Periods of Ehrhart quasi-polynomials

Kevin Woods

Beginnings

Let P be a rational polytope in \mathbb{R}^d .

Definitions: $i_P(t) = \#(tP \cap \mathbb{Z}^d).$ $\mathcal{D}(P)$ is the smallest $\mathcal{D} \in \mathbb{Z}_+$ such that $\mathcal{D} \cdot P$ has integral vertices.

Then $i_P(t)$ is a quasi-polynomial function with a period of \mathcal{D} . (Ehrhart)

There exist polynomial functions $f_0(t), f_1(t), \ldots, f_{\mathcal{D}-1}(t)$ such that

$$i_P(t) = f_j(t)$$
 for $t \equiv j \pmod{\mathcal{D}}$.

Beginnings Example: $P = [-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}] \subset \mathbb{R}^2$.

$$i_P(t) = \left\{ egin{array}{cc} (t+1)^2, & ext{for } t ext{ even} \ t^2, & ext{for } t ext{ odd} \end{array}
ight.$$

.

Example:

Given partitions λ , μ , and ν , define the hive polytope $P = P_{\lambda\mu}^{\nu} \subset \mathbb{R}^{N}$.

 $i_P(t)$ is the Littlewood–Richardson coefficient $c^{t
u}_{t\lambda,t\mu}$. (Knutson–Tao)

 $\mathcal{D}(P)$ need not be 1. (De Loera–McAllister)

Example:

Given partitions λ , μ , and ν , define the hive polytope $P = P_{\lambda\mu}^{\nu} \subset \mathbb{R}^{N}$.

 $i_P(t)$ is the Littlewood–Richardson coefficient $c^{t
u}_{t\lambda,t\mu}$. (Knutson–Tao)

```
\mathcal{D}(P) need not be 1. (De Loera–McAllister)
```

```
But i_P(t) is a polynomial. (Derksen–Weyman)
```

Quasi-polynomials with "period collapse" are found in nature.

How bad is it?

How bad is it?

Theorem (McAllister–W.)

For all dimensions d, all denominators \mathcal{D} , and all periods s dividing \mathcal{D} , there exists a d-dimensional polytope P such that $\mathcal{D}(P) = \mathcal{D}$, but $i_P(t)$ has minimum period s.

Example: *P* is the triangle with vertices (0,0), $(\mathcal{D},0)$, and $(1, \frac{\mathcal{D}-1}{\mathcal{D}})$.

 $i_P(t) = \frac{\mathcal{D}-1}{2}n^2 + \frac{\mathcal{D}+1}{2}n + 1$, a polynomial.

Is period collapse a coincidence?

Is period collapse a coincidence?

Con: There are no coincidences in nature.

Is period collapse a coincidence?

Con: There are no coincidences in nature.

Pro: Where's the explanation?

For $i_P(t)$ to be a polynomial, it is necessary that

$$#(\partial(tP)\cap\mathbb{Z}^2)=t\cdot #(\partial P\cap\mathbb{Z}^2).$$

Periodicity of "boundary effects" cancels.

Open Problem: Find a nice characterization of 2-d polygons (or even triangles) where $i_P(t)$ is a polynomial.

There is a characterization by McAllister-W.: iff

- 1. $#(\partial(tP) \cap \mathbb{Z}^2) = t \cdot #(\partial P \cap \mathbb{Z}^2)$ and
- 2. tP satisfies Pick's Theorem.

Open Problem: Find a direct reason why the hive polytopes have period 1.

Open Problem: Are polytopes with no period collapse "generic" in some well-defined sense?

Computational Complexity

Let $f(P; x) = \sum_{a \ge 0} i_P(a) x^a$. f is a rational function $\frac{p(x)}{q(x)}$. (Ehrhart; Stanley)

f can be computed in polynomial time in the bit-size (for fixed dimension d), as a sum of a number of rational functions. (Barvinok)

Let $g(P; x, t) = \sum_{j=0}^{D-1} f_j(t) x^j$.

g can also be computed in polynomial time. (W.)

(\mathcal{D} is exponential in the input size.)

Computational Complexity

Theorem (W.)

Given a polytope P and a period s, we can check in polynomial time whether s is a period of $i_P(t)$ (for fixed dimension).

In particular, we can decide whether $i_P(t)$ is a polynomial.

Obvious Algorithm: Factor $\mathcal{D}(P)$. Check each factor to decide whether it is a period.

Conjecture: There is a polynomial time algorithm to find the minimum period of $i_P(t)$.

This is related to problems in the complexity of computing with generating functions.

Open problem: Find a nice algorithm to decide whether $\sum_{i} \frac{p_i(x)}{q_i(x)}$ is identically 0.

Periods of Coefficients

Write

$$i_P(t) = \sum_{i=0}^d c_i(t)t^i,$$

where $c_i(t)$ are periodic functions.

Example: $P = [-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}].$ $i_P(t) = \begin{bmatrix} 1\\1 \end{bmatrix} t^2 + \begin{bmatrix} 2\\0 \end{bmatrix} t + \begin{bmatrix} 1\\0 \end{bmatrix}.$

Periods of Coefficients

Write

$$i_P(t) = \sum_{i=0}^d c_i(t)t^i,$$

where $c_i(t)$ are periodic functions.

Example: $P = [-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}].$ $i_P(t) = \begin{bmatrix} 1\\1 \end{bmatrix} t^2 + \begin{bmatrix} 2\\0 \end{bmatrix} t + \begin{bmatrix} 1\\0 \end{bmatrix}.$ Let \mathcal{D}_i be the smallest integer such that, for every *i*-dimensional face F of P, the affine span of $\mathcal{D}_i \cdot F$ contains integer points.

Then \mathcal{D}_i is a period of $c_i(t)$ (McMullen; Sam–W.).

There can be no period collapse in $c_d(t)$ and $c_{d-1}(t)$. (Sam–W.)

Open Problem: Are polytopes whose coefficients have no period collapse "generic" in some well-defined sense?

Periods of Coefficients

Conjecture: Suppose s_{d-1} divides s_{d-2} divides ... divides s_0 . Let P be the simplex that is the convex hull of (0, 0, ..., 0), $(\frac{1}{s_0}, 0, ..., 0)$, $(0, \frac{1}{s_1}, 0, ..., 0)$, ..., $(0, 0, ..., 0, \frac{1}{s_{d-1}})$. Then $c_i(t)$ has minimum period s_i .

Conjecture: For all s_1 and s_0 , there exist rational polygons such that $c_j(t)$ has minimum period s_j , for j = 1, 2.

Question: For hive polytopes (and Gelfand-Tsetlin polytopes) does $D_i = 1$ for $i \ge 1$?