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Classic result

Theorem [Lenstra 1983]: Fix d. There is a polynomial time
algorithm which, given a (rational) polyhedron P C R? (input,
e.g., as list of integral defining inequalities), decides if P N Z9 is
nonempty.

What next? How might we generalize?



Classic result

Theorem [Lenstra 1983]: Fix d. There is a polynomial time
algorithm which, given a (rational) polyhedron P C R? (input,
e.g., as list of integral defining inequalities), decides if P N Z7 is
nonempty.

What next? How might we generalize?



Classic result

Theorem [Lenstra 1983]: Fix d. There is a polynomial time
algorithm which, given a (rational) polyhedron P C R? (input,
e.g., as list of integral defining inequalities), decides if P N Z7 is
nonempty.

What next? How might we generalize?

Theorem [Barvinok 1994]: Fix d. There is a polynomial time
algorithm which, given a polyhedron P C R9, counts |P N Z9|.



A key idea

Definition: For S C Z9, we can define the generating function
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Xl X2 "'Xd .

(a1,a2,...,a4)€S

Example: S = [5,50] N Z has generating function

x5 — x51

X5 4 x84 x50 =
1—x

Limit x — 1 (with L'Hopital’s Rule) yields

5—51
S| = 2= = 46.
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A key idea

Moral:

» We can often use patterns in our sets to encode them
compactly as generating functions.

» We can manipulate the generating functions to answer
questions about the sets (like cardinality).
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Theorem [Barvinok-=W 2003]: Fix d. There is a polynomial time
algorithm which, given a polyhedron P C R9 and a linear
transformation T : Z9¢ — 7ZK, computes the generating function for
T(PN7Z%) (and hence can compute its cardinality).

Note: Most interesting when T has nontrivial kernel, e.g., some
sort of projection.



Frobenius problem

Example: Given positive integers as, ..., aq, let

P:Rgo and T(xl,...,xd):a1x1+---+adxd.

Then S = T(PNZ9) is the set of nonnegative integer

combinations of ai,...,ay, that is, the semigroup generated by

ai,...,aq (i.e., closure under addition).
» What is the largest integer not in S, assuming a; relatively
prime? (Frobenius problem)
» How many positive integers are not in 57

» What is the generating function for §7
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Frobenius problem

Example: When d = 2 and ay, a» relatively prime,

» The largest integer not in S is aja, — a; — ap [Sylvester 1884].
» The number of positive integers not in S is

(8132 —a; —ax + 1)/2.
» The generating function for S is

— yd1a2
Y=

poere (1 —x21)(1 — x22)°

For d > 3, no known nice formulas; we need these algorithmic
results.
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A 1-dimensional kernel is pretty easy. E.g, T(x,y) = x:

2 2

The fibers of T(P N Z?) have no gaps.
Let P =P\ (P+(0,1)). Then T is one-to-one on P’ N Z2.
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A key idea

With a higher dimensional kernel, inductively project out one
dimension at a time. But this may create gaps.

Key: Carefully control the gaps.
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If T(x,y)=x,then T(PNZ3)={x€Z: dycZ (x,y)€ P}

Presburger Arithmetic: Sets defined over the integers using
quantifiers and Boolean combinations (A, V, =) of linear
inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m, n,s. There is a polynomial
time algorithm which, given a formula ®(x, y) that is a Boolean
combination of at most s linear inequalities in xy, ..., Xm,
Y1,---,Yn, computes the generating function for

xeZ™: Jy e Z" d(x,y).
Similarly for x € Z™ : Vy € Z" ®(x,y).

Note: If s is not fixed above, then the problem is NP-hard
[Schoning 1997].



What next?

If T(x,y) =x, then T(PNZ?)={x€Z: Iy e€Z (xy)c< P}.

Presburger Arithmetic: Sets defined over the integers using
quantifiers and Boolean combinations (A, V, =) of linear
inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m, n,s. There is a polynomial
time algorithm which, given a formula ®(x, y) that is a Boolean
combination of at most s linear inequalities in xy, ..., Xm,
Y1,---,Yn, computes the generating function for

xeZ™: Jy e Z" d(x,y).
Similarly for x € Z™ : Vy € Z" ®(x,y).

Note: If s is not fixed above, then the problem is NP-hard
[Schoning 1997].



What next?

If T(x,y)=x,then T(PNZ?)={x€Z: Jye€Z (x,y)c P}

Presburger Arithmetic: Sets defined over the integers using
quantifiers and Boolean combinations (A, V, =) of linear
inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m, n,s. There is a polynomial
time algorithm which, given a formula ®(x, y) that is a Boolean
combination of at most s linear inequalities in xy, ..., Xm,
Y1,---,Yn, computes the generating function for

xeZ™: Jy e Z" d(x,y).
Similarly for x € Z™ : Vy € Z" ®(x,y).

Note: If s is not fixed above, then the problem is NP-hard
[Schoning 1997].



What next?

If T(x,y) =x, then T(PNZ?)={x€Z: Iy e€Z (xy)c< P}.

Presburger Arithmetic: Sets defined over the integers using
quantifiers and Boolean combinations (A, V, =) of linear
inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m, n,s. There is a polynomial
time algorithm which, given a formula ®(x, y) that is a Boolean
combination of at most s linear inequalities in xy, ..., Xmn,
Y1i,---,Yn, computes the generating function for

xeZ™: Jy e Z" d(x,y).
Similarly for x € Z™ : Vy € Z" ®(x,y).

Note: If s is not fixed above, then the problem is NP-hard
[Schoning 1997].



What next?

If T(x,y)=x,then T(PNZ?)={x€Z: Jy€Z (x,y)€ P}

Presburger Arithmetic: Sets defined over the integers using
quantifiers and Boolean combinations (A, V, =) of linear
inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m, n,s. There is a polynomial
time algorithm which, given a formula ®(x, y) that is a Boolean
combination of at most s linear inequalities in xy, ..., Xm,
Y1,---,Yn, computes the generating function for

x€eZ™: Jy e Z" d(x,y).
Similarly for x € Z™ : Vy € Z" ®(x,y).

Note: If s is not fixed above, then the problem is NP-hard
[Schoning 1997].



What next?

If T(x,y)=x,then T(PNZ?)={x€Z: Jy€Z (x,y)€ P}

Presburger Arithmetic: Sets defined over the integers using
quantifiers and Boolean combinations (A, V, =) of linear
inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m, n,s. There is a polynomial
time algorithm which, given a formula ®(x, y) that is a Boolean
combination of at most s linear inequalities in xy, ..., Xm,
Y1,---,Yn, computes the generating function for

xeZ™: Jy e Z" d(x,y).
Similarly for x € Z™ : Yy € " ®(x, y).

Note: If s is not fixed above, then the problem is NP-hard
[Schoning 1997].



What next?

If T(x,y)=x,then T(PNZ?)={x€Z: Jy€Z (x,y)€ P}

Presburger Arithmetic: Sets defined over the integers using
quantifiers and Boolean combinations (A, V, =) of linear
inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m, n,s. There is a polynomial
time algorithm which, given a formula ®(x, y) that is a Boolean
combination of at most s linear inequalities in xy, ..., Xm,
Y1,---,Yn, computes the generating function for

xeZ™: Jy e Z" d(x,y).
Similarly for x € Z™ : Vy € Z" ®(x,y).

Note: If s is not fixed above, then the problem is NP-hard
[Schoning 1997].



Hilbert bases

Given a (rational) cone C CZ9, CNZ9is a
semigroup (closed under addition).

Let S be the minimal set of generators
(Hilbert Basis). In example, S is

(1,0),(1,1),(1,2),(2,5),(3,8),(4,11)

S is the set of x € Z9 such that

Vy,z e 729 (ye C\{0} A ze C\{0})
=>x#y+z
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Hilbert bases

When d = 2 and cone has extreme rays (q, p)
and (1,0), Hilbert basis is related to continued
fraction expansion of p/q.
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NO!

Theorem [Nguyen—Pak 2017]: Even with at most 10 inequalities
and at most 5 variables, deciding if the set

SZ{ZGZZ Vy € 72 3x € 72 dJ(x,y,z)}

is nonempty is NP-complete (and counting |S| is #P-complete).
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Define the set of y coordinates of a particular Hilbert Basis,
creating non-overlapping arithmetic progressions. Needs a v
quantifier.

Take these y's modulo M (for a well chosen M), creating
overlapping arithmetic progressions. Needs an 3 quantifier:

JdkeZ: 0<y—kM<M...V...

This looks like a known NP-complete problem: Given a set of
arithmetic progressions and an interval, do the arithmetic
progressions cover the interval?
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Summary

Presburger sentences from an algorithmic perspective:

» General sentences.
Decidable [Presburger 1930].
But requires doubly exponential time [Fischer—-Rabin 1974].
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Fix number of variables, no quantifiers.
Polynomial time [Lenstra 1983, Barvinok 1994].

Fixed number of variables, quantifiers allowed.
NP-hard [Schoning 1997].

Fixed number of variables and inequalities, no quantifier
alternation.
Polynomial time [Kannan 1990, Barvinok-W 2003].

Fixed number of variables and inequalities, mixed quantifiers.
NP-hard [Nguyen—Pak 2017].
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