
The Complexity of Presburger Arithmetic
in Fixed Dimension

Kevin Woods
Oberlin College

P
P'



Classic result

Theorem [Lenstra 1983]: Fix d . There is a polynomial time
algorithm which, given a (rational) polyhedron P ⊆ Rd (input,
e.g., as list of integral defining inequalities), decides if P ∩ Zd is
nonempty.

What next? How might we generalize?

Theorem [Barvinok 1994]: Fix d . There is a polynomial time
algorithm which, given a polyhedron P ⊆ Rd , counts |P ∩ Zd |.
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A key idea

Definition: For S ⊆ Zd , we can define the generating function∑
(a1,a2,...,ad )∈S

xa11 xa22 · · · x
ad
d .

Example: S = [5, 50] ∩ Z has generating function

x5 + x6 + · · ·+ x50 =
x5 − x51

1− x
.

Limit x → 1 (with L’Hôpital’s Rule) yields

|S | =
5− 51

−1
= 46.
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A key idea

Moral:

I We can often use patterns in our sets to encode them
compactly as generating functions.

I We can manipulate the generating functions to answer
questions about the sets (like cardinality).



What next?

Theorem [Barvinok–W 2003]: Fix d . There is a polynomial time
algorithm which, given a polyhedron P ⊆ Rd and a linear
transformation T : Zd → Zk , computes the generating function for
T (P ∩ Zd) (and hence can compute its cardinality).

Note: Most interesting when T has nontrivial kernel, e.g., some
sort of projection.
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Frobenius problem

Example: Given positive integers a1, . . . , ad , let

P = Rd
≥0 and T (x1, . . . , xd) = a1x1 + · · ·+ adxd .

Then S = T (P ∩ Zd) is the set of nonnegative integer
combinations of a1, . . . , ad , that is, the semigroup generated by
a1, . . . , ad (i.e., closure under addition).

I What is the largest integer not in S , assuming ai relatively
prime? (Frobenius problem)

I How many positive integers are not in S?

I What is the generating function for S?
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Frobenius problem

Example: When d = 2 and a1, a2 relatively prime,

I The largest integer not in S is a1a2 − a1 − a2 [Sylvester 1884].

I The number of positive integers not in S is
(a1a2 − a1 − a2 + 1)/2.

I The generating function for S is∑
n∈S

xn =
1− xa1a2

(1− xa1)(1− xa2)
.

For d > 3, no known nice formulas; we need these algorithmic
results.
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A key idea

A 1-dimensional kernel is pretty easy. E.g, T (x , y) = x :

P
P'

The fibers of T (P ∩ Z2) have no gaps.
Let P ′ = P \

(
P + (0, 1)

)
. Then T is one-to-one on P ′ ∩ Z2.
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A key idea

With a higher dimensional kernel, inductively project out one
dimension at a time. But this may create gaps.

Key: Carefully control the gaps.



What next?

If T (x , y) = x , then T (P ∩ Z2) = {x ∈ Z : ∃y ∈ Z (x , y) ∈ P}.

Presburger Arithmetic: Sets defined over the integers using
quantifiers and Boolean combinations (∧, ∨, ¬) of linear
inequalities. So far, we’ve been using only conjunctions.

Theorem [Barvinok-W 2003]: Fix m, n, s. There is a polynomial
time algorithm which, given a formula Φ(x , y) that is a Boolean
combination of at most s linear inequalities in x1, . . . , xm,
y1, . . . , yn, computes the generating function for

x ∈ Zm : ∃y ∈ Zn Φ(x , y).

Similarly for x ∈ Zm : ∀y ∈ Zn Φ(x , y).

Note: If s is not fixed above, then the problem is NP-hard
[Schöning 1997].
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Hilbert bases

Given a (rational) cone C ⊆ Zd , C ∩ Zd is a
semigroup (closed under addition).

Let S be the minimal set of generators
(Hilbert Basis). In example, S is

(1, 0), (1, 1), (1, 2), (2, 5), (3, 8), (4, 11)

S is the set of x ∈ Zd such that

∀y , z ∈ Zd
(
y ∈ C \ {0} ∧ z ∈ C \ {0}

)
⇒ x 6= y + z
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Hilbert bases

When d = 2 and cone has extreme rays (q, p)
and (1, 0), Hilbert basis is related to continued
fraction expansion of p/q.
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Note: the y -coordinates form non-overlapping
arithmetic progressions: (0,1,2), (5,8,11).
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What next?

What if we allow quantifier alternation: ∃x∀y or ∀x∃y?

NO!
Theorem [Nguyen–Pak 2017]: Even with at most 10 inequalities
and at most 5 variables, deciding if the set

S =
{
z ∈ Z : ∀y ∈ Z2 ∃x ∈ Z2 Φ(x , y , z)

}
is nonempty is NP-complete (and counting |S | is #P-complete).
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A key idea

Define the set of y coordinates of a particular Hilbert Basis,
creating non-overlapping arithmetic progressions. Needs a ∀
quantifier.

Take these y ’s modulo M (for a well chosen M), creating
overlapping arithmetic progressions. Needs an ∃ quantifier:

∃k ∈ Z : 0 ≤ y − kM < M . . . ∀ . . .

This looks like a known NP-complete problem: Given a set of
arithmetic progressions and an interval, do the arithmetic
progressions cover the interval?
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∃k ∈ Z : 0 ≤ y − kM < M . . . ∀ . . .

This looks like a known NP-complete problem: Given a set of
arithmetic progressions and an interval, do the arithmetic
progressions cover the interval?



Summary

Presburger sentences from an algorithmic perspective:

I General sentences.
Decidable [Presburger 1930].

But requires doubly exponential time [Fischer–Rabin 1974].

I Fix number of variables, no quantifiers.

Polynomial time [Lenstra 1983, Barvinok 1994].

I Fixed number of variables, quantifiers allowed.

NP-hard [Schöning 1997].

I Fixed number of variables and inequalities, no quantifier
alternation.

Polynomial time [Kannan 1990, Barvinok–W 2003].

I Fixed number of variables and inequalities, mixed quantifiers.

NP-hard [Nguyen–Pak 2017].
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Thank You!
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