# Presburger Arithmetic, Rational Generating Functions, and Quasi-polynomials 

Kevin Woods<br>Oberlin College

## Examples

Theme: Generating functions encode patterns of sets, in useful ways.

Definition: Given $S \subseteq \mathbb{N}^{d}$, define

$$
f\left(S ; x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example: $S=\{a \in \mathbb{N}: a \leq 5000\}$. Then

$$
f(S ; x)=1+x+x^{2}+\cdots+x^{5000}
$$

## Examples

Theme: Generating functions encode patterns of sets, in useful ways.

Definition: Given $S \subseteq \mathbb{N}^{d}$, define

$$
f\left(S ; x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example: $S=\{a \in \mathbb{N}: a \leq 5000\}$. Then

$$
f(S ; x)=1+x+x^{2}+\cdots+x^{5000}
$$

## Examples

Theme: Generating functions encode patterns of sets, in useful ways.

Definition: Given $S \subseteq \mathbb{N}^{d}$, define

$$
f\left(S ; x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example: $S=\{a \in \mathbb{N}: a \leq 5000\}$. Then

$$
f(S ; x)=1+x+x^{2}+\cdots+x^{5000}
$$

## Examples

Theme: Generating functions encode patterns of sets, in useful ways.

Definition: Given $S \subseteq \mathbb{N}^{d}$, define

$$
f\left(S ; x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in S} x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{d}^{a_{d}} .
$$

Example: $S=\{a \in \mathbb{N}: a \leq 5000\}$. Then

$$
\begin{aligned}
f(S ; x) & =1+x+x^{2}+\cdots+x^{5000} \\
& =\frac{1-x^{5001}}{1-x}
\end{aligned}
$$

## Examples

$$
S=\{a \in \mathbb{N}: \exists b \in \mathbb{N}, a=2 b+1, a \leq 5000\} .
$$

$$
\begin{aligned}
f(S ; x) & =x+x^{3}+x^{5}+\cdots+x^{4999} \\
& =\frac{x-x^{5000}}{1-x^{2}} .
\end{aligned}
$$

## Examples

$$
S=\{a \in \mathbb{N}: \exists b \in \mathbb{N}, a=2 b+1, a \leq 5000\} .
$$

$$
\begin{aligned}
f(S ; x) & =x+x^{3}+x^{5}+\cdots+x^{4999} \\
& =\frac{x-x^{5000}}{1-x^{2}} .
\end{aligned}
$$

## Examples

$$
S=\{a \in \mathbb{N}: \exists b \in \mathbb{N}, a=2 b+1, a \leq 5000\} .
$$

$$
\begin{aligned}
f(S ; x) & =x+x^{3}+x^{5}+\cdots+x^{4999} \\
& =\frac{x-x^{5000}}{1-x^{2}} .
\end{aligned}
$$

## Examples



$$
f(S ; x, y)=1+x+x y+x y^{2}+x^{2}+\cdots
$$

## Examples



## Examples



$$
x^{4} y^{2}=(x)^{3}\left(x y^{2}\right)^{1}
$$

$$
\left(1+x+x^{2}+x^{3}+\cdots\right)
$$

$$
\cdot\left(1+\left(x y^{2}\right)^{1}+\left(x y^{2}\right)^{2}+\cdots\right)
$$

$$
=\frac{1}{(1-x)\left(1-x y^{2}\right)}
$$

## Examples



$$
\begin{gathered}
\left(1+x+x^{2}+x^{3}+\cdots\right) \\
\cdot\left(1+\left(x y^{2}\right)^{1}+\left(x y^{2}\right)^{2}+\cdots\right) \\
=\frac{1}{(1-x)\left(1-x y^{2}\right)}
\end{gathered}
$$

## Examples



$$
\begin{gathered}
x^{1} y^{1} \\
\cdot\left(1+x+x^{2}+x^{3}+\cdots\right) \\
\cdot\left(1+(x y)^{1}+(x y)^{2}+\cdots\right) \\
=\frac{x y}{(1-x)\left(1-x y^{2}\right)}
\end{gathered}
$$

## Examples



$$
\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}
$$

## Examples

$$
S=\left\{(a, b) \in \mathbb{N}^{2}: b \leq a, a \leq 5\right\}
$$



## Examples

$$
S=\left\{(a, b) \in \mathbb{N}^{2}: b \leq a, a \leq 5\right\}
$$


$\frac{1}{(1-x)(1-x y)}$

## Examples

$$
S=\left\{(a, b) \in \mathbb{N}^{2}: b \leq a, a \leq 5\right\}
$$



$$
-\frac{x^{6}}{(1-x)(1-y)}
$$

## Examples

$$
S=\left\{(a, b) \in \mathbb{N}^{2}: b \leq a, a \leq 5\right\}
$$



$$
\begin{aligned}
& \frac{1}{(1-x)(1-x y)} \\
& -\frac{x^{6}}{(1-x)(1-y)}
\end{aligned}
$$

## Examples

$$
S=\left\{(a, b) \in \mathbb{N}^{2}: b \leq a, a \leq 5\right\}
$$



$$
+\frac{x^{6} y^{7}}{(1-x y)(1-y)}
$$

## Examples

$$
S=\left\{(a, b) \in \mathbb{N}^{2}: b \leq a, a \leq 5\right\}
$$



$$
\begin{gathered}
f(S ; x, y)= \\
\frac{1}{(1-x)(1-x y)} \\
-\frac{x^{6}}{(1-x)(1-y)} \\
+\frac{x^{6} y^{7}}{(1-x y)(1-y)} .
\end{gathered}
$$

## Presburger Sets

Definition: A Presburger set is defined over $\mathbb{N}^{d}$ using quantifiers $(\exists$ and $\forall$ ), boolean operations (and, or, not), and linear (in)equalities $(\leq,=,>)$.

Examples

$$
\begin{aligned}
& S=\{a \in \mathbb{N}: a \leq 5000\} \\
& S=\{a \in \mathbb{N}: \exists b \in \mathbb{N}, a=2 b+1, a \leq 5000\} \\
& S=\left\{(a, b) \in \mathbb{N}^{2}: b \leq 2 a\right\} \\
& S=\left\{(a, b) \in \mathbb{N}^{2}: b \leq a, a \leq 5\right\}
\end{aligned}
$$

## Presburger Sets

The generating function of a Presburger set is a rational function:

- Cones: see example (triangulate if not simplicial).
- Polyhedra: by inclusion-exclusion [Brion].
- Quantifier-free formulas: unions of polyhedra (DNF).
- All Presburger sets: quantifier elimination [Presburger].


## Presburger Sets

The generating function of a Presburger set is a rational function:

- Cones: see example (triangulate if not simplicial).
- Polyhedra: by inclusion-exclusion [Brion].
- Quantifier-free formulas: unions of polyhedra (DNF).
- All Presburger sets: quantifier elimination [Presburger].


## Presburger Sets

The generating function of a Presburger set is a rational function:

- Cones: see example (triangulate if not simplicial).
- Polyhedra: by inclusion-exclusion [Brion].
- Quantifier-free formulas: unions of polyhedra (DNF).
- All Presburger sets: quantifier elimination [Presburger].


## Presburger Sets

The generating function of a Presburger set is a rational function:

- Cones: see example (triangulate if not simplicial).
- Polyhedra: by inclusion-exclusion [Brion].
- Quantifier-free formulas: unions of polyhedra (DNF).
- All Presburger sets: quantifier elimination [Presburger].


## Presburger Sets

The generating function of a Presburger set is a rational function:

- Cones: see example (triangulate if not simplicial).
- Polyhedra: by inclusion-exclusion [Brion].
- Quantifier-free formulas: unions of polyhedra (DNF).
- All Presburger sets: quantifier elimination [Presburger].


## Presburger Sets

The following are equivalent:

- $S$ is a Presburger set.
- $f(S ; \mathbf{x})$ is a rational generating function.
- $S$ is a finite union of sets of the form $P \cap(\lambda+\Lambda)$, where $P$ is a polyhedron, $\lambda \in \mathbb{N}^{d}$, and $\Lambda \subseteq \mathbb{Z}^{d}$ is a lattice.
[cf. semi-linear sets of Ginsburg, Spanier]


## The Power of Generating Functions

## So What?

## The Power of Generating Functions

## So What?

The generating function contains all of the information of the set, in a way that can be exploited.

$$
\begin{aligned}
f(S ; 1) & =|S| . \\
\left.\frac{\partial}{\partial x_{1}} f(S ; \mathbf{x})\right|_{\mathbf{x}=1} & =\sum_{\mathbf{a} \in S} a_{1} . \\
\text { degree } f\left(S ; z^{c_{1}}, \ldots, z^{c_{d}}\right) & =\max _{\mathbf{a} \in S} \mathbf{c} \cdot \mathbf{a} .
\end{aligned}
$$

## The Power of Generating Functions

## So What?

The generating function contains all of the information of the set, in a way that can be exploited.

$$
\begin{aligned}
f(S ; 1) & =|S| \\
\left.\frac{\partial}{\partial x_{1}} f(S ; \mathbf{x})\right|_{\mathbf{x}=1} & =\sum_{\mathbf{a} \in S} a_{1} . \\
\text { degree } f\left(S ; z^{c_{1}}, \ldots, z^{c_{d}}\right) & =\max _{\mathbf{a} \in S} \mathbf{c} \cdot \mathbf{a} .
\end{aligned}
$$

## The Power of Generating Functions

## So What?

The generating function contains all of the information of the set, in a way that can be exploited.

$$
\begin{aligned}
f(S ; 1) & =|S| \\
\left.\frac{\partial}{\partial x_{1}} f(S ; \mathbf{x})\right|_{\mathrm{x}=1} & =\sum_{\mathbf{a} \in S} a_{1} . \\
\text { degree } f\left(S ; z^{c_{1}}, \ldots, z^{c_{d}}\right) & =\max _{\mathbf{a} \in S} \mathbf{c} \cdot \mathbf{a} .
\end{aligned}
$$

## The Power of Generating Functions

## So What?

The generating function contains all of the information of the set, in a way that can be exploited.

$$
\begin{aligned}
f(S ; 1) & =|S| \\
\left.\frac{\partial}{\partial x_{1}} f(S ; \mathbf{x})\right|_{\mathbf{x}=1} & =\sum_{\mathbf{a} \in S} a_{1} . \\
\text { degree } f\left(S ; z^{c_{1}}, \ldots, z^{c_{d}}\right) & =\max _{\mathbf{a} \in S} \mathbf{c} \cdot \mathbf{a} .
\end{aligned}
$$

## The Power of Generating Functions

For fixed dimension, given rational generating functions $f(S ; \mathbf{x})$ and $f(T ; \mathbf{x})$, there are polynomial time algorithms to compute

- $f(S ; 1)$
- $\frac{\partial}{\partial x_{1}} f(S ; \mathbf{x})$
- degree $f\left(S ; z^{c_{1}}, \ldots, z^{c_{d}}\right)$
- $f(S \cap T) ; \mathbf{x})$
[Barvinok, W],
though it is NP-hard to compute, given a projection $\pi$,
- $f(\pi(S) ; \mathbf{x})$.
[W].


## The Power of Generating Functions

For fixed dimension, given rational generating functions $f(S ; \mathbf{x})$ and $f(T ; \mathbf{x})$, there are polynomial time algorithms to compute

- $f(S ; 1)$
- $\frac{\partial}{\partial x_{1}} f(S ; \mathbf{x})$
- degree $f\left(S ; z^{c_{1}}, \ldots, z^{c_{d}}\right)$
- $f(S \cap T) ; \mathbf{x})$
[Barvinok, W],
though it is NP-hard to compute, given a projection $\pi$,
- $f(\pi(S) ; \mathbf{x})$.
[W].


## The Power of Generating Functions

Proofs using generating functions:

- For fixed dimension, the number of solutions to a quantifier-free Presburger formula (e.g., a polyhedron) is computable in polynomial time. [Barvinok]
- For fixed dimension and number of linear inequalities, the number of solutions to Presburger formula with no quantifier alternation (using only $\exists$ or only $\forall$ ) is computable in polynomial time. [Barvinok, W]


## The Power of Generating Functions

Proofs using generating functions:

- For fixed dimension, the number of solutions to a quantifier-free Presburger formula (e.g., a polyhedron) is computable in polynomial time. [Barvinok]
- For fixed dimension and number of linear inequalities, the number of solutions to Presburger formula with no quantifier alternation (using only $\exists$ or only $\forall$ ) is computable in polynomial time. [Barvinok, W]


## The Power of Generating Functions?

Proofs using generating functions:

- For fixed dimension, the number of solutions to a quantifier-free Presburger formula (e.g., a polyhedron) is computable in polynomial time. [Barvinok]
- For fixed dimension and number of linear inequalities, the number of solutions to Presburger formula with no quantifier alternation (using only $\exists$ or only $\forall$ ) is computable in polynomial time. [Barvinok, W]

Open Problem: What if there is quantifier alternation? Don't even know that the existence of solutions can be decided in polynomial time.

## Parametric Counting

$$
S_{t}=\{a \in \mathbb{N}: 2 a \leq t\}
$$

Then

$$
\begin{aligned}
g(t) & \doteq\left|S_{t}\right| \\
& =\left\lfloor\frac{t}{2}\right\rfloor+1 \\
& = \begin{cases}\frac{t+2}{2} & \text { if } t \equiv 0 \bmod 2, \\
\frac{t+1}{2} & \text { if } t \equiv 1 \bmod 2\end{cases}
\end{aligned}
$$

is a quasi-polynomial.

## Parametric Counting

$$
S_{t}=\{a \in \mathbb{N}: 2 a \leq t\}
$$

Then

$$
\begin{aligned}
g(t) & \doteq\left|S_{t}\right| \\
& =\left\lfloor\frac{t}{2}\right\rfloor+1 \\
& = \begin{cases}\frac{t+2}{2} & \text { if } t \equiv 0 \bmod 2, \\
\frac{t+1}{2} & \text { if } t \equiv 1 \bmod 2\end{cases}
\end{aligned}
$$

is a quasi-polynomial.

## Parametric Counting

$$
S_{t}=\{a \in \mathbb{N}: 2 a \leq t\}
$$

Then

$$
\begin{aligned}
g(t) & \doteq\left|S_{t}\right| \\
& \left.=\left\lvert\, \frac{t}{2}\right.\right\rfloor+1 \\
& = \begin{cases}\frac{t+2}{2} & \text { if } t \equiv 0 \bmod 2, \\
\frac{t+1}{2} & \text { if } t \equiv 1 \bmod 2\end{cases}
\end{aligned}
$$

is a quasi-polynomial.

## Parametric Counting

$$
S_{t}=\{a \in \mathbb{N}: 2 a \leq t\}
$$

Then

$$
\begin{aligned}
g(t) & \doteq\left|S_{t}\right| \\
& =\left\lfloor\frac{t}{2}\right\rfloor+1 \\
& = \begin{cases}\frac{t+2}{2} & \text { if } t \equiv 0 \bmod 2, \\
\frac{t+1}{2} & \text { if } t \equiv 1 \bmod 2\end{cases}
\end{aligned}
$$

is a quasi-polynomial.

## Parametric Counting

$$
\begin{aligned}
\sum_{t} g(t) x^{t} & =\sum_{t}\left(\left\lfloor\frac{t}{2}\right\rfloor+1\right) x^{t} \\
& =1+x+2 x^{2}+2 x^{3}+3 x^{4}+3 x^{5}+\cdots \\
& =(1+x)\left(1+2 x^{2}+3 x^{4}+\cdots\right) \\
& =\frac{1+x}{\left(1-x^{2}\right)^{2}}
\end{aligned}
$$

## Parametric Counting

$$
\begin{aligned}
\sum_{t} g(t) x^{t} & =\sum_{t}\left(\left\lfloor\frac{t}{2}\right\rfloor+1\right) x^{t} \\
& =1+x+2 x^{2}+2 x^{3}+3 x^{4}+3 x^{5}+\cdots \\
& =(1+x)\left(1+2 x^{2}+3 x^{4}+\cdots\right) \\
& =\frac{1+x}{\left(1-x^{2}\right)^{2}},
\end{aligned}
$$

## Parametric Counting

$$
\begin{aligned}
\sum_{t} g(t) x^{t} & =\sum_{t}\left(\left\lfloor\frac{t}{2}\right\rfloor+1\right) x^{t} \\
& =1+x+2 x^{2}+2 x^{3}+3 x^{4}+3 x^{5}+\cdots \\
& =(1+x)\left(1+2 x^{2}+3 x^{4}+\cdots\right) \\
& =\frac{1+x}{\left(1-x^{2}\right)^{2}},
\end{aligned}
$$

## Parametric Counting

$$
\begin{aligned}
\sum_{t} g(t) x^{t} & =\sum_{t}\left(\left\lfloor\frac{t}{2}\right\rfloor+1\right) x^{t} \\
& =1+x+2 x^{2}+2 x^{3}+3 x^{4}+3 x^{5}+\cdots \\
& =(1+x)\left(1+2 x^{2}+3 x^{4}+\cdots\right) \\
& =\frac{1+x}{\left(1-x^{2}\right)^{2}}
\end{aligned}
$$

by substituting $y=x^{2}$ into
$1+2 y+3 y^{2}+\cdots=\frac{\partial}{\partial y}\left(1+y+y^{2}+\cdots\right)=\frac{\partial}{\partial y}\left(\frac{1}{1-y}\right)=\frac{1}{(1-y)^{2}}$.

## Parametric Counting

$$
\begin{aligned}
\sum_{t} g(t) x^{t} & =\sum_{t}\left(\left\lfloor\frac{t}{2}\right\rfloor+1\right) x^{t} \\
& =1+x+2 x^{2}+2 x^{3}+3 x^{4}+3 x^{5}+\cdots \\
& =(1+x)\left(1+2 x^{2}+3 x^{4}+\cdots\right) \\
& =\frac{1+x}{\left(1-x^{2}\right)^{2}}
\end{aligned}
$$

by substituting $y=x^{2}$ into
$1+2 y+3 y^{2}+\cdots=\frac{\partial}{\partial y}\left(1+y+y^{2}+\cdots\right)=\frac{\partial}{\partial y}\left(\frac{1}{1-y}\right)=\frac{1}{(1-y)^{2}}$.

This is a rational generating function!!!

## Parametric Counting

With more than 1 parameter, need piecewise quasi-polynomials.
Example: $S_{s, t}=\{a, b \in \mathbb{N}: 2 b-a \leq 2 t-s, a-b \leq s-t\}$


## Parametric Counting

With more than 1 parameter, need piecewise quasi-polynomials.
Example: $S_{s, t}=\{a, b \in \mathbb{N}: 2 b-a \leq 2 t-s, a-b \leq s-t\}$


## Parametric Counting

With more than 1 parameter, need piecewise quasi-polynomials.
Example: $S_{s, t}=\{a, b \in \mathbb{N}: 2 b-a \leq 2 t-s, a-b \leq s-t\}$


$0 \leq s \leq t$

## Parametric Counting

With more than 1 parameter, need piecewise quasi-polynomials.
Example: $S_{s, t}=\{a, b \in \mathbb{N}: 2 b-a \leq 2 t-s, a-b \leq s-t\}$


## Parametric Counting

Given a function $g: \mathbb{N}^{n} \rightarrow \mathbb{Q}$ and the following three possible properties:
A. $g$ parametrically counts solutions to a Presburger formula,
B. $g$ is a piecewise quasi-polynomial, and
C. $\sum_{\mathbf{p} \in \mathbb{N}^{n}} g(\mathbf{p}) \mathbf{x}^{\mathbf{p}}$ is a rational function,
we have the implications

$$
A \Rightarrow B \Leftrightarrow C
$$

## Thank You!



