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Some Nice Functions, S = 〈2, 3, 6〉

Let S = 〈2, 3, 6〉 = {0, 2, 3, 4, 5, 6, . . .}, the additive semigroup
(monoid) generated by 2, 3, and 6.

I Boring, and the 6 is redundant.

Definition: Given a ∈ S , a factorization of a is (x , y , z) ∈ N3

(where N = {0, 1, 2, . . .}) such that 2x + 3y + 6z = a.
I A factorization demonstrates that a ∈ S .

Example: 8 has three factorizations: (4,0,0), (1,2,0), and (1,0,1).

I A little more interesting now, at least.
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Some Nice Functions, S = 〈2, 3, 6〉

Given t ∈ N, define f (t) to be the number of factorizations of t.
Does it have a nice formula?

f (t) =

{(bt/6c+2
2

)
, if t ≡ 0, 2, 3, 4, 5 (mod 6),(bt/6c+1

2

)
, if t ≡ 1 (mod 6).

I Can you figure out why? Hint: factorizations will (approximately)
break up t into ≈ t/6 groups of 6 (three 2’s, two 3’s, or one 6).
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Some Nice Functions, S = 〈2, 3, 6〉

Another way of writing it:

f (t) =



1
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2 + 1
4 t + 1, if t ≡ 0 (mod 6),

1
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5
72 , if t ≡ 1 (mod 6),

1
72 t

2 + 7
36 t + 5

9 , if t ≡ 2 (mod 6),
1
72 t

2 + 1
6 t + 3

8 , if t ≡ 3 (mod 6),
1
72 t

2 + 5
36 t + 2

9 , if t ≡ 4 (mod 6),
1
72 t

2 + 1
9 t + 7

72 , if t ≡ 5 (mod 6).

Such a formula is called a quasi-polynomial: there exist a period m
and polynomials f0, f1, . . . , fm−1 such that

f (t) = ft mod m(t), ∀t ∈ N.
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Some Nice Functions, S = 〈2, 3, 6〉

Definition: The length of a factorization (x , y , z) is x + y + z .

Example: The three factorizations of 8 are (4, 0, 0), (1, 2, 0), and
(1, 0, 1), and they have lengths 4, 3, and 2, respectively.

Now let f (t) be the number of distinct factorization lengths of t.
So f (8) = 3. Does this f have a nice formula?
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Yes!

f (t) =


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⌉
, if t ≡ 1, 4, 5 (mod 6), t > 1,

0, if t = 1.

I Lengths must be between
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6

⌉
(all 6’s) and
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2

⌋
(all 2’s), so all

possible lengths (or all but one) are realized.

This is eventually (for t > 1) a quasi-polynomial.
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Some Nice Functions, S = 〈2, 3, 6〉

Or how about f (t) equals the number of semigroup elements that
has some factorization of length at most t?

f (t) =


1, if t = 0,

4, if t = 1,

6t − 3, if t > 1.

I Almost every integer up to the largest possible, 6t.
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Some Nice Functions, S = 〈2, 3, 6〉

So far these are all univariate functions, and the result is eventually
a quasi-polynomial. How about more parameters?

Let f (s, t) be the number of factorization of t of length s.

f (s, t) =


0, if t < 2s or t > 6s,

1 +
⌊
t−2s
4

⌋
, if 2s ≤ t ≤ 3s,

1 +
⌊
6s−t
12

⌋
, if 3s < t ≤ 6s, t ≡ 0, 2, 3 (mod 6),

1 +
⌊
6s−t
12

⌋
− cs,t , if 3s < t ≤ 6s, t ≡ 1, 4, 5 (mod 6),

where cs,t = (bt/6c+ s mod 2).

This is a piecewise quasi-polynomial (where the pieces are defined
by linear inequalities in the parameters).

I The last piece has period 2 in s and period 12 in t.
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Some Nice Functions, S = 〈2, 3, 6〉

Or f (r , s, t) equals the number of semigroup elements that have a
factorization (x , y , z) with x ≤ r , y ≤ s, z ≤ t?

f (r , s, t) =


2r + 3s + 6t − 1, if s ≥ 1, r ≥ 2,

(2r + 3s + 6t + 2)/2, if s = 0, r ≥ 2,

etc.

I The semigroup element must be between 0 and 2r + 3s + 6t, so this
is all but two possibilities.

I Except if s = 0 it is impossible to get odd numbers, etc.
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Presburger Arithmetic

What do all of these combinatorial questions have in common?

They count the number of elements in a set defined in Presburger
arithmetic: sets defined over the integers using:

I linear (in)equalities,

I boolean operations (∧, ∨, ¬), and

I quantifiers (∃, ∀).

Factorizations of t:

(x , y , z) ∈ N : 2x + 3y + 6z = t.

Lengths of factorizations of t:

` ∈ N : ∃x , y , z ∈ N, (2x + 3y + 6z = t) ∧ (x + y + z = `).
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Semigroup elements that have some factorization of length ≤ t:

a ∈ N : ∃x , y , z ∈ N, (2x + 3y + 6z = a) ∧ (x + y + z ≤ t).

Semigroup elements that have some factorization of length = t:

a ∈ N : ∃x , y , z ∈ N, (2x + 3y + 6z = a) ∧ (x + y + z = t).

Factorizations of t of length s:

(x , y , z) ∈ N : (2x + 3y + 6z = t) ∧ (x + y + z = s).

Semigroup elements that have a factorization (x , y , z) with x ≤ r ,
y ≤ s, z ≤ t:

a ∈ N : ∃x , y , z ∈ N, (2x+3y+6z = a) ∧ (x ≤ r) ∧ (y ≤ s) ∧ (z ≤ t).
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Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the
corresponding counting functions will be piecewise
quasi-polynomials.

Note: There are three types of variables (parameters, counted,
quantified) that may appear in the linear inequalities:

f (t) = #` ∈ N : ∃x , y , z ∈ N, (2x+3y+6z = t) ∧ (x+y+z = `).

Note: For one parameter variable, “piecewise” quasi-polynomial is
equivalent to “eventually” a quasi-polynomial.



Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the
corresponding counting functions will be piecewise
quasi-polynomials.

Note: There are three types of variables (parameters, counted,
quantified) that may appear in the linear inequalities:

f (t) = #` ∈ N : ∃x , y , z ∈ N, (2x+3y+6z = t) ∧ (x+y+z = `).

Note: For one parameter variable, “piecewise” quasi-polynomial is
equivalent to “eventually” a quasi-polynomial.



Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the
corresponding counting functions will be piecewise
quasi-polynomials.

Note: There are three types of variables (parameters, counted,
quantified) that may appear in the linear inequalities:

f (t) = #` ∈ N : ∃x , y , z ∈ N, (2x+3y+6z = t) ∧ (x+y+z = `).

Note: For one parameter variable, “piecewise” quasi-polynomial is
equivalent to “eventually” a quasi-polynomial.



Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the
corresponding counting functions will be piecewise
quasi-polynomials.

Note: There are three types of variables (parameters, counted,
quantified) that may appear in the linear inequalities:

f (t) = #` ∈ N : ∃x , y , z ∈ N, (2x+3y+6z = t) ∧ (x+y+z = `).

Note: For one parameter variable, “piecewise” quasi-polynomial is
equivalent to “eventually” a quasi-polynomial.



Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the
corresponding counting functions will be piecewise
quasi-polynomials.

Note: There are three types of variables (parameters, counted,
quantified) that may appear in the linear inequalities:

f (t) = #` ∈ N : ∃x , y , z ∈ N, (2x+3y+6z = t) ∧ (x+y+z = `).

Note: For one parameter variable, “piecewise” quasi-polynomial is
equivalent to “eventually” a quasi-polynomial.



Presburger Arithmetic

Theorem [W]: For any sets defined in Presburger arithmetic, the
corresponding counting functions will be piecewise
quasi-polynomials.

Note: There are three types of variables (parameters, counted,
quantified) that may appear in the linear inequalities:

f (t) = #` ∈ N : ∃x , y , z ∈ N, (2x+3y+6z = t) ∧ (x+y+z = `).

Note: For one parameter variable, “piecewise” quasi-polynomial is
equivalent to “eventually” a quasi-polynomial.



Extensions

The theorem is actually more general.

The largest/smallest element of a set can be picked out, and it will
have a piecewise/eventually quasi-polynomial structure:

Example: The lexicographically largest factorization of t of length
s is(

6s − t − 9

4
, 3,

t − 2s − 3

4

)
, if t ≡ 3 (mod 4), s ≡ 0 (mod 2),

and so forth.

Also, the parameters for which a Presburger sentence is true will
be piecewise/eventually periodic:

Example: t ∈ 〈6, 8〉 if and only if t ≡ 0 (mod 2), for t > 10.
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Extensions

Everything I’m saying here also applies to affine semigroups
(additive semigroups in Zk) as well.

I All of the constraints are still linear, so expressible in Presburger
arithmetic.

Example: For the affine semigroup 〈 (1, 2), (2, 2), (3, 2) 〉, the
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A Twist

So far we’ve fixed the semigroup, but what if we let it vary with t?

Example: St = 〈t, t + 1, t + 3〉. (in general, we could have
St generated by any polynomials in t).

Then St can be defined by

a ∈ N : ∃x , y , z ∈ N, tx + (t + 1)y + (t + 3)z = a.

These are nonlinear in t!
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3 t − 1 if t ≡ 2 (mod 3).
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A Twist

This works in the following setting, called parametric Presburger
arithmetic:

I Require a single parameter, t.

I Allow multiplication by this parameter (but not by other
variables).

I So base inequalities are of the form

p1(t)x1 + · · ·+ pn(t)xn ≤ q(t),

where pi , q ∈ Z[t]. For fixed t, these are just linear
inequalities.

I Still allow Boolean operations and quantifiers.

Then you still get eventual quasi-polynomials!
[Bogart–Goodrick–W].
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A Twist

Almost any invariant or property of a semigroup can now be
applied to St as a function of t. As long as is can be defined in
parametric Presburger arithmetic, you will get eventual
quasi-polynomial behavior.

We give many examples in [Bogart–Goodrick–W].
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A Twist

Given a family of semigroups, St , generated by polynomials in t,
the following (when finite) are eventually quasi-polynomial:

I The number of gaps,

I The Frobenius number,

I The number of pseudo-Frobenius numbers,

I The number of fundamental gaps,

I The cardinality of the delta set,

I For fixed i , the value of the ith largest element of the Apéry
set
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set



A Twist

Example: The Frobenius number, a, is defined by

a /∈ St ∧ ∀b > a, b ∈ St ,

can be expanded out to a parametric Presburger sentence.

Example: The set of pseudo-Frobenius numbers is

a ∈ N : a /∈ St ∧ ∀b ∈ St \ 0, a + b ∈ St .
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Given a family of semigroups, St , generated by polynomials in t,
the set of t such that St has the following properties is eventually
periodic:

I St is a numerical semigroup.

I St is a symmetric numerical semigroup

I St is an irreducible numerical semigroup.
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Not Always So Easy

The examples on the previous slides tended to be pretty easy to
prove definable in parametric Presburger arithmetic. Some are
harder:

Theorem (Bogart–Goodrick–W)

For every field k, the ith Betti number of the semigroup algebra
k[St ] is eventually quasi-polynomial.

Key: Try to find some finite structure (independent of t) that can
be encoded in parametric Presburger arithmetic.

I Look at the fixed number of simplicial complexes on the generators.
Do a homology calculation on those that have a certain property
(squarefree divisor complex for St) that is definable in parametric
Presburger [Bruns–Herzog].
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