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Some Nice Functions, S = (2,3,6)

Let S =(2,3,6) ={0,2,3,4,5,6,...}, the additive semigroup
(monoid) generated by 2, 3, and 6.

» Boring, and the 6 is redundant.

Definition: Given a € S, a factorization of a is (x,y, z) € N3
(where N = {0,1,2,...}) such that 2x + 3y + 6z = a.

» A factorization demonstrates that a € S.

Example: 8 has three factorizations: (4,0,0), (1,2,0), and (1,0,1).

> A little more interesting now, at least.
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> Can you figure out why? Hint: factorizations will (approximately)
break up t into ~ t/6 groups of 6 (three 2's, two 3's, or one 6).
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Another way of writing it:

L2 4Lt 41, if t=0(mod 6),
Lt24 Lt— 2, if t=1(mod 6),
(1) = St2+ Lt+ 3, if t=2(mod 6),
L2+ lt+32,  if t=3(mod 6),
L2+ 2t + 2, if t=4(mod 6),
Lt 4 5t+ 5, if t =5(mod 6).

Such a formula is called a quasi-polynomial: there exist a period m
and polynomials fy, f1, ..., fm_1 such that

f(t) = ft mod m(t),Vt € N.
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Definition: The length of a factorization (x,y,z) is x + y + z.

Example: The three factorizations of 8 are (4,0,0), (1,2,0), and
(1,0,1), and they have lengths 4, 3, and 2, respectively.

Now let f(t) be the number of distinct factorization lengths of t.
So f(8) = 3. Does this f have a nice formula?
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f(ty=19 5] — [£]. if t=1,4,5(mod 6), t > 1,
0, ift =1,

> Lengths must be between [£] (all 6's) and [ 5] (all 2's), so all

possible lengths (or all but one) are realized.

This is eventually (for t > 1) a quasi-polynomial.
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where ¢+ = (| t/6] + s mod 2).

This is a piecewise quasi-polynomial (where the pieces are defined
by linear inequalities in the parameters).

> The last piece has period 2 in s and period 12 in t.
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Presburger Arithmetic

What do all of these combinatorial questions have in common?

They count the number of elements in a set defined in Presburger
arithmetic: sets defined over the integers using:

» linear (in)equalities,
» boolean operations (A, V, =), and
» quantifiers (3, V).

Factorizations of t:

(x,y,z) eN: 2x+3y +6z=t.

Lengths of factorizations of t:

teN: Ix,y,zeN, 2x+3y+6z=1t) A (x+y+z=1).
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Presburger Arithmetic

Semigroup elements that have some factorization of length < t:

aeN: Ix,y,zeN, 2x+3y+6z=a) A (x+y+z<t).

Semigroup elements that have some factorization of length = t:

aeN: Ix,y,zeN, 2x+3y+6z=a) A (x+y+z=1t).

Factorizations of t of length s:

(x,y,z) eN: 2x+3y+6z=1t) A (x+y+z=5).

Semigroup elements that have a factorization (x,y, z) with x < r,
y<s,z<t:

aeN: Ix,y,zeN, (2x+3y+bz=a)A(x < r)A(y <s)A(z<t).
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Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the
corresponding counting functions will be piecewise
quasi-polynomials.

Note: There are three types of variables (parameters, counted,
quantified) that may appear in the linear inequalities:

f(t)=#L€N: Ix,y,ze N, (2x+3y+6z=1t) A (x+y+z =1).

Note: For one parameter variable, “piecewise” quasi-polynomial is
equivalent to “eventually” a quasi-polynomial.
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Extensions
The theorem is actually more general.

The largest/smallest element of a set can be picked out, and it will
have a piecewise/eventually quasi-polynomial structure:

Example: The lexicographically largest factorization of t of length
s is
(6s—t—9 t—2s—3

4 3, 2 >, if t =3(mod 4), s =0(mod 2),

and so forth.

Also, the parameters for which a Presburger sentence is true will
be piecewise/eventually periodic:

Example: t € (6,8) if and only if t = 0(mod 2), for t > 10.
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Extensions

Everything I'm saying here also applies to affine semigroups
(additive semigroups in ZK) as well.

> All of the constraints are still linear, so expressible in Presburger
arithmetic.

Example: For the affine semigroup ((1,2),(2,2),(3,2)), the
number of factorizations of (s, t) is

2t — s+ 2
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A Twist

So far we've fixed the semigroup, but what if we let it vary with t?

Example: §; = (t,t + 1,t + 3). (in general, we could have
St generated by any polynomials in t).

Then S; can be defined by
aeN:3Ix,y,zeN, tx+(t+1)y+(t+3)z=a.

These are nonlinear in t!
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And yet we still get nice functions!

Let f(t) be the number of gaps of S; (positive integers not in S;).

124 1t ift=0 (mod 3),
f(t) = %t2+%t—2, if t=1 (mod 3),

24 2t—2 ift=2 (mod3).

Let f(t) be the Frobenius number of S; (the largest integer not in
St).
itP+t—1, ift=0 (mod3),
f(t)=< 22+ 2t—2, ift=1 (mod 3),
I2+it—1 ft=2 (mod3).
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A Twist

This works in the following setting, called parametric Presburger
arithmetic:
» Require a single parameter, t.

» Allow multiplication by this parameter (but not by other
variables).
» So base inequalities are of the form

pl(t)Xl + -+ Pn(t)xn < Q(f),

where p;, g € Z[t]. For fixed t, these are just linear
inequalities.
» Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart—-Goodrick—W].



A Twist

This works in the following setting, called parametric Presburger
arithmetic:
» Require a single parameter, t.
» Allow multiplication by this parameter (but not by other
variables).
» So base inequalities are of the form

pl(t)Xl + -+ Pn(t)xn < Q(f),

where p;, g € Z[t]. For fixed t, these are just linear
inequalities.
» Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart—-Goodrick—W].



A Twist

This works in the following setting, called parametric Presburger
arithmetic:
» Require a single parameter, t.
» Allow multiplication by this parameter (but not by other
variables).
» So base inequalities are of the form

pl(t)Xl + -+ Pn(t)xn < Q(f),

where p;, g € Z[t]. For fixed t, these are just linear
inequalities.
» Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart—-Goodrick—W].



A Twist

This works in the following setting, called parametric Presburger
arithmetic:
» Require a single parameter, t.
» Allow multiplication by this parameter (but not by other
variables).
» So base inequalities are of the form

pl(t)Xl + -+ Pn(t)xn < Q(f),

where p;, g € Z[t]. For fixed t, these are just linear
inequalities.
» Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart—-Goodrick—W].



A Twist

This works in the following setting, called parametric Presburger
arithmetic:
» Require a single parameter, t.
» Allow multiplication by this parameter (but not by other
variables).
» So base inequalities are of the form

pl(t)Xl + -+ Pn(t)xn < Q(f),

where p;, g € Z[t]. For fixed t, these are just linear
inequalities.

» Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart—-Goodrick—W].



A Twist

This works in the following setting, called parametric Presburger
arithmetic:
» Require a single parameter, t.
» Allow multiplication by this parameter (but not by other
variables).
» So base inequalities are of the form

pl(t)Xl + -+ Pn(t)xn < Q(f),

where p;, g € Z[t]. For fixed t, these are just linear
inequalities.
» Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart—-Goodrick—W].



A Twist

Almost any invariant or property of a semigroup can now be
applied to S; as a function of t. As long as is can be defined in
parametric Presburger arithmetic, you will get eventual
quasi-polynomial behavior.

We give many examples in [Bogart—-Goodrick—W].
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A Twist

Given a family of semigroups, S;, generated by polynomials in t,
the following (when finite) are eventually quasi-polynomial:

» The number of gaps,

» The Frobenius number,

v

The number of pseudo-Frobenius numbers,

v

The number of fundamental gaps,
The cardinality of the delta set,

For fixed /i, the value of the ith largest element of the Apéry
set

v

v
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Example: The Frobenius number, a, is defined by
3¢5t VAN Vb>a, bGSt,
can be expanded out to a parametric Presburger sentence.

Example: The set of pseudo-Frobenius numbers is

aeN: a¢ S5 NVbe5\0, a+bes;.



A Twist

Example: The Frobenius number, a, is defined by
a¢ S NVb>a, beS,
can be expanded out to a parametric Presburger sentence.

Example: The set of pseudo-Frobenius numbers is

aeN: a¢ S5 ANVbe5\0, a+bes;.



A Twist

Given a family of semigroups, S;, generated by polynomials in t,
the set of t such that S; has the following properties is eventually
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» S; is a numerical semigroup.

> S; is a symmetric numerical semigroup

» S, is an irreducible numerical semigroup.
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Not Always So Easy

The examples on the previous slides tended to be pretty easy to
prove definable in parametric Presburger arithmetic. Some are
harder:

Theorem (Bogart—Goodrick—W)

For every field k, the ith Betti number of the semigroup algebra
k[S:] is eventually quasi-polynomial.

Key: Try to find some finite structure (independent of t) that can
be encoded in parametric Presburger arithmetic.

> Look at the fixed number of simplicial complexes on the generators.
Do a homology calculation on those that have a certain property
(squarefree divisor complex for S;) that is definable in parametric
Presburger [Bruns—Herzog].
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