Periods of Ehrhart quasi-polynomials

Kevin Woods

Beginnings

Let P be a rational polytope in \mathbb{R}^{d}.
Definitions:
$i_{P}(t)=\#\left(t P \cap \mathbb{Z}^{d}\right)$.
$\mathcal{D}(P)$ is the smallest $\mathcal{D} \in \mathbb{Z}_{+}$such that $\mathcal{D} \cdot P$ has integral vertices.
Then $i_{P}(t)$ is a quasi-polynomial function with a period of \mathcal{D}.
(Ehrhart)
There exist polynomial functions $f_{0}(t), f_{1}(t), \ldots, f_{\mathcal{D}-1}(t)$ such that

$$
i_{P}(t)=f_{j}(t) \text { for } t \equiv j(\bmod \mathcal{D})
$$

Beginnings

Example: $P=\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right] \subset \mathbb{R}^{2}$.

$$
i_{P}(t)=\left\{\begin{array}{ll}
(t+1)^{2}, & \text { for } t \text { even } \\
t^{2}, & \text { for } t \text { odd }
\end{array} .\right.
$$

Period Collapse

Example:
Given partitions λ, μ, and ν, define the hive polytope $P=P_{\lambda \mu}^{\nu} \subset \mathbb{R}^{N}$.
$i_{P}(t)$ is the Littlewood-Richardson coefficient $c_{t \lambda, t \mu}^{t \nu}$. (Knutson-Tao)
$\mathcal{D}(P)$ need not be 1. (De Loera-McAllister)

Period Collapse

Example:
Given partitions λ, μ, and ν, define the hive polytope $P=P_{\lambda \mu}^{\nu} \subset \mathbb{R}^{N}$.
$i_{P}(t)$ is the Littlewood-Richardson coefficient $c_{t \lambda, t \mu}^{t \nu}$.
(Knutson-Tao)
$\mathcal{D}(P)$ need not be 1. (De Loera-McAllister)
But $i_{P}(t)$ is a polynomial. (Derksen-Weyman)
Quasi-polynomials with "period collapse" are found in nature.

Period Collapse

How bad is it?

Period Collapse

How bad is it?

Theorem (McAllister-W.)
For all dimensions d, all denominators \mathcal{D}, and all periods s dividing \mathcal{D}, there exists a d-dimensional polytope P such that $\mathcal{D}(P)=\mathcal{D}$, but $i_{P}(t)$ has minimum periods.

Period Collapse

Example: P is the triangle with vertices $(0,0),(\mathcal{D}, 0)$, and ($1, \frac{\mathcal{D}-1}{\mathcal{D}}$).

$i_{P}(t)=\frac{\mathcal{D}-1}{2} n^{2}+\frac{\mathcal{D}+1}{2} n+1$, a polynomial.

Philosophy Class

Is period collapse a coincidence?

Philosophy Class

Is period collapse a coincidence?
Con: There are no coincidences in nature.

Philosophy Class

Is period collapse a coincidence?
Con: There are no coincidences in nature.

Pro: Where's the explanation?

Philosophy Class

For $i_{P}(t)$ to be a polynomial, it is necessary that

$$
\#\left(\partial(t P) \cap \mathbb{Z}^{2}\right)=t \cdot \#\left(\partial P \cap \mathbb{Z}^{2}\right)
$$

Periodicity of "boundary effects" cancels.

Philosophy Class

Open Problem: Find a nice characterization of 2-d polygons (or even triangles) where $i_{P}(t)$ is a polynomial.

There is a characterization by McAllister-W.: iff

1. $\#\left(\partial(t P) \cap \mathbb{Z}^{2}\right)=t \cdot \#\left(\partial P \cap \mathbb{Z}^{2}\right)$ and
2. $t P$ satisfies Pick's Theorem.

Open Problem: Find a direct reason why the hive polytopes have period 1.

Open Problem: Are polytopes with no period collapse "generic" in some well-defined sense?

Computational Complexity

Let $f(P ; x)=\sum_{a \geq 0} i_{P}(a) x^{a}$.
f is a rational function $\frac{p(x)}{q(x)}$. (Ehrhart; Stanley)
f can be computed in polynomial time in the bit-size (for fixed dimension d), as a sum of a number of rational functions.
(Barvinok)

Let $g(P ; x, t)=\sum_{j=0}^{\mathcal{D}-1} f_{j}(t) x^{j}$.
g can also be computed in polynomial time. (W.)
(\mathcal{D} is exponential in the input size.)

Computational Complexity

Theorem (W.)
Given a polytope P and a period s, we can check in polynomial time whether s is a period of $i_{P}(t)$ (for fixed dimension).

In particular, we can decide whether $i_{P}(t)$ is a polynomial.

Obvious Algorithm: Factor $\mathcal{D}(P)$. Check each factor to decide whether it is a period.

Computational Complexity

Conjecture: There is a polynomial time algorithm to find the minimum period of $i_{P}(t)$.

This is related to problems in the complexity of computing with generating functions.

Open problem: Find a nice algorithm to decide whether $\sum_{i} \frac{p_{i}(x)}{q_{i}(x)}$ is identically 0 .

Periods of Coefficients

Write

$$
i_{P}(t)=\sum_{i=0}^{d} c_{i}(t) t^{i}
$$

where $c_{i}(t)$ are periodic functions.
Example: $P=\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right]$.

$$
i_{P}(t)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] t^{2}+\left[\begin{array}{l}
2 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Periods of Coefficients

Write

$$
i_{P}(t)=\sum_{i=0}^{d} c_{i}(t) t^{i}
$$

where $c_{i}(t)$ are periodic functions.
Example: $P=\left[-\frac{1}{2}, \frac{1}{2}\right] \times\left[-\frac{1}{2}, \frac{1}{2}\right]$.

$$
i_{P}(t)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] t^{2}+\left[\begin{array}{l}
2 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Periods of Coefficients

Let \mathcal{D}_{i} be the smallest integer such that, for every i-dimensional face F of P, the affine span of $\mathcal{D}_{i} \cdot F$ contains integer points.

Then \mathcal{D}_{i} is a period of $c_{i}(t)$ (McMullen; Sam-W.).

Periods of Coefficients

Example: P is the convex hull of $(0,0),\left(\frac{1}{2}, 0\right)$, and $\left(0, \frac{1}{4}\right)$.

Periods of Coefficients

Example: P is the convex hull of $(0,0),\left(\frac{1}{2}, 0\right)$, and $\left(0, \frac{1}{4}\right)$.

$$
i_{P}(t)=\left[\begin{array}{l}
1 / 16 \\
1 / 16 \\
1 / 16 \\
1 / 16
\end{array}\right] t^{2}+\left[\begin{array}{l}
1 / 2 \\
3 / 8 \\
1 / 2 \\
3 / 8
\end{array}\right] t+\left[\begin{array}{c}
1 \\
9 / 16 \\
3 / 4 \\
5 / 16
\end{array}\right]
$$

Periods of Coefficients

Example: P is the convex hull of $(0,0),\left(\frac{1}{2}, 0\right)$, and $\left(0, \frac{1}{4}\right)$.

$$
i_{P}(t)=\left[\begin{array}{l}
1 / 16 \\
1 / 16 \\
1 / 16 \\
1 / 16
\end{array}\right] t^{2}+\left[\begin{array}{l}
1 / 2 \\
3 / 8 \\
1 / 2 \\
3 / 8
\end{array}\right] t+\left[\begin{array}{c}
1 \\
9 / 16 \\
3 / 4 \\
5 / 16
\end{array}\right]
$$

Periods of Coefficients

Example: P is the convex hull of $(0,0),\left(\frac{1}{2}, 0\right)$, and $\left(0, \frac{1}{4}\right)$.

$$
i_{P}(t)=\left[\begin{array}{l}
1 / 16 \\
1 / 16 \\
1 / 16 \\
1 / 16
\end{array}\right] t^{2}+\left[\begin{array}{l}
1 / 2 \\
3 / 8 \\
1 / 2 \\
3 / 8
\end{array}\right] t+\left[\begin{array}{c}
1 \\
9 / 16 \\
3 / 4 \\
5 / 16
\end{array}\right]
$$

Periods of Coefficients

There can be no period collapse in $c_{d}(t)$ and $c_{d-1}(t)$. (Sam-W.)
Open Problem: Are polytopes whose coefficients have no period collapse "generic" in some well-defined sense?

Periods of Coefficients

Conjecture: Suppose s_{d-1} divides s_{d-2} divides ... divides s_{0}. Let P be the simplex that is the convex hull of $(0,0, \ldots, 0)$, $\left(\frac{1}{s_{0}}, 0, \ldots, 0\right),\left(0, \frac{1}{s_{1}}, 0, \ldots, 0\right), \ldots,\left(0,0, \ldots, 0, \frac{1}{s_{d-1}}\right)$. Then $c_{i}(t)$ has minimum period s_{i}.

Conjecture: For all s_{1} and s_{0}, there exist rational polygons such that $c_{j}(t)$ has minimum period s_{j}, for $j=1,2$.

Question: For hive polytopes (and Gelfand-Tsetlin polytopes) does $\mathcal{D}_{i}=1$ for $i \geq 1$?

