s) \ &= \sum_{s=1}^{t-1} \pm L_{Q}(-s) \ &= \sum_{s=0}^{-t} \pm L_{Q}(s) \ &= \pm L_{P}(-t) \end{aligned}$$

$$L_{P^{\circ}}(t) = \sum_{s=1}^{t-1} L_{Q^{\circ}}(s)$$
 $= \sum_{s=1}^{t-1} \pm L_{Q}(-s)$
 $= \sum_{s=0}^{-t} \pm L_{Q}(s)$
 $= \pm L_{P}(-t)$

$$L_{P^{\circ}}(t) = \sum_{s=1}^{t-1} L_{Q^{\circ}}(s)$$

$$= \sum_{s=1}^{t-1} \pm L_{Q}(-s)$$

$$= \sum_{s=0}^{-t} \pm L_{Q}(s)$$

$$= \pm L_{P}(-t)$$

Okay, Not Quite Free

You do have to be careful with the triangulation and Inclusion-Exclusion for reciprocity.

Need Euler characteristic, topologically or combinatorially.

True of most proofs (though check out irrational version, Beck–Sottile).

Classic Proofs

- Ehrhart, Stanley (generating functions)
- McMullen (valuations)

- Beck (partial fractions)
- ► Sam (full-dimensional Inclusion-Exclusion)

Classic Proofs

- ► Ehrhart, Stanley (generating functions)
- McMullen (valuations)

- ► Beck (partial fractions)
- ► Sam (full-dimensional Inclusion-Exclusion)

Classic Proofs

- ► Ehrhart, Stanley (generating functions)
- McMullen (valuations)

- ► Beck (partial fractions)
- ► Sam (full-dimensional Inclusion-Exclusion)

Classic Proofs

- ► Ehrhart, Stanley (generating functions)
- McMullen (valuations)

- Beck (partial fractions)
- ► Sam (full-dimensional Inclusion-Exclusion)

Classic Proofs

- ► Ehrhart, Stanley (generating functions)
- McMullen (valuations)

- ► Beck (partial fractions)
- ► Sam (full-dimensional Inclusion-Exclusion)

Classic Proofs

- ► Ehrhart, Stanley (generating functions)
- McMullen (valuations)

- Beck (partial fractions)
- ► Sam (full-dimensional Inclusion-Exclusion)

Classic Proofs

- ► Ehrhart, Stanley (generating functions)
- McMullen (valuations)

- ► Beck (partial fractions)
- ► Sam (full-dimensional Inclusion-Exclusion)

Classic Proofs

- ► Ehrhart, Stanley (generating functions)
- McMullen (valuations)

- ► Beck (partial fractions)
- ► Sam (full-dimensional Inclusion-Exclusion)

Classic Proofs

- ► Ehrhart, Stanley (generating functions)
- McMullen (valuations)

- ► Beck (partial fractions)
- ► Sam (full-dimensional Inclusion-Exclusion)

Classic Proofs

- ► Ehrhart, Stanley (generating functions)
- McMullen (valuations)

- ► Beck (partial fractions)
- ► Sam (full-dimensional Inclusion-Exclusion)

Classic Proofs

- ► Ehrhart, Stanley (generating functions)
- McMullen (valuations)

- ► Beck (partial fractions)
- ► Sam (full-dimensional Inclusion-Exclusion)

Should we pick a nice basis to write (quasi-)polynomial?

▶ 1, t+1, (t+1)(t+2)/2, ...

Should we pick a nice basis to write (quasi-)polynomial?

- ▶ 1, t+1, (t+1)(t+2)/2, ...
- igl| $\binom{t+d}{d}$, $\binom{t+d-1}{d}$, ..., $\binom{t}{d}$ (for polynomials of degree at most d)

Should we pick a nice basis to write (quasi-)polynomial?

- ightharpoonup 1, t+1, (t+1)(t+2)/2, ...
- igl| $\binom{t+d}{d}$, $\binom{t+d-1}{d}$, ..., $\binom{t}{d}$ (for polynomials of degree at most d)

lf

$$L_P(t) = \sum_{j=0}^d \frac{h_j}{d} \binom{t+d-j}{d},$$

then

$$\sum_{s=0}^{\infty} L_P(s)t^s = \frac{h_0 + h_1t + \dots + h_dt^d}{(1-t)^{d+1}}.$$

Does this translate into an algorithm?

$$\sum_{s=0}^{t} \left\lfloor \frac{2s+3}{4} \right\rfloor = ?$$

Does this translate into an algorithm?

$$\sum_{s=0}^{t} \left\lfloor \frac{2s+3}{4} \right\rfloor = ?$$

$$\sum_{s=0}^{\tau} \left\lfloor \frac{2s+3}{4} \right\rfloor \cdot \left\lfloor \frac{3s+2}{5} \right\rfloor = ?$$

Does this translate into an algorithm?

$$\sum_{s=0}^{t} \left\lfloor \frac{2s+3}{4} \right\rfloor = ?$$

$$\sum_{s=0}^{l} \left\lfloor \frac{2s+3}{4} \right\rfloor \cdot \left\lfloor \frac{3s+2}{5} \right\rfloor = ?$$

Best I can say:

- Translate to/from generating functions (Verdoolaege—W).
- ► Apply Barvinok's algorithm.

Thank You!

$$\int_{s=0}^{t} s^{n} = \frac{1}{n+1} t^{n+1} \frac{1}{t+n} \frac{1}{t+n} = \frac{n}{n} s \sum_{\substack{0=s \\ 0=s}}^{t-1} s^{n} = \frac{1}{n+1} t^{n+1} \frac{1}{t+n} = u^{n} s \int_{0}^{t-1} t^{n+1} dt dt$$