The Complexity of Presburger Arithmetic in Fixed Dimension

Kevin Woods
Oberlin College

Classic result

Theorem [Lenstra 1983]: Fix d. There is a polynomial time algorithm which, given a (rational) polyhedron $P \subseteq \mathbb{R}^{d}$ (input, e.g., as list of integral defining inequalities), decides if $P \cap \mathbb{Z}^{d}$ is nonempty.

What next? How might we generalize?

Classic result

Theorem [Lenstra 1983]: Fix d. There is a polynomial time algorithm which, given a (rational) polyhedron $P \subseteq \mathbb{R}^{d}$ (input, e.g., as list of integral defining inequalities), decides if $P \cap \mathbb{Z}^{d}$ is nonempty.

What next? How might we generalize?

Classic result

Theorem [Lenstra 1983]: Fix d. There is a polynomial time algorithm which, given a (rational) polyhedron $P \subseteq \mathbb{R}^{d}$ (input, e.g., as list of integral defining inequalities), decides if $P \cap \mathbb{Z}^{d}$ is nonempty.

What next? How might we generalize?

Theorem [Barvinok 1994]: Fix d. There is a polynomial time algorithm which, given a polyhedron $P \subseteq \mathbb{R}^{d}$, counts $\left|P \cap \mathbb{Z}^{d}\right|$.

A key idea

Definition: For $S \subseteq \mathbb{Z}^{d}$, we can define the generating function

$$
\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}}
$$

Example: $S=[5,50] \cap \mathbb{Z}$ has generating function

$$
x^{5}+x^{6}+\cdots+x^{50}=\frac{x^{5}-x^{51}}{1-x}
$$

Limit $x \rightarrow 1$ (with L'Hôpital's Rule) yields

$$
|S|=\frac{5-51}{-1}=46
$$

A key idea

Definition: For $S \subseteq \mathbb{Z}^{d}$, we can define the generating function

$$
\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example: $S=[5,50] \cap \mathbb{Z}$ has generating function

$$
x^{5}+x^{6}+\cdots+x^{50}=\frac{x^{5}-x^{51}}{1-x}
$$

Limit $x \rightarrow 1$ (with L'Hôpital's Rule) yields

$$
|S|=\frac{5-51}{-1}=46
$$

A key idea

Definition: For $S \subseteq \mathbb{Z}^{d}$, we can define the generating function

$$
\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example: $S=[5,50] \cap \mathbb{Z}$ has generating function

$$
x^{5}+x^{6}+\cdots+x^{50}=\frac{x^{5}-x^{51}}{1-x}
$$

Limit $x \rightarrow 1$ (with L'Hôpital's Rule) yields

$$
|S|=\frac{5-51}{-1}=46
$$

A key idea

Definition: For $S \subseteq \mathbb{Z}^{d}$, we can define the generating function

$$
\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example: $S=[5,50] \cap \mathbb{Z}$ has generating function

$$
x^{5}+x^{6}+\cdots+x^{50}=\frac{x^{5}-x^{51}}{1-x}
$$

Limit $x \rightarrow 1$ (with L'Hôpital's Rule) yields

$$
|S|=\frac{5-51}{-1}=46
$$

A key idea

Definition: For $S \subseteq \mathbb{Z}^{d}$, we can define the generating function

$$
\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example: $S=[5,50] \cap \mathbb{Z}$ has generating function

$$
x^{5}+x^{6}+\cdots+x^{50}=\frac{x^{5}-x^{51}}{1-x}
$$

Limit $x \rightarrow 1$ (with L'Hôpital's Rule) yields

$$
|S|=\frac{5-51}{-1}=46
$$

A key idea

Definition: For $S \subseteq \mathbb{Z}^{d}$, we can define the generating function

$$
\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example: $S=[5,50] \cap \mathbb{Z}$ has generating function

$$
x^{5}+x^{6}+\cdots+x^{50}=\frac{x^{5}-x^{51}}{1-x}
$$

Limit $x \rightarrow 1$ (with L'Hôpital's Rule) yields

$$
|S|=\frac{5-51}{-1}=46
$$

A key idea

Moral:

- We can often use patterns in our sets to encode them compactly as generating functions.
- We can manipulate the generating functions to answer questions about the sets (like cardinality).

What next?

What next?

Theorem [Barvinok-W 2003]: Fix d. There is a polynomial time algorithm which, given a polyhedron $P \subseteq \mathbb{R}^{d}$ and a linear transformation $T: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{k}$, computes the generating function for $T\left(P \cap \mathbb{Z}^{d}\right)$ (and hence can compute its cardinality).

Note: Most interesting when T has nontrivial kernel, e.g., some sort of projection.

Frobenius problem

Example: Given positive integers a_{1}, \ldots, a_{d}, let

$$
P=\mathbb{R}_{\geq 0}^{d} \quad \text { and } \quad T\left(x_{1}, \ldots, x_{d}\right)=a_{1} x_{1}+\cdots+a_{d} x_{d} .
$$

Then $S=T\left(P \cap \mathbb{Z}^{d}\right)$ is the set of nonnegative integer combinations of a_{1}, \ldots, a_{d}, that is, the semigroup generated by a_{1}, \ldots, a_{d} (i.e., closure under addition).

- What is the largest integer not in S, assuming a_{i} relatively prime? (Frobenius problem)
- How many positive integers are not in S ?
- What is the generating function for S ?

Frobenius problem

Example: Given positive integers a_{1}, \ldots, a_{d}, let

$$
P=\mathbb{R}_{\geq 0}^{d} \quad \text { and } \quad T\left(x_{1}, \ldots, x_{d}\right)=a_{1} x_{1}+\cdots+a_{d} x_{d} .
$$

Then $S=T\left(P \cap \mathbb{Z}^{d}\right)$ is the set of nonnegative integer combinations of a_{1}, \ldots, a_{d}, that is, the semigroup generated by a_{1}, \ldots, a_{d} (i.e., closure under addition).

- What is the largest integer not in S, assuming a_{i} relatively prime? (Frobenius problem)
- How many positive integers are not in S ?
- What is the generating function for S ?

Frobenius problem

Example: Given positive integers a_{1}, \ldots, a_{d}, let

$$
P=\mathbb{R}_{\geq 0}^{d} \quad \text { and } \quad T\left(x_{1}, \ldots, x_{d}\right)=a_{1} x_{1}+\cdots+a_{d} x_{d} .
$$

Then $S=T\left(P \cap \mathbb{Z}^{d}\right)$ is the set of nonnegative integer combinations of a_{1}, \ldots, a_{d}, that is, the semigroup generated by a_{1}, \ldots, a_{d} (i.e., closure under addition).

- What is the largest integer not in S, assuming a_{i} relatively prime? (Frobenius problem)
- How many positive integers are not in S ?
- What is the generating function for S ?

Frobenius problem

Example: Given positive integers a_{1}, \ldots, a_{d}, let

$$
P=\mathbb{R}_{\geq 0}^{d} \quad \text { and } \quad T\left(x_{1}, \ldots, x_{d}\right)=a_{1} x_{1}+\cdots+a_{d} x_{d} .
$$

Then $S=T\left(P \cap \mathbb{Z}^{d}\right)$ is the set of nonnegative integer combinations of a_{1}, \ldots, a_{d}, that is, the semigroup generated by a_{1}, \ldots, a_{d} (i.e., closure under addition).

- What is the largest integer not in S, assuming a_{i} relatively prime? (Frobenius problem)
- How many positive integers are not in S ?
- What is the generating function for S ?

Frobenius problem

Example: When $d=2$ and a_{1}, a_{2} relatively prime,

- The largest integer not in S is $a_{1} a_{2}-a_{1}-a_{2}$ [Sylvester 1884].
- The number of positive integers not in S is

$$
\left(a_{1} a_{2}-a_{1}-a_{2}+1\right) / 2 .
$$

- The generating function for S is

$$
\sum_{n \in S} x^{n}=\frac{1-x^{a_{1} a_{2}}}{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)}
$$

For $d>3$, no known nice formulas; we need these algorithmic results.

Frobenius problem

Example: When $d=2$ and a_{1}, a_{2} relatively prime,

- The largest integer not in S is $a_{1} a_{2}-a_{1}-a_{2}$ [Sylvester 1884].
- The number of positive integers not in S is

$$
\left(a_{1} a_{2}-a_{1}-a_{2}+1\right) / 2
$$

- The generating function for S is

$$
\sum_{n \in S} x^{n}=\frac{1-x^{a_{1} a_{2}}}{\left(1-x^{a_{1}}\right)\left(1-x^{a_{2}}\right)}
$$

For $d>3$, no known nice formulas; we need these algorithmic results.

A key idea

A 1-dimensional kernel is pretty easy. E.g, $T(x, y)=x$:

The fibers of $T\left(P \cap \mathbb{Z}^{2}\right)$ have no gaps.
Let $P^{\prime}=P \backslash(P+(0,1))$. Then T is one-to-one on $P^{\prime} \cap \mathbb{Z}^{2}$.

A key idea

A 1-dimensional kernel is pretty easy. E.g, $T(x, y)=x$:

The fibers of $T\left(P \cap \mathbb{Z}^{2}\right)$ have no gaps.
Let $P^{\prime}=P \backslash(P+(0,1))$. Then T is one-to-one on $P^{\prime} \cap \mathbb{Z}^{2}$.

A key idea

A 1-dimensional kernel is pretty easy. E.g, $T(x, y)=x$:

The fibers of $T\left(P \cap \mathbb{Z}^{2}\right)$ have no gaps.
Let $P^{\prime}=P \backslash(P+(0,1))$. Then T is one-to-one on $P^{\prime} \cap \mathbb{Z}^{2}$.

A key idea

With a higher dimensional kernel, inductively project out one dimension at a time. But this may create gaps.

Key: Carefully control the gaps.

What next?

What next?

If $T(x, y)=x$, then $T\left(P \cap \mathbb{Z}^{2}\right)=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z} \quad(x, y) \in P\}$.
Presburger Arithmetic: Sets defined over the integers using quantifiers and Boolean combinations (\wedge, \vee, \neg) of linear inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m,n,s. There is a polynomial time algorithm which, given a formula $\Phi(x, y)$ that is a Boolean combination of at most s linear inequalities in x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}, computes the generating function for

$$
x \in \mathbb{Z}^{m}: \exists y \in \mathbb{Z}^{n} \Phi(x, y)
$$

Similarly for $x \in \mathbb{Z}^{m}: \forall y \in \mathbb{Z}^{n} \Phi(x, y)$.
Note: If s is not fixed above, then the problem is NP-hard [Schöning 1997].

What next?

If $T(x, y)=x$, then $T\left(P \cap \mathbb{Z}^{2}\right)=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z} \quad(x, y) \in P\}$.
Presburger Arithmetic: Sets defined over the integers using quantifiers and Boolean combinations (\wedge, \vee, \neg) of linear inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m,n,s. There is a polynomial time algorithm which, given a formula $\Phi(x, y)$ that is a Boolean combination of at most s linear inequalities in x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}, computes the generating function for

$$
x \in \mathbb{Z}^{m}: \exists y \in \mathbb{Z}^{n} \Phi(x, y)
$$

Similarly for $x \in \mathbb{Z}^{m}: \forall y \in \mathbb{Z}^{n} \Phi(x, y)$.
Note: If s is not fixed above, then the problem is NP-hard [Schöning 1997].

What next?

If $T(x, y)=x$, then $T\left(P \cap \mathbb{Z}^{2}\right)=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z} \quad(x, y) \in P\}$.
Presburger Arithmetic: Sets defined over the integers using quantifiers and Boolean combinations (\wedge, \vee, \neg) of linear inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m,n,s. There is a polynomial time algorithm which, given a formula $\Phi(x, y)$ that is a Boolean combination of at most s linear inequalities in x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}, computes the generating function for

$$
x \in \mathbb{Z}^{m}: \exists y \in \mathbb{Z}^{n} \Phi(x, y)
$$

Similarly for $x \in \mathbb{Z}^{m}: \forall y \in \mathbb{Z}^{n} \Phi(x, y)$.
Note: If s is not fixed above, then the problem is NP-hard [Schöning 1997].

What next?

If $T(x, y)=x$, then $T\left(P \cap \mathbb{Z}^{2}\right)=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z} \quad(x, y) \in P\}$.
Presburger Arithmetic: Sets defined over the integers using quantifiers and Boolean combinations (\wedge, \vee, \neg) of linear inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m, n, s. There is a polynomial time algorithm which, given a formula $\Phi(x, y)$ that is a Boolean combination of at most s linear inequalities in x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}, computes the generating function for

$$
x \in \mathbb{Z}^{m}: \exists y \in \mathbb{Z}^{n} \Phi(x, y)
$$

Similarly for $x \in \mathbb{Z}^{m}: \forall y \in \mathbb{Z}^{n} \Phi(x, y)$.
Note: If s is not fixed above, then the problem is NP-hard [Schöning 1997].

What next?

If $T(x, y)=x$, then $T\left(P \cap \mathbb{Z}^{2}\right)=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z} \quad(x, y) \in P\}$.
Presburger Arithmetic: Sets defined over the integers using quantifiers and Boolean combinations (\wedge, \vee, \neg) of linear inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m,n,s. There is a polynomial time algorithm which, given a formula $\Phi(x, y)$ that is a Boolean combination of at most s linear inequalities in x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}, computes the generating function for

$$
x \in \mathbb{Z}^{m}: \exists y \in \mathbb{Z}^{n} \Phi(x, y)
$$

Similarly for $x \in \mathbb{Z}^{m}: \forall y \in \mathbb{Z}^{n} \Phi(x, y)$.
Note: If s is not fixed above, then the problem is NP-hard [Schöning 1997].

What next?

If $T(x, y)=x$, then $T\left(P \cap \mathbb{Z}^{2}\right)=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z} \quad(x, y) \in P\}$.
Presburger Arithmetic: Sets defined over the integers using quantifiers and Boolean combinations (\wedge, \vee, \neg) of linear inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m,n,s. There is a polynomial time algorithm which, given a formula $\Phi(x, y)$ that is a Boolean combination of at most s linear inequalities in x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}, computes the generating function for

$$
x \in \mathbb{Z}^{m}: \exists y \in \mathbb{Z}^{n} \Phi(x, y)
$$

Similarly for $x \in \mathbb{Z}^{m}: \forall y \in \mathbb{Z}^{n} \Phi(x, y)$.
Note: If s is not fixed above, then the problem is NP-hard [Schöning 1997].

What next?

If $T(x, y)=x$, then $T\left(P \cap \mathbb{Z}^{2}\right)=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z} \quad(x, y) \in P\}$.
Presburger Arithmetic: Sets defined over the integers using quantifiers and Boolean combinations (\wedge, \vee, \neg) of linear inequalities. So far, we've been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m,n,s. There is a polynomial time algorithm which, given a formula $\Phi(x, y)$ that is a Boolean combination of at most s linear inequalities in x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}, computes the generating function for

$$
x \in \mathbb{Z}^{m}: \exists y \in \mathbb{Z}^{n} \Phi(x, y)
$$

Similarly for $x \in \mathbb{Z}^{m}: \forall y \in \mathbb{Z}^{n} \Phi(x, y)$.
Note: If s is not fixed above, then the problem is NP-hard [Schöning 1997].

Hilbert bases

Given a (rational) cone $C \subseteq \mathbb{Z}^{d}, C \cap \mathbb{Z}^{d}$ is a semigroup (closed under addition).

Let S be the minimal set of generators (Hilbert Basis). In example, S is

$$
(1,0),(1,1),(1,2),(2,5),(3,8),(4,11)
$$

S is the set of $x \in \mathbb{Z}^{d}$ such that

$$
\begin{aligned}
\forall y, z \in \mathbb{Z}^{d}(y & \in C \backslash\{0\} \wedge z \in C \backslash\{0\}) \\
& \Rightarrow x \neq y+z
\end{aligned}
$$

Hilbert bases

Given a (rational) cone $C \subseteq \mathbb{Z}^{d}, C \cap \mathbb{Z}^{d}$ is a semigroup (closed under addition).

Let S be the minimal set of generators (Hilbert Basis). In example, S is

$$
(1,0),(1,1),(1,2),(2,5),(3,8),(4,11)
$$

S is the set of $x \in \mathbb{Z}^{d}$ such that

$$
\begin{aligned}
\forall y, z \in \mathbb{Z}^{d}(y & \in C \backslash\{0\} \wedge z \in C \backslash\{0\}) \\
& \Rightarrow x \neq y+z
\end{aligned}
$$

Hilbert bases

Given a (rational) cone $C \subseteq \mathbb{Z}^{d}, C \cap \mathbb{Z}^{d}$ is a semigroup (closed under addition).

Let S be the minimal set of generators (Hilbert Basis). In example, S is

$$
(1,0),(1,1),(1,2),(2,5),(3,8),(4,11)
$$

S is the set of $x \in \mathbb{Z}^{d}$ such that

$$
\begin{aligned}
\forall y, z \in \mathbb{Z}^{d}(y & \in C \backslash\{0\} \wedge z \in C \backslash\{0\}) \\
& \Rightarrow x \neq y+z
\end{aligned}
$$

Hilbert bases

When $d=2$ and cone has extreme rays (q, p) and $(1,0)$, Hilbert basis is related to continued fraction expansion of p / q.

$$
\begin{gathered}
\frac{11}{4}=2+\frac{1}{1+\frac{1}{3}}, \quad \frac{8}{3}=2+\frac{1}{1+\frac{1}{2}}, \quad \frac{5}{2}=2+\frac{1}{1+\frac{1}{1}}, \\
\frac{3}{1}=2+\frac{1}{1} \text { but }(1,3) \notin C, \\
\frac{2}{1}=2, \quad \frac{1}{1}=1, \quad \frac{0}{1}=0 .
\end{gathered}
$$

Note: the y-coordinates form non-overlapping arithmetic progressions: $(0,1,2),(5,8,11)$.

Hilbert bases

When $d=2$ and cone has extreme rays (q, p) and $(1,0)$, Hilbert basis is related to continued fraction expansion of p / q.

$$
\begin{gathered}
\frac{11}{4}=2+\frac{1}{1+\frac{1}{3}}, \quad \frac{8}{3}=2+\frac{1}{1+\frac{1}{2}}, \quad \frac{5}{2}=2+\frac{1}{1+\frac{1}{1}}, \\
\frac{3}{1}=2+\frac{1}{1} \text { but }(1,3) \notin C, \\
\frac{2}{1}=2, \quad \frac{1}{1}=1, \quad \frac{0}{1}=0 .
\end{gathered}
$$

Note: the y-coordinates form non-overlapping arithmetic progressions: $(0,1,2),(5,8,11)$.

Hilbert bases

When $d=2$ and cone has extreme rays (q, p) and $(1,0)$, Hilbert basis is related to continued fraction expansion of p / q.

$$
\begin{gathered}
\frac{11}{4}=2+\frac{1}{1+\frac{1}{3}}, \quad \frac{8}{3}=2+\frac{1}{1+\frac{1}{2}}, \quad \frac{5}{2}=2+\frac{1}{1+\frac{1}{1}}, \\
\frac{3}{1}=2+\frac{1}{1} \text { but }(1,3) \notin C, \\
\frac{2}{1}=2, \quad \frac{1}{1}=1, \quad \frac{0}{1}=0 .
\end{gathered}
$$

Note: the y-coordinates form non-overlapping arithmetic progressions: $(0,1,2),(5,8,11)$.

Hilbert bases

When $d=2$ and cone has extreme rays (q, p) and $(1,0)$, Hilbert basis is related to continued fraction expansion of p / q.

$$
\begin{gathered}
\frac{11}{4}=2+\frac{1}{1+\frac{1}{3}}, \quad \frac{8}{3}=2+\frac{1}{1+\frac{1}{2}}, \quad \frac{5}{2}=2+\frac{1}{1+\frac{1}{1}}, \\
\frac{3}{1}=2+\frac{1}{1} \text { but }(1,3) \notin C, \\
\frac{2}{1}=2, \quad \frac{1}{1}=1, \quad \frac{0}{1}=0 .
\end{gathered}
$$

Note: the y-coordinates form non-overlapping arithmetic progressions: $(0,1,2),(5,8,11)$.

Hilbert bases

When $d=2$ and cone has extreme rays (q, p) and $(1,0)$, Hilbert basis is related to continued fraction expansion of p / q.

$$
\begin{gathered}
\frac{11}{4}=2+\frac{1}{1+\frac{1}{3}}, \quad \frac{8}{3}=2+\frac{1}{1+\frac{1}{2}}, \quad \frac{5}{2}=2+\frac{1}{1+\frac{1}{1}}, \\
\frac{3}{1}=2+\frac{1}{1} \text { but }(1,3) \notin C, \\
\frac{2}{1}=2, \quad \frac{1}{1}=1, \quad \frac{0}{1}=0 .
\end{gathered}
$$

Note: the y-coordinates form non-overlapping arithmetic progressions: $(0,1,2),(5,8,11)$.

Hilbert bases

When $d=2$ and cone has extreme rays (q, p) and $(1,0)$, Hilbert basis is related to continued fraction expansion of p / q.

$$
\begin{gathered}
\frac{11}{4}=2+\frac{1}{1+\frac{1}{3}}, \quad \frac{8}{3}=2+\frac{1}{1+\frac{1}{2}}, \quad \frac{5}{2}=2+\frac{1}{1+\frac{1}{1}}, \\
\frac{3}{1}=2+\frac{1}{1} \text { but }(1,3) \notin C, \\
\frac{2}{1}=2, \quad \frac{1}{1}=1, \quad \frac{0}{1}=0 .
\end{gathered}
$$

Note: the y-coordinates form non-overlapping arithmetic progressions: $(0,1,2),(5,8,11)$.

Hilbert bases

When $d=2$ and cone has extreme rays (q, p) and $(1,0)$, Hilbert basis is related to continued fraction expansion of p / q.

$$
\begin{gathered}
\frac{11}{4}=2+\frac{1}{1+\frac{1}{3}}, \quad \frac{8}{3}=2+\frac{1}{1+\frac{1}{2}}, \quad \frac{5}{2}=2+\frac{1}{1+\frac{1}{1}}, \\
\frac{3}{1}=2+\frac{1}{1} \text { but }(1,3) \notin C, \\
\frac{2}{1}=2, \quad \frac{1}{1}=1, \quad \frac{0}{1}=0 .
\end{gathered}
$$

Note: the y-coordinates form non-overlapping arithmetic progressions: $(0,1,2),(5,8,11)$.

Hilbert bases

When $d=2$ and cone has extreme rays (q, p) and $(1,0)$, Hilbert basis is related to continued fraction expansion of p / q.

$$
\begin{gathered}
\frac{11}{4}=2+\frac{1}{1+\frac{1}{3}}, \quad \frac{8}{3}=2+\frac{1}{1+\frac{1}{2}}, \quad \frac{5}{2}=2+\frac{1}{1+\frac{1}{1}}, \\
\frac{3}{1}=2+\frac{1}{1} \text { but }(1,3) \notin C, \\
\frac{2}{1}=2, \quad \frac{1}{1}=1, \quad \frac{0}{1}=0 .
\end{gathered}
$$

Note: the y-coordinates form non-overlapping arithmetic progressions: $(0,1,2),(5,8,11)$.

Hilbert bases

When $d=2$ and cone has extreme rays (q, p) and $(1,0)$, Hilbert basis is related to continued fraction expansion of p / q.

$$
\begin{gathered}
\frac{11}{4}=2+\frac{1}{1+\frac{1}{3}}, \quad \frac{8}{3}=2+\frac{1}{1+\frac{1}{2}}, \quad \frac{5}{2}=2+\frac{1}{1+\frac{1}{1}}, \\
\frac{3}{1}=2+\frac{1}{1} \text { but }(1,3) \notin C, \\
\frac{2}{1}=2, \quad \frac{1}{1}=1, \quad \frac{0}{1}=0 .
\end{gathered}
$$

Note: the y-coordinates form non-overlapping arithmetic progressions: $(0,1,2),(5,8,11)$.

What next?

What next?

What if we allow quantifier alternation: $\exists x \forall y$ or $\forall x \exists y$?

What next?

What if we allow quantifier alternation: $\exists x \forall y$ or $\forall x \exists y$?

NO

Theorem [Nguyen-Pak 2017]: Even with at most 10 inequalities and at most 5 variables, deciding if the set

$$
S=\left\{z \in \mathbb{Z}: \forall y \in \mathbb{Z}^{2} \exists x \in \mathbb{Z}^{2} \Phi(x, y, z)\right\}
$$

is nonempty is NP-complete (and counting $|S|$ is \#P-complete).

What next?

What if we allow quantifier alternation: $\exists x \forall y$ or $\forall x \exists y$?

NO!

Theorem [Nguyen-Pak 2017]: Even with at most 10 inequalities and at most 5 variables, deciding if the set

$$
S=\left\{z \in \mathbb{Z}: \forall y \in \mathbb{Z}^{2} \exists x \in \mathbb{Z}^{2} \Phi(x, y, z)\right\}
$$

is nonempty is NP-complete (and counting $|S|$ is \#P-complete).

A key idea

Define the set of y coordinates of a particular Hilbert Basis, creating non-overlapping arithmetic progressions. Needs a \forall quantifier.

Take these y 's modulo M (for a well chosen M), creating overlapping arithmetic progressions. Needs an \exists quantifier:

$$
\exists k \in \mathbb{Z}: 0 \leq y-k M<M \ldots \forall \ldots
$$

This looks like a known NP-complete problem: Given a set of arithmetic progressions and an interval, do the arithmetic progressions cover the interval?

A key idea

Define the set of y coordinates of a particular Hilbert Basis, creating non-overlapping arithmetic progressions. Needs a \forall quantifier.

Take these y 's modulo M (for a well chosen M), creating overlapping arithmetic progressions. Needs an \exists quantifier:

$$
\exists k \in \mathbb{Z}: 0 \leq y-k M<M \ldots \forall \ldots
$$

This looks like a known NP-complete problem: Given a set of arithmetic progressions and an interval, do the arithmetic progressions cover the interval?

A key idea

Define the set of y coordinates of a particular Hilbert Basis, creating non-overlapping arithmetic progressions. Needs a \forall quantifier.

Take these y 's modulo M (for a well chosen M), creating overlapping arithmetic progressions. Needs an \exists quantifier:

$$
\exists k \in \mathbb{Z}: 0 \leq y-k M<M \ldots \forall \ldots
$$

This looks like a known NP-complete problem: Given a set of arithmetic progressions and an interval, do the arithmetic progressions cover the interval?

A key idea

Define the set of y coordinates of a particular Hilbert Basis, creating non-overlapping arithmetic progressions. Needs a \forall quantifier.

Take these y 's modulo M (for a well chosen M), creating overlapping arithmetic progressions. Needs an \exists quantifier:

$$
\exists k \in \mathbb{Z}: 0 \leq y-k M<M \ldots \forall \ldots
$$

This looks like a known NP-complete problem: Given a set of arithmetic progressions and an interval, do the arithmetic progressions cover the interval?

A key idea

Define the set of y coordinates of a particular Hilbert Basis, creating non-overlapping arithmetic progressions. Needs a \forall quantifier.

Take these y 's modulo M (for a well chosen M), creating overlapping arithmetic progressions. Needs an \exists quantifier:

$$
\exists k \in \mathbb{Z}: 0 \leq y-k M<M \ldots \forall \ldots
$$

This looks like a known NP-complete problem: Given a set of arithmetic progressions and an interval, do the arithmetic progressions cover the interval?

Summary

Presburger sentences from an algorithmic perspective:

- General sentences.

Decidable [Presburger 1930].

Summary

Presburger sentences from an algorithmic perspective:

- General sentences.

Decidable [Presburger 1930].
But requires doubly exponential time [Fischer-Rabin 1974].

Summary

Presburger sentences from an algorithmic perspective:

- General sentences.

Decidable [Presburger 1930].
But requires doubly exponential time [Fischer-Rabin 1974].

- Fix number of variables, no quantifiers.

Polynomial time [Lenstra 1983, Barvinok 1994].

Summary

Presburger sentences from an algorithmic perspective:

- General sentences.

Decidable [Presburger 1930].
But requires doubly exponential time [Fischer-Rabin 1974].

- Fix number of variables, no quantifiers.

Polynomial time [Lenstra 1983, Barvinok 1994].

- Fixed number of variables, quantifiers allowed. NP-hard [Schöning 1997].

Summary

Presburger sentences from an algorithmic perspective:

- General sentences. Decidable [Presburger 1930]. But requires doubly exponential time [Fischer-Rabin 1974].
- Fix number of variables, no quantifiers.

Polynomial time [Lenstra 1983, Barvinok 1994].

- Fixed number of variables, quantifiers allowed. NP-hard [Schöning 1997].
- Fixed number of variables and inequalities, no quantifier alternation.

Polynomial time [Kannan 1990, Barvinok-W 2003].

Summary

Presburger sentences from an algorithmic perspective:

- General sentences. Decidable [Presburger 1930]. But requires doubly exponential time [Fischer-Rabin 1974].
- Fix number of variables, no quantifiers.

Polynomial time [Lenstra 1983, Barvinok 1994].

- Fixed number of variables, quantifiers allowed. NP-hard [Schöning 1997].
- Fixed number of variables and inequalities, no quantifier alternation.

Polynomial time [Kannan 1990, Barvinok-W 2003].

- Fixed number of variables and inequalities, mixed quantifiers. NP-hard [Nguyen-Pak 2017].

Thank You!

