A Finite Calculus Approach to Ehrhart Polynomials

Kevin Woods, Oberlin College
(joint work with Steven Sam, MIT)
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Ehrhart Theory

Let P C RY be a rational polytope

Lp(t) = #tP N2z

Ehrhart's Theorem:
L (t) = Cd(t)td + Cd_l(t)td_l 4+t Co(t)
p )
where ¢;(t) are periodic.

When P is integral, period = 1, so Ly(t) is a polynomial.



An Analogy

Lp(t) is the discrete analog of volume

> 1=Lp(t).

actPnzd

/ 1 dx = vol(tP) = vol(P)t9.
tP

Lp(t) ~ vol(P)t9
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Let Ay be the convex hull of
» the origin

» the standard basis vectors ¢;.
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Push the Analogy

Let Ay be the convex hull of
» the origin

» the standard basis vectors ¢;.

Compute the volume of tAy

t
voI(tAd):/ vol(sAgy_1) ds
0

Inductively,

td
VOI(tAd) = E



Push the Analogy

Why it works so nice:

t . .
> [, is a linear operator.

> fot acts nicely on a basis of R[x].

t 1
/ "L
0 n+1



Push the Analogy

Discrete version:
t
La,(t) = Z La, . (s).
s=0

Inductively,

(t+1)(t+2)~~(t+d)'

LAd(t) = d



Push the Analogy

Why it works so nice:

t . .
> > . is a linear operator.

» >, acts nicely on a basis of R[x].

: 1
D st= (t+ 1)L
= n+1

where t7 = t(t — 1)(t — 2)---(t — d + 1).
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A Harder One

oo =[5+ [-5]=2]
Lp(t) = zt: La(s)
s=0
2t S—|—2
=325

= a polynomial 177!
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A Harder One
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Is it always this easy?

Yes.



Tools

» Quasi-polynomial version of finite calculus:
If f(s) is a quasi-polynomial with period r, then

L% )
F(t) =Y f(s)
s=0

is a quasi-polynomial with period

o
ged(a, r)’

Key: It's the smallest t such that "—bt is integer multiple of r.



Tools

» Triangulation.
Summation only works for pyramids.

» Induction.
Need quasi-polynomial version even to get polynomial version.

Bug? Feature?



Periodicity! For Free!

Careful triangulation/induction immediately gives us:
Theorem (McMullen)
Given Ehrhart quasi-polynomial

Lp(t) = co(t) + ca(t)t + - - - + cq(t)t?,

and given r and i such that the affine hull of rF contains integer
points, for all i-dimensional faces F. Then r is a period of ¢;(t).



Periodicity! For Free!

» Let D be smallest positive integer such that DP is integral.
Then D is a period of each ¢;(t).

» If Pis integral, D =1 and Lp(t) is a polynomial.

» If P is full-dimensional:
Affine hull of 1 - P contains integer points.
Period of cy(t) is 1.

(ca(t) = vol(P))



Reciprocity! For Freel!

Theorem (Ehrhart-Macdonald Reciprocity)
If P° is the relative interior of P and Lpo(t) = #tP° N Z9,

Lpo(t) = (—1)4mP)Lp(—t).



Reciprocity! For Freel!

Reciprocity in Finite Calculus
If £(t) a (quasi-)polynomial,

is a (quasi-)polynomial, F(n).

i f(s)
s=0
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Reciprocity! For Freel!

Reciprocity in Finite Calculus
If £(t) a (quasi-)polynomial,

—n -1
Y fls)=— D f(s)
s=0 s=—n+1



Reciprocity! For Freel!

t—1

Lpo(t) = > Loo(s)

s=1
t—1

= D _*Lo(~s)

s=1
—t

= > +lg(s)

s=0
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Reciprocity! For Freel!

Lpo(t) = i LQo(S)
s=1

t—1

= Y +Lo(-s)
s=1

= 3" lq(s)
s=0

= =+ LP(*t)




Okay, Not Quite Free

You do have to be careful with the triangulation and
Inclusion-Exclusion for reciprocity.

Need Euler characteristic, topologically or combinatorially.

True of most proofs (though check out irrational version,
Beck—Sottile).



Context

Classic Proofs
» Ehrhart, Stanley (generating functions)
» McMullen (valuations)

Contemporary (simpler) Proofs
» Beck (partial fractions)

» Sam (full-dimensional Inclusion-Exclusion)
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> 1, t+1, (t+1)(t+2)/2, ...
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Questions

Should we pick a nice basis to write (quasi-)polynomial?
> 1, t+1, (t+1)(t+2)/2, ...
> (tzd), (Hzfl), (2) (for polynomials of degree at most d)

If
d .
t+d—
LP(t)—Zhj( d >,
j=0
then

o

hg + hit + - - + hgt?
S Lp(syes = o ET Rt
pard (1 — t)d+1
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Does this translate into an algorithm?
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Questions

Does this translate into an algorithm?

Zt: {25:3J L

s=0

£ 2s+3 3542 _,
|l 4 5 o

Best | can say:
» Translate to/from generating functions (Verdoolaege-W).

» Apply Barvinok’s algorithm.



Thank You!
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