Counting with Quasi-polynomials

Kevin Woods
Oberlin College

Quasi-polynomials

Definition: $g: \mathbb{N} \rightarrow \mathbb{N}$ is a quasi-polynomial of period m if there exist polynomials $g_{0}, g_{1}, \ldots, g_{m-1}$ such that

$$
g(t)=g_{t \bmod m}(t), \forall t \in \mathbb{N}
$$

Example: For $t \in \mathbb{N}$, let

$$
S_{t}=\{x \in \mathbb{N}: 1 \leq 2 x \leq t\}=\{1,2, \ldots,\lfloor t / 2\rfloor\}
$$

Then

$$
\left|S_{t}\right|=\left\lfloor\frac{t}{2}\right\rfloor= \begin{cases}t / 2 & \text { if } t \bmod 2=0 \\ (t-1) / 2 & \text { if } t \bmod 2=1\end{cases}
$$

Quasi-polynomials

Definition: $g: \mathbb{N} \rightarrow \mathbb{N}$ is a quasi-polynomial of period m if there exist polynomials $g_{0}, g_{1}, \ldots, g_{m-1}$ such that

$$
g(t)=g_{t \bmod m}(t), \forall t \in \mathbb{N}
$$

Example: For $t \in \mathbb{N}$, let

$$
S_{t}=\{x \in \mathbb{N}: 1 \leq 2 x \leq t\}=\{1,2, \ldots,\lfloor t / 2\rfloor\}
$$

Then

$$
\left|S_{t}\right|=\left\lfloor\frac{t}{2}\right\rfloor= \begin{cases}t / 2 & \text { if } t \bmod 2=0 \\ (t-1) / 2 & \text { if } t \bmod 2=1\end{cases}
$$

Quasi-polynomials

Definition: $g: \mathbb{N} \rightarrow \mathbb{N}$ is a quasi-polynomial of period m if there exist polynomials $g_{0}, g_{1}, \ldots, g_{m-1}$ such that

$$
g(t)=g_{t \bmod m}(t), \forall t \in \mathbb{N}
$$

Example: For $t \in \mathbb{N}$, let

$$
S_{t}=\{x \in \mathbb{N}: 1 \leq 2 x \leq t\}=\{1,2, \ldots,\lfloor t / 2\rfloor\}
$$

Then

$$
\left|S_{t}\right|=\left\lfloor\frac{t}{2}\right\rfloor= \begin{cases}t / 2 & \text { if } t \bmod 2=0 \\ (t-1) / 2 & \text { if } t \bmod 2=1\end{cases}
$$

Example 1: Parametric Polyhedron

Let P be the triangle with vertices $(0,0),(1 / 2,0)$, and $(1 / 2,1)$.
Let $S_{t}=t P \cap \mathbb{Z}^{2}$, for $t \in \mathbb{N}$.
What is $\left|S_{t}\right|$, as a function of t ?

Example 1: Parametric Polyhedron

Let P be the triangle with vertices $(0,0),(1 / 2,0)$, and $(1 / 2,1)$.
Let $S_{t}=t P \cap \mathbb{Z}^{2}$, for $t \in \mathbb{N}$.
What is $\left|S_{t}\right|$, as a function of t ?

Example 1: Parametric Polyhedron

Let P be the triangle with vertices $(0,0),(1 / 2,0)$, and $(1 / 2,1)$.
Let $S_{t}=t P \cap \mathbb{Z}^{2}$, for $t \in \mathbb{N}$.
What is $\left|S_{t}\right|$, as a function of t ?

Example 1: Parametric Polyhedron

The hard (but insightful) way to calculate $\left|S_{t}\right|$:

Definition: The generating function for $S \subseteq \mathbb{Z}^{2}$ is given by

$$
f(S ; x, y)=\sum_{(c, d) \in S} x^{c} y^{d}
$$

Example:
$f\left(S_{3} ; x, y\right)=x^{0} y^{0}+x^{1} y^{0}+x^{1} y^{1}+x^{1} y^{2}$.

Let's find $f\left(S_{t} ; x, y\right)$.

Example 1: Parametric Polyhedron

The hard (but insightful) way to calculate $\left|S_{t}\right|$:

Definition: The generating function for $S \subseteq \mathbb{Z}^{2}$ is given by

$$
f(S ; x, y)=\sum_{(c, d) \in S} x^{c} y^{d} .
$$

Example:
$f\left(S_{3} ; x, y\right)=x^{0} y^{0}+x^{1} y^{0}+x^{1} y^{1}+x^{1} y^{2}$.

Let's find $f\left(S_{t} ; x, y\right)$.

Example 1: Parametric Polyhedron

The hard (but insightful) way to calculate $\left|S_{t}\right|$:

Definition: The generating function for $S \subseteq \mathbb{Z}^{2}$ is given by

$$
f(S ; x, y)=\sum_{(c, d) \in S} x^{c} y^{d} .
$$

Example:
$f\left(S_{3} ; x, y\right)=x^{0} y^{0}+x^{1} y^{0}+x^{1} y^{1}+x^{1} y^{2}$.

Let's find $f\left(S_{t} ; x, y\right)$.

Example 1: Parametric Polyhedron

Let's first find $f(S ; x, y)$ for this set.

Example 1: Parametric Polyhedron

$$
\begin{aligned}
& f(S ; x, y)= \\
& \left(x^{0} y^{0}+x^{1} y^{1}\right) \\
& \cdot\left(1+x^{1}+x^{2}+x^{3}+\cdots\right) \\
& \cdot\left(1+\left(x^{1} y^{2}\right)^{1}+\left(x^{1} y^{2}\right)^{2}+\cdots\right) \\
& \\
& x^{4} y^{5}=x^{1} y^{1}(x)^{1}\left(x^{1} y^{2}\right)^{2}
\end{aligned}
$$

Example 1: Parametric Polyhedron

$$
\begin{aligned}
& f(S ; x, y)= \\
& \left(x^{0} y^{0}+x^{1} y^{1}\right) \\
& \cdot\left(1+x^{1}+x^{2}+x^{3}+\cdots\right) \\
& \cdot\left(1+\left(x^{1} y^{2}\right)^{1}+\left(x^{1} y^{2}\right)^{2}+\cdots\right) \\
& \\
& x^{4} y^{5}=x^{1} y^{1}(x)^{1}\left(x^{1} y^{2}\right)^{2} \\
& x^{4} y^{2}=x^{0} y^{0}(x)^{3}\left(x^{1} y^{2}\right)^{1}
\end{aligned}
$$

Example 1: Parametric Polyhedron

$$
\begin{aligned}
& f(S ; x, y)= \\
& \quad\left(x^{0} y^{0}+x^{1} y^{1}\right) \\
& \quad \cdot\left(1+x^{1}+x^{2}+x^{3}+\cdots\right) \\
& =\left(1+\left(x^{1} y^{2}\right)^{1}+\left(x^{1} y^{2}\right)^{2}+\cdots\right) \\
& (1-x)\left(1-x y^{2}\right) \\
& \quad x^{4} y^{5}=x^{1} y^{1}(x)^{1}\left(x^{1} y^{2}\right)^{2} \\
& \quad x^{4} y^{2}=x^{0} y^{0}(x)^{3}\left(x^{1} y^{2}\right)^{1}
\end{aligned}
$$

Example 1: Parametric Polyhedron

Example 1: Parametric Polyhedron

$$
\begin{aligned}
& \frac{1+x y}{(1-x)\left(1-x y^{2}\right)} \\
& -\frac{x^{k+1}}{(1-x)(1-y)}
\end{aligned}
$$

Example 1: Parametric Polyhedron

$$
\begin{aligned}
& +x^{k+1} y^{2(k+1)+1} \\
& \quad \cdot\left(1+x y^{2}+\left(x y^{2}\right)^{2}+\cdots\right) \\
& \quad \cdot\left(1+y+y^{2}+\cdots\right) \\
& =\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)}
\end{aligned}
$$

Example 1: Parametric Polyhedron

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)= \\
\frac{1+x y}{(1-x)\left(1-x y^{2}\right)} \\
-\frac{x^{k+1}}{(1-x)(1-y)} \\
+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} .
\end{gathered}
$$

Example 1: Parametric Polyhedron

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!

Example 1: Parametric Polyhedron

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!

Example 1: Parametric Polyhedron

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!

Example 1: Parametric Polyhedron

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!

Example 1: Parametric Polyhedron

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$! Uh oh.

Example 1: Parametric Polyhedron

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!
Uh oh.
Take limit as $(x, y) \rightarrow(1,1)$, e.g, get common denominator, then repeated L'Hôpital's rule, one variable at a time:

$$
\left|S_{t}\right|=(k+1)^{2}=(\lfloor t / 2\rfloor+1)^{2}
$$

Example 1: Parametric Polyhedron

$$
\begin{gathered}
f\left(S_{t} ; x, y\right)=\frac{1+x y}{(1-x)\left(1-x y^{2}\right)}-\frac{x^{k+1}}{(1-x)(1-y)}+\frac{x^{k+1} y^{2 k+3}}{\left(1-x y^{2}\right)(1-y)} . \\
f\left(S_{t} ; 1,1\right)=\sum_{(c, d) \in S_{t}} 1^{c} 1^{d}=\left|S_{t}\right| .
\end{gathered}
$$

So plug in $x=1, y=1$!
Uh oh.
Take limit as $(x, y) \rightarrow(1,1)$, e.g, get common denominator, then repeated L'Hôpital's rule, one variable at a time:

$$
\left|S_{t}\right|=(k+1)^{2}=(\lfloor t / 2\rfloor+1)^{2} .
$$

Generalizing Example 1

Definition: A parametric polyhedron, $P_{t} \subseteq \mathbb{R}^{d}$, is the solution set to a system of linear inequalities of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d} \leq b t+c
$$

Theorem (McMullen, Brion, Barvinok)
$\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

- Inclusion-exclusion on generating functions reduces to cones.
- Cones simply translate with t.
- Generating function of such a cone is easy.
- Compute $f(S ; 1, \ldots, 1)$ with L'Hôpital's rule.

Generalizing Example 1

Definition: A parametric polyhedron, $P_{t} \subseteq \mathbb{R}^{d}$, is the solution set to a system of linear inequalities of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d} \leq b t+c
$$

Theorem (McMullen, Brion, Barvinok)
$\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

- Inclusion-exclusion on generating functions reduces to cones.
- Cones simply translate with t.
- Generating function of such a cone is easy.
- Compute $f(S ; 1, \ldots, 1)$ with L'Hôpital's rule.

Generalizing Example 1

Definition: A parametric polyhedron, $P_{t} \subseteq \mathbb{R}^{d}$, is the solution set to a system of linear inequalities of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d} \leq b t+c
$$

Theorem (McMullen, Brion, Barvinok)
$\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

- Inclusion-exclusion on generating functions reduces to cones.
- Cones simply translate with t.
- Generating function of such a cone is easy.
- Compute $f(S ; 1, \ldots, 1)$ with L'Hôpital's rule.

Generalizing Example 1

Definition: A parametric polyhedron, $P_{t} \subseteq \mathbb{R}^{d}$, is the solution set to a system of linear inequalities of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d} \leq b t+c
$$

Theorem (McMullen, Brion, Barvinok)
$\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

- Inclusion-exclusion on generating functions reduces to cones.
- Cones simply translate with t.
- Generating function of such a cone is easy.
- Compute $f(S ; 1, \ldots, 1)$ with L'Hôpital's rule.

Generalizing Example 1

Definition: A parametric polyhedron, $P_{t} \subseteq \mathbb{R}^{d}$, is the solution set to a system of linear inequalities of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d} \leq b t+c
$$

Theorem (McMullen, Brion, Barvinok)
$\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

- Inclusion-exclusion on generating functions reduces to cones.
- Cones simply translate with t.
- Generating function of such a cone is easy.
- Compute $f(S ; 1, \ldots, 1)$ with L'Hôpital's rule.

Generalizing Example 1

Definition: A parametric polyhedron, $P_{t} \subseteq \mathbb{R}^{d}$, is the solution set to a system of linear inequalities of the form

$$
a_{1} x_{1}+\cdots+a_{d} x_{d} \leq b t+c
$$

Theorem (McMullen, Brion, Barvinok)
$\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

- Inclusion-exclusion on generating functions reduces to cones.
- Cones simply translate with t.
- Generating function of such a cone is easy.
- Compute $f(S ; 1, \ldots, 1)$ with L'Hôpital's rule.

Generalizing Example 1

Our Example:

$$
(x, y) \in \mathbb{Z}^{2}:(y \geq 0) \wedge(2 x \leq t) \wedge(y-2 x \leq 0)
$$

How about allowing other Boolean operations like \vee (or)?

Generalizing Example 1

Our Example:

$$
(x, y) \in \mathbb{Z}^{2}:(y \geq 0) \wedge(2 x \leq t) \wedge(y-2 x \leq 0)
$$

How about allowing other Boolean operations like \vee (or)?
No problem [Barvinok-Pommersheim].
For example, Disjunctive Normal Form yields union of parametric polyhedra:

$$
A \wedge(B \vee C \vee D) \text { is } \quad(A \wedge B) \vee(A \wedge C) \vee(A \wedge D)
$$

Generalizing Example 1

How about adding quantifiers (\exists, \forall) ?

Generalizing Example 1

How about adding quantifiers (\exists, \forall) ?
No problem [W].

- Quantifiers can be eliminated [Presburger], by also using $\bmod k$ operation, for constants k :

$$
\{x \in \mathbb{N}: \exists y \in \mathbb{N}, x=3 y+1\}=\{x \in \mathbb{N}: x=1 \bmod 3\}
$$

- mod plays nicely with generating functions:

$$
S=\{1,4,7, \ldots\}, \quad f(S ; x)=x^{1}+x^{4}+x^{7}+\cdots=\frac{x}{1-x^{3}} .
$$

Generalizing Example 1

How about adding quantifiers (\exists, \forall) ?
No problem [W].

- Quantifiers can be eliminated [Presburger], by also using $\bmod k$ operation, for constants k :

$$
\{x \in \mathbb{N}: \exists y \in \mathbb{N}, x=3 y+1\}=\{x \in \mathbb{N}: x=1 \bmod 3\}
$$

- mod plays nicely with generating functions:

$$
S=\{1,4,7, \ldots\}, \quad f(S ; x)=x^{1}+x^{4}+x^{7}+\cdots=\frac{x}{1-x^{3}} .
$$

Generalizing Example 1

How about adding quantifiers (\exists, \forall) ?
No problem [W].

- Quantifiers can be eliminated [Presburger], by also using $\bmod k$ operation, for constants k :

$$
\{x \in \mathbb{N}: \exists y \in \mathbb{N}, x=3 y+1\}=\{x \in \mathbb{N}: x=1 \bmod 3\}
$$

- mod plays nicely with generating functions:

$$
S=\{1,4,7, \ldots\}, \quad f(S ; x)=x^{1}+x^{4}+x^{7}+\cdots=\frac{x}{1-x^{3}}
$$

Generalizing Example 1

How about adding more parameter variables than simply t ?

Generalizing Example 1

How about adding more parameter variables than simply t ?
No problem [Barvinok-Pommersheim, W], with one new wrinkle:

$$
\{a, b \in \mathbb{Z}: a \geq 0, b \geq 0,2 b-a \leq 2 t-s, a-b \leq s-t\} .
$$

Generalizing Example 1

How about adding more parameter variables than simply t ?
No problem [Barvinok-Pommersheim, W], with one new wrinkle:

$$
\{a, b \in \mathbb{Z}: a \geq 0, b \geq 0,2 b-a \leq 2 t-s, a-b \leq s-t\} .
$$

Generalizing Example 1

How about adding more parameter variables than simply t ?
No problem [Barvinok-Pommersheim, W], with one new wrinkle:

$$
\{a, b \in \mathbb{Z}: a \geq 0, b \geq 0,2 b-a \leq 2 t-s, a-b \leq s-t\}
$$

Generalizing Example 1

End up with

$$
c(s, t)= \begin{cases}\frac{s^{2}}{2}-\left\lfloor\frac{s}{2}\right\rfloor s+\frac{s}{2}+\left\lfloor\frac{s}{2}\right\rfloor^{2}+\left\lfloor\frac{s}{2}\right\rfloor+1 & \text { if } t \leq s \leq 2 t \\ s t-\left\lfloor\frac{s}{2}\right\rfloor s-\frac{t^{2}}{2}+\frac{t}{2}+\left\lfloor\frac{s}{2}\right\rfloor^{2}+\left\lfloor\frac{s}{2}\right\rfloor+1 & \text { if } 0 \leq 2 t \leq s \\ \frac{t^{2}}{2}+\frac{3 t}{2}+1 & \text { if } 0 \leq s \leq t\end{cases}
$$

Theorem (W)
Suppose F is a first-order formula over the natural numbers, defined using linear inequalities, Boolean operations, and quantifiers (Presburger arithmetic). Suppose the free (unquantified) variables in F are $c_{1}, \ldots c_{d}$ (the counted variables) and p_{1}, \ldots, p_{n} (the parameter variables). Then

$$
g\left(p_{1}, \ldots, p_{n}\right)=\#\left(c_{1}, \ldots, c_{d}\right) \text { making } F \text { true }
$$

is a piecewise quasi-polynomial, defined on polyhedral pieces.

Generalizing Example 1

End up with

$$
c(s, t)= \begin{cases}\frac{s^{2}}{2}-\left\lfloor\frac{s}{2}\right\rfloor s+\frac{s}{2}+\left\lfloor\frac{s}{2}\right\rfloor 2+\left\lfloor\frac{s}{2}\right\rfloor+1 & \text { if } t \leq s \leq 2 t \\ s t-\left\lfloor\frac{s}{2}\right\rfloor s-\frac{t^{2}}{2}+\frac{t}{2}+\left\lfloor\frac{s}{2}\right\rfloor^{2}+\left\lfloor\frac{s}{2}\right\rfloor+1 & \text { if } 0 \leq 2 t \leq s \\ \frac{t^{2}}{2}+\frac{3 t}{2}+1 & \text { if } 0 \leq s \leq t\end{cases}
$$

Theorem (W)
Suppose F is a first-order formula over the natural numbers, defined using linear inequalities, Boolean operations, and quantifiers (Presburger arithmetic). Suppose the free (unquantified) variables in F are $c_{1}, \ldots c_{d}$ (the counted variables) and p_{1}, \ldots, p_{n} (the parameter variables). Then

$$
g\left(p_{1}, \ldots, p_{n}\right)=\#\left(c_{1}, \ldots, c_{d}\right) \text { making } F \text { true }
$$

is a piecewise quasi-polynomial, defined on polyhedral pieces.

Generalizing Example 1

End up with

$$
c(s, t)= \begin{cases}\frac{s^{2}}{2}-\left\lfloor\frac{s}{2}\right\rfloor s+\frac{s}{2}+\left\lfloor\frac{s}{2}\right\rfloor 2+\left\lfloor\frac{s}{2}\right\rfloor+1 & \text { if } t \leq s \leq 2 t \\ s t-\left\lfloor\frac{s}{2}\right\rfloor s-\frac{t^{2}}{2}+\frac{t}{2}+\left\lfloor\frac{s}{2}\right\rfloor^{2}+\left\lfloor\frac{s}{2}\right\rfloor+1 & \text { if } 0 \leq 2 t \leq s \\ \frac{t^{2}}{2}+\frac{3 t}{2}+1 & \text { if } 0 \leq s \leq t\end{cases}
$$

Theorem (W)
Suppose F is a first-order formula over the natural numbers, defined using linear inequalities, Boolean operations, and quantifiers (Presburger arithmetic). Suppose the free (unquantified) variables in F are $c_{1}, \ldots c_{d}$ (the counted variables) and p_{1}, \ldots, p_{n} (the parameter variables). Then

$$
g\left(p_{1}, \ldots, p_{n}\right)=\#\left(c_{1}, \ldots, c_{d}\right) \text { making } F \text { true }
$$

is a piecewise quasi-polynomial, defined on polyhedral pieces.

Generalizing Example 1

End up with

$$
c(s, t)= \begin{cases}\frac{s^{2}}{2}-\left\lfloor\frac{s}{2}\right\rfloor s+\frac{s}{2}+\left\lfloor\frac{s}{2}\right\rfloor 2+\left\lfloor\frac{s}{2}\right\rfloor+1 & \text { if } t \leq s \leq 2 t \\ s t-\left\lfloor\frac{s}{2}\right\rfloor s-\frac{t^{2}}{2}+\frac{t}{2}+\left\lfloor\frac{s}{2}\right\rfloor^{2}+\left\lfloor\frac{s}{2}\right\rfloor+1 & \text { if } 0 \leq 2 t \leq s \\ \frac{t^{2}}{2}+\frac{3 t}{2}+1 & \text { if } 0 \leq s \leq t\end{cases}
$$

Theorem (W)
Suppose F is a first-order formula over the natural numbers, defined using linear inequalities, Boolean operations, and quantifiers (Presburger arithmetic). Suppose the free (unquantified) variables in F are $c_{1}, \ldots c_{d}$ (the counted variables) and p_{1}, \ldots, p_{n} (the parameter variables). Then

$$
g\left(p_{1}, \ldots, p_{n}\right)=\#\left(c_{1}, \ldots, c_{d}\right) \text { making } F \text { true }
$$

is a piecewise quasi-polynomial, defined on polyhedral pieces.

Example 2: Frobenius Problem

Definition: Let $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be the semigroup generated by a_{1}, \ldots, a_{n}, that is,

$$
\left\{\sum_{i=1}^{n} p_{i} a_{i} \mid p_{i} \in \mathbb{Z}_{\geq 0}\right\}
$$

Example $\langle 3,7\rangle=\{0,3,6,7,9,10,12,13,14, \ldots\}$.
Definition: The Frobenius number, $F\left(a_{1}, \ldots, a_{n}\right)$, is the largest integer not in $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ (exists when a_{i} are relatively prime).

So $F(3,7)=11$.

Example 2: Frobenius Problem

Definition: Let $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be the semigroup generated by a_{1}, \ldots, a_{n}, that is,

$$
\left\{\sum_{i=1}^{n} p_{i} a_{i} \mid p_{i} \in \mathbb{Z}_{\geq 0}\right\}
$$

Example $\langle 3,7\rangle=\{0,3,6,7,9,10,12,13,14, \ldots\}$.
Definition: The Frobenius number, $F\left(a_{1}, \ldots, a_{n}\right)$, is the largest integer not in $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ (exists when a_{i} are relatively prime).

So $F(3,7)=11$.

Example 2: Frobenius Problem

Definition: Let $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be the semigroup generated by a_{1}, \ldots, a_{n}, that is,

$$
\left\{\sum_{i=1}^{n} p_{i} a_{i} \mid p_{i} \in \mathbb{Z}_{\geq 0}\right\}
$$

Example $\langle 3,7\rangle=\{0,3,6,7,9,10,12,13,14, \ldots\}$.
Definition: The Frobenius number, $F\left(a_{1}, \ldots, a_{n}\right)$, is the largest integer not in $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ (exists when a_{i} are relatively prime).

So $F(3,7)=11$.

Example 2: Frobenius Problem

Definition: Let $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be the semigroup generated by a_{1}, \ldots, a_{n}, that is,

$$
\left\{\sum_{i=1}^{n} p_{i} a_{i} \mid p_{i} \in \mathbb{Z}_{\geq 0}\right\}
$$

Example $\langle 3,7\rangle=\{0,3,6,7,9,10,12,13,14, \ldots\}$.
Definition: The Frobenius number, $F\left(a_{1}, \ldots, a_{n}\right)$, is the largest integer not in $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ (exists when a_{i} are relatively prime).

So $F(3,7)=11$.

Example 2: Frobenius Problem

What is $F(t, t+1, t+2)$?
We'll work through this in a minute.

Example 2: Frobenius Problem

Simpler problem: What is $F(a, b)$, for a, b relatively prime?
Definition: The canonical form for an integer c is $c=p a+q b$ with $p, q \in \mathbb{Z}$ and $0 \leq p<b$.

Facts:

- If $c=p^{\prime} a+q^{\prime} b$ is any form with $p^{\prime}, q^{\prime} \in \mathbb{Z}$, then all forms can be written as $c=\left(p^{\prime}-k b\right) a+\left(q^{\prime}+k a\right) b$, for $k \in \mathbb{Z}$.
- Canonical form exists and is unique. In fact, it is $r a+\left(q^{\prime}+k a\right) b$, where k and r are the quotient and remainder when dividing p^{\prime} by b.
- If $c=p a+q b$ is in canonical form, $c \in\langle a, b\rangle$ if and only if $q \geq 0$. ($\Leftarrow: p, q \geq 0$, so immediate. \Rightarrow : take $c=p^{\prime} a+q^{\prime} b$ with $p^{\prime}, q^{\prime} \geq 0$ and use previous fact.)

Example 2: Frobenius Problem

Simpler problem: What is $F(a, b)$, for a, b relatively prime?
Definition: The canonical form for an integer c is $c=p a+q b$ with $p, q \in \mathbb{Z}$ and $0 \leq p<b$.

Facts:

- If $c=p^{\prime} a+q^{\prime} b$ is any form with $p^{\prime}, q^{\prime} \in \mathbb{Z}$, then all forms can be written as $c=\left(p^{\prime}-k b\right) a+\left(q^{\prime}+k a\right) b$, for $k \in \mathbb{Z}$.
- Canonical form exists and is unique. In fact, it is $r a+\left(q^{\prime}+k a\right) b$, where k and r are the quotient and remainder when dividing p^{\prime} by b.
- If $c=p a+q b$ is in canonical form, $c \in\langle a, b\rangle$ if and only if $q \geq 0$. ($\Leftarrow: p, q \geq 0$, so immediate. \Rightarrow : take $c=p^{\prime} a+q^{\prime} b$ with $p^{\prime}, q^{\prime} \geq 0$ and use previous fact.)

Example 2: Frobenius Problem

Simpler problem: What is $F(a, b)$, for a, b relatively prime?
Definition: The canonical form for an integer c is $c=p a+q b$ with $p, q \in \mathbb{Z}$ and $0 \leq p<b$.

Facts:

- If $c=p^{\prime} a+q^{\prime} b$ is any form with $p^{\prime}, q^{\prime} \in \mathbb{Z}$, then all forms can be written as $c=\left(p^{\prime}-k b\right) a+\left(q^{\prime}+k a\right) b$, for $k \in \mathbb{Z}$.
- Canonical form exists and is unique. In fact, it is $r a+\left(q^{\prime}+k a\right) b$, where k and r are the quotient and remainder when dividing p^{\prime} by b.
- If $c=p a+q b$ is in canonical form, $c \in\langle a, b\rangle$ if and only if $q \geq 0$. ($\Leftarrow: p, q \geq 0$, so immediate. \Rightarrow : take $c=p^{\prime} a+q^{\prime} b$ with $p^{\prime}, q^{\prime} \geq 0$ and use previous fact.)

Example 2: Frobenius Problem

Simpler problem: What is $F(a, b)$, for a, b relatively prime?
Definition: The canonical form for an integer c is $c=p a+q b$ with $p, q \in \mathbb{Z}$ and $0 \leq p<b$.

Facts:

- If $c=p^{\prime} a+q^{\prime} b$ is any form with $p^{\prime}, q^{\prime} \in \mathbb{Z}$, then all forms can be written as $c=\left(p^{\prime}-k b\right) a+\left(q^{\prime}+k a\right) b$, for $k \in \mathbb{Z}$.
- Canonical form exists and is unique. In fact, it is $r a+\left(q^{\prime}+k a\right) b$, where k and r are the quotient and remainder when dividing p^{\prime} by b.
- If $c=p a+q b$ is in canonical form, $c \in\langle a, b\rangle$ if and only if $q \geq 0$. ($\Leftarrow: p, q \geq 0$, so immediate. \Rightarrow : take $c=p^{\prime} a+q^{\prime} b$ with $p^{\prime}, q^{\prime} \geq 0$ and use previous fact.)

Example 2: Frobenius Problem

Simpler problem: What is $F(a, b)$, for a, b relatively prime?
Definition: The canonical form for an integer c is $c=p a+q b$ with $p, q \in \mathbb{Z}$ and $0 \leq p<b$.

Facts:

- If $c=p^{\prime} a+q^{\prime} b$ is any form with $p^{\prime}, q^{\prime} \in \mathbb{Z}$, then all forms can be written as $c=\left(p^{\prime}-k b\right) a+\left(q^{\prime}+k a\right) b$, for $k \in \mathbb{Z}$.
- Canonical form exists and is unique. In fact, it is $r a+\left(q^{\prime}+k a\right) b$, where k and r are the quotient and remainder when dividing p^{\prime} by b.
- If $c=p a+q b$ is in canonical form, $c \in\langle a, b\rangle$ if and only if $q \geq 0$. ($\Leftarrow: p, q \geq 0$, so immediate. \Rightarrow : take $c=p^{\prime} a+q^{\prime} b$ with $p^{\prime}, q^{\prime} \geq 0$ and use previous fact.)

Example 2: Frobenius Problem

Simpler problem: What is $F(a, b)$, for a, b relatively prime?
Definition: The canonical form for an integer c is $c=p a+q b$ with $p, q \in \mathbb{Z}$ and $0 \leq p<b$.

Facts:

- If $c=p^{\prime} a+q^{\prime} b$ is any form with $p^{\prime}, q^{\prime} \in \mathbb{Z}$, then all forms can be written as $c=\left(p^{\prime}-k b\right) a+\left(q^{\prime}+k a\right) b$, for $k \in \mathbb{Z}$.
- Canonical form exists and is unique. In fact, it is $r a+\left(q^{\prime}+k a\right) b$, where k and r are the quotient and remainder when dividing p^{\prime} by b.
- If $c=p a+q b$ is in canonical form, $c \in\langle a, b\rangle$ if and only if $q \geq 0$. ($\Leftarrow: p, q \geq 0$, so immediate. \Rightarrow : take $c=p^{\prime} a+q^{\prime} b$ with $p^{\prime}, q^{\prime} \geq 0$ and use previous fact.)

Example 2: Frobenius Problem

Simpler problem: What is $F(a, b)$, for a, b relatively prime?
Definition: The canonical form for an integer c is $c=p a+q b$ with $p, q \in \mathbb{Z}$ and $0 \leq p<b$.

Facts:

- If $c=p^{\prime} a+q^{\prime} b$ is any form with $p^{\prime}, q^{\prime} \in \mathbb{Z}$, then all forms can be written as $c=\left(p^{\prime}-k b\right) a+\left(q^{\prime}+k a\right) b$, for $k \in \mathbb{Z}$.
- Canonical form exists and is unique. In fact, it is $r a+\left(q^{\prime}+k a\right) b$, where k and r are the quotient and remainder when dividing p^{\prime} by b.
- If $c=p a+q b$ is in canonical form, $c \in\langle a, b\rangle$ if and only if $q \geq 0$. ($\Leftarrow: p, q \geq 0$, so immediate. \Rightarrow : take $c=p^{\prime} a+q^{\prime} b$ with $p^{\prime}, q^{\prime} \geq 0$ and use previous fact.)

Example 2: Frobenius Problem

So $c \in \mathbb{Z}$ are in bijection to canonical forms (p, q) with $0 \leq p<b$.
$c \in\langle a, b\rangle$ are in bijection to canonical forms with $q \geq 0$.
Largest $c \notin\langle a, b\rangle$ corresponds to $p=b-1, q=-1$.

$$
F(a, b)=(b-1) a+(-1) b=a b-a-b .
$$

Example 2: Frobenius Problem

So $c \in \mathbb{Z}$ are in bijection to canonical forms (p, q) with $0 \leq p<b$.
$c \in\langle a, b\rangle$ are in bijection to canonical forms with $q \geq 0$.
Largest $c \notin\langle a, b\rangle$ corresponds to $p=b-1, q=-1$.

$$
F(a, b)=(b-1) a+(-1) b=a b-a-b .
$$

Example 2: Frobenius Problem

So $c \in \mathbb{Z}$ are in bijection to canonical forms (p, q) with $0 \leq p<b$.
$c \in\langle a, b\rangle$ are in bijection to canonical forms with $q \geq 0$.
Largest $c \notin\langle a, b\rangle$ corresponds to $p=b-1, q=-1$.

$$
F(a, b)=(b-1) a+(-1) b=a b-a-b .
$$

Example 2: Frobenius Problem

So $c \in \mathbb{Z}$ are in bijection to canonical forms (p, q) with $0 \leq p<b$.
$c \in\langle a, b\rangle$ are in bijection to canonical forms with $q \geq 0$.
Largest $c \notin\langle a, b\rangle$ corresponds to $p=b-1, q=-1$.

$$
F(a, b)=(b-1) a+(-1) b=a b-a-b .
$$

Example 2: Frobenius Problem

So $c \in \mathbb{Z}$ are in bijection to canonical forms (p, q) with $0 \leq p<b$.
$c \in\langle a, b\rangle$ are in bijection to canonical forms with $q \geq 0$.
Largest $c \notin\langle a, b\rangle$ corresponds to $p=b-1, q=-1$.

$$
F(a, b)=(b-1) a+(-1) b=a b-a-b .
$$

$F(3,7)=3 \cdot 7-3-7=11$.

Example 2: Frobenius Problem

How about $F(t, t+1, t+2)$?
Let

- $a=t, b=t+1, c=t+2$,
- $S=\langle a, b, c\rangle$,
- $T=\langle a, c\rangle$.

Note: $2 b=a+c$.
So if $u=p a+q b+r c$, with $p, q, r \geq 0$ is a representation of $u \in S$, and if $q \geq 2$, then so is

$$
\begin{gathered}
(p+1) a+(q-2) b+(r+1) c . \\
S=T \cup(b+T)
\end{gathered}
$$

Example 2: Frobenius Problem

How about $F(t, t+1, t+2)$?
Let

- $a=t, b=t+1, c=t+2$,
- $S=\langle a, b, c\rangle$,
- $T=\langle a, c\rangle$.

Note: $2 b=a+c$.
So if $u=p a+q b+r c$, with $p, q, r \geq 0$ is a representation of $u \in S$, and if $q \geq 2$, then so is

$$
\begin{gathered}
(p+1) a+(q-2) b+(r+1) c . \\
S=T \cup(b+T)
\end{gathered}
$$

Example 2: Frobenius Problem

How about $F(t, t+1, t+2)$?
Let

- $a=t, b=t+1, c=t+2$,
- $S=\langle a, b, c\rangle$,
- $T=\langle a, c\rangle$.

Note: $2 b=a+c$.
So if $u=p a+q b+r c$, with $p, q, r \geq 0$ is a representation of $u \in S$, and if $q \geq 2$, then so is

$$
\begin{gathered}
(p+1) a+(q-2) b+(r+1) c . \\
S=T \cup(b+T)
\end{gathered}
$$

Example 2: Frobenius Problem

How about $F(t, t+1, t+2)$?
Let

- $a=t, b=t+1, c=t+2$,
- $S=\langle a, b, c\rangle$,
- $T=\langle a, c\rangle$.

Note: $2 b=a+c$.
So if $u=p a+q b+r c$, with $p, q, r \geq 0$ is a representation of $u \in S$, and if $q \geq 2$, then so is

$$
\begin{gathered}
(p+1) a+(q-2) b+(r+1) c \\
S=T \cup(b+T)
\end{gathered}
$$

Example 2: Frobenius Problem

How about $F(t, t+1, t+2)$?
Let

- $a=t, b=t+1, c=t+2$,
- $S=\langle a, b, c\rangle$,
- $T=\langle a, c\rangle$.

Note: $2 b=a+c$.
So if $u=p a+q b+r c$, with $p, q, r \geq 0$ is a representation of $u \in S$, and if $q \geq 2$, then so is

$$
\begin{gathered}
(p+1) a+(q-2) b+(r+1) c \\
S=T \cup(b+T)
\end{gathered}
$$

Example 2: Frobenius Problem

$$
\operatorname{gcd}(a, c)=\operatorname{gcd}(t, t+2)=\operatorname{gcd}(2, t)
$$

Case: t is odd. Let $t=2 s+1$.
So $a=t=2 s+1, \quad b=t+1=2 s+2, \quad c=t+2=2 s+3$.
$\operatorname{gcd}(a, c)=\operatorname{gcd}(2 s+1,2 s+3)=\operatorname{gcd}(2,2 s+1)=\operatorname{gcd}(1,2)=1$.

Extended Euclidean algorithm yields

$$
1=(s+1) a-s c .
$$

Example 2: Frobenius Problem

$$
\operatorname{gcd}(a, c)=\operatorname{gcd}(t, t+2)=\operatorname{gcd}(2, t)
$$

Case: t is odd. Let $t=2 s+1$.
So $a=t=2 s+1, \quad b=t+1=2 s+2, \quad c=t+2=2 s+3$.
$\operatorname{gcd}(a, c)=\operatorname{gcd}(2 s+1,2 s+3)=\operatorname{gcd}(2,2 s+1)=\operatorname{gcd}(1,2)=1$.

Extended Euclidean algorithm yields

$$
1=(s+1) a-s c .
$$

Example 2: Frobenius Problem

$$
\operatorname{gcd}(a, c)=\operatorname{gcd}(t, t+2)=\operatorname{gcd}(2, t)
$$

Case: t is odd. Let $t=2 s+1$.
So $a=t=2 s+1, \quad b=t+1=2 s+2, \quad c=t+2=2 s+3$.
$\operatorname{gcd}(a, c)=\operatorname{gcd}(2 s+1,2 s+3)=\operatorname{gcd}(2,2 s+1)=\operatorname{gcd}(1,2)=1$.

Extended Euclidean algorithm yields

$$
1=(s+1) a-s c .
$$

Example 2: Frobenius Problem

$$
\operatorname{gcd}(a, c)=\operatorname{gcd}(t, t+2)=\operatorname{gcd}(2, t)
$$

Case: t is odd. Let $t=2 s+1$.
So $a=t=2 s+1, \quad b=t+1=2 s+2, \quad c=t+2=2 s+3$.
$\operatorname{gcd}(a, c)=\operatorname{gcd}(2 s+1,2 s+3)=\operatorname{gcd}(2,2 s+1)=\operatorname{gcd}(1,2)=1$.

Extended Euclidean algorithm yields

$$
1=(s+1) a-s c .
$$

Example 2: Frobenius Problem

$$
\operatorname{gcd}(a, c)=\operatorname{gcd}(t, t+2)=\operatorname{gcd}(2, t)
$$

Case: t is odd. Let $t=2 s+1$.
So $a=t=2 s+1, \quad b=t+1=2 s+2, \quad c=t+2=2 s+3$.
$\operatorname{gcd}(a, c)=\operatorname{gcd}(2 s+1,2 s+3)=\operatorname{gcd}(2,2 s+1)=\operatorname{gcd}(1,2)=1$.

Extended Euclidean algorithm yields

$$
1=(s+1) a-s c .
$$

Example 2: Frobenius Problem

$$
\operatorname{gcd}(a, c)=\operatorname{gcd}(t, t+2)=\operatorname{gcd}(2, t)
$$

Case: t is odd. Let $t=2 s+1$.
So $a=t=2 s+1, \quad b=t+1=2 s+2, \quad c=t+2=2 s+3$.
$\operatorname{gcd}(a, c)=\operatorname{gcd}(2 s+1,2 s+3)=\operatorname{gcd}(2,2 s+1)=\operatorname{gcd}(1,2)=1$.

Extended Euclidean algorithm yields

$$
1=(s+1) a-s c .
$$

Example 2: Frobenius Problem

$$
\operatorname{gcd}(a, c)=\operatorname{gcd}(t, t+2)=\operatorname{gcd}(2, t)
$$

Case: t is odd. Let $t=2 s+1$.
So $a=t=2 s+1, \quad b=t+1=2 s+2, \quad c=t+2=2 s+3$.
$\operatorname{gcd}(a, c)=\operatorname{gcd}(2 s+1,2 s+3)=\operatorname{gcd}(2,2 s+1)=\operatorname{gcd}(1,2)=1$.

Extended Euclidean algorithm yields

$$
1=(s+1) a-s c .
$$

Example 2: Frobenius Problem

$$
\operatorname{gcd}(a, c)=\operatorname{gcd}(t, t+2)=\operatorname{gcd}(2, t)
$$

Case: t is odd. Let $t=2 s+1$.
So $a=t=2 s+1, \quad b=t+1=2 s+2, \quad c=t+2=2 s+3$.
$\operatorname{gcd}(a, c)=\operatorname{gcd}(2 s+1,2 s+3)=\operatorname{gcd}(2,2 s+1)=\operatorname{gcd}(1,2)=1$.

Extended Euclidean algorithm yields

$$
1=(s+1) a-s c .
$$

Example 2: Frobenius Problem

$$
\operatorname{gcd}(a, c)=\operatorname{gcd}(t, t+2)=\operatorname{gcd}(2, t)
$$

Case: t is odd. Let $t=2 s+1$.
So $a=t=2 s+1, \quad b=t+1=2 s+2, \quad c=t+2=2 s+3$.
$\operatorname{gcd}(a, c)=\operatorname{gcd}(2 s+1,2 s+3)=\operatorname{gcd}(2,2 s+1)=\operatorname{gcd}(1,2)=1$.

Extended Euclidean algorithm yields

$$
1=(s+1) a-s c .
$$

Example 2: Frobenius Problem

$$
\operatorname{gcd}(a, c)=\operatorname{gcd}(t, t+2)=\operatorname{gcd}(2, t)
$$

Case: t is odd. Let $t=2 s+1$.
So $a=t=2 s+1, \quad b=t+1=2 s+2, \quad c=t+2=2 s+3$.
$\operatorname{gcd}(a, c)=\operatorname{gcd}(2 s+1,2 s+3)=\operatorname{gcd}(2,2 s+1)=\operatorname{gcd}(1,2)=1$.

Extended Euclidean algorithm yields

$$
1=(s+1) a-s c .
$$

Example 2: Frobenius Problem

$$
\operatorname{gcd}(a, c)=\operatorname{gcd}(t, t+2)=\operatorname{gcd}(2, t)
$$

Case: t is odd. Let $t=2 s+1$.
So $a=t=2 s+1, \quad b=t+1=2 s+2, \quad c=t+2=2 s+3$.
$\operatorname{gcd}(a, c)=\operatorname{gcd}(2 s+1,2 s+3)=\operatorname{gcd}(2,2 s+1)=\operatorname{gcd}(1,2)=1$.

Extended Euclidean algorithm yields

$$
1=(s+1) a-s c .
$$

Example 2: Frobenius Problem

$$
1=(s+1) a-s c .
$$

So one form for b is

$$
b=b(s+1) a-b s c=\left(2 s^{2}+4 s+2\right) a-\left(2 s^{2}+2 s\right) c .
$$

To get canonical form, divide $\left(2 s^{2}+4 s+2\right)$ by $c=2 s+3$.
Quotient is s, with remainder $s+2$, so the canonical form for b is

$$
\left(\left(2 s^{2}+4 s+2\right)-s c\right) a+\left(-\left(2 s^{2}+2 s\right)+s a\right) c=(s+2) a-s c .
$$

Example 2: Frobenius Problem

$$
1=(s+1) a-s c .
$$

So one form for b is

$$
b=b(s+1) a-b s c=\left(2 s^{2}+4 s+2\right) a-\left(2 s^{2}+2 s\right) c
$$

To get canonical form, divide $\left(2 s^{2}+4 s+2\right)$ by $c=2 s+3$.
Quotient is s, with remainder $s+2$, so the canonical form for b is

$$
\left(\left(2 s^{2}+4 s+2\right)-s c\right) a+\left(-\left(2 s^{2}+2 s\right)+s a\right) c=(s+2) a-s c .
$$

Example 2: Frobenius Problem

$$
1=(s+1) a-s c .
$$

So one form for b is

$$
b=b(s+1) a-b s c=\left(2 s^{2}+4 s+2\right) a-\left(2 s^{2}+2 s\right) c .
$$

To get canonical form, divide $\left(2 s^{2}+4 s+2\right)$ by $c=2 s+3$.
Quotient is s, with remainder $s+2$, so the canonical form for b is

$$
\left(\left(2 s^{2}+4 s+2\right)-s c\right) a+\left(-\left(2 s^{2}+2 s\right)+s a\right) c=(s+2) a-s c .
$$

Example 2: Frobenius Problem

$$
1=(s+1) a-s c .
$$

So one form for b is

$$
b=b(s+1) a-b s c=\left(2 s^{2}+4 s+2\right) a-\left(2 s^{2}+2 s\right) c .
$$

To get canonical form, divide $\left(2 s^{2}+4 s+2\right)$ by $c=2 s+3$.
Quotient is s, with remainder $s+2$, so the canonical form for b is

$$
\left(\left(2 s^{2}+4 s+2\right)-s c\right) a+\left(-\left(2 s^{2}+2 s\right)+s a\right) c=(s+2) a-s c .
$$

Example 2: Frobenius Problem

$$
1=(s+1) a-s c .
$$

So one form for b is

$$
b=b(s+1) a-b s c=\left(2 s^{2}+4 s+2\right) a-\left(2 s^{2}+2 s\right) c
$$

To get canonical form, divide $\left(2 s^{2}+4 s+2\right)$ by $c=2 s+3$.
Quotient is s, with remainder $s+2$, so the canonical form for b is

$$
\left(\left(2 s^{2}+4 s+2\right)-s c\right) a+\left(-\left(2 s^{2}+2 s\right)+s a\right) c=(s+2) a-s c .
$$

Example 2: Frobenius Problem

$$
1=(s+1) a-s c .
$$

So one form for b is

$$
b=b(s+1) a-b s c=\left(2 s^{2}+4 s+2\right) a-\left(2 s^{2}+2 s\right) c
$$

To get canonical form, divide $\left(2 s^{2}+4 s+2\right)$ by $c=2 s+3$.
Quotient is s, with remainder $s+2$, so the canonical form for b is

$$
\left(\left(2 s^{2}+4 s+2\right)-s c\right) a+\left(-\left(2 s^{2}+2 s\right)+s a\right) c=(s+2) a-s c .
$$

Example 2: Frobenius Problem

$$
1=(s+1) a-s c .
$$

So one form for b is

$$
b=b(s+1) a-b s c=\left(2 s^{2}+4 s+2\right) a-\left(2 s^{2}+2 s\right) c .
$$

To get canonical form, divide $\left(2 s^{2}+4 s+2\right)$ by $c=2 s+3$.
Quotient is s, with remainder $s+2$, so the canonical form for b is

$$
\left(\left(2 s^{2}+4 s+2\right)-s c\right) a+\left(-\left(2 s^{2}+2 s\right)+s a\right) c=(s+2) a-s c .
$$

Example 2: Frobenius Problem

Reminder: $T=\langle a, c\rangle$ and $S=\langle a, b, c\rangle=T \cup(b+T)$.
Want: Largest integer $u \notin S$. That is, $u \notin T$ and $u \notin b+T$.

Let $u=p a+q c$ be canonical form for $u, 0 \leq p<c$.
$u \notin T$ means $q<0$.

$$
\begin{aligned}
& t=5 . \\
& a=5, b=6, c=7 . \\
& 3=2 \cdot 5-1 \cdot 7 \text { is in canonical } \\
& \text { form. } 3 \notin T . \\
& F(5,7)=6 \cdot 5-1 \cdot 7=23 .
\end{aligned}
$$

Example 2: Frobenius Problem

Reminder: $T=\langle a, c\rangle$ and $S=\langle a, b, c\rangle=T \cup(b+T)$.
Want: Largest integer $u \notin S$. That is, $u \notin T$ and $u \notin b+T$.

Let $u=p a+q c$ be canonical form for $u, 0 \leq p<c$.
$u \notin T$ means $q<0$.

$$
\begin{aligned}
& t=5 . \\
& a=5, b=6, c=7 . \\
& 3=2 \cdot 5-1 \cdot 7 \text { is in canonical } \\
& \text { form. } 3 \notin T . \\
& F(5,7)=6 \cdot 5-1 \cdot 7=23 .
\end{aligned}
$$

Example 2: Frobenius Problem

Reminder: $T=\langle a, c\rangle$ and $S=\langle a, b, c\rangle=T \cup(b+T)$.
Want: Largest integer $u \notin S$. That is, $u \notin T$ and $u \notin b+T$.

Let $u=p a+q c$ be canonical form for $u, 0 \leq p<c$.
$u \notin T$ means $q<0$.

$$
\begin{aligned}
& t=5 . \\
& a=5, b=6, c=7 . \\
& 3=2 \cdot 5-1 \cdot 7 \text { is in canonical } \\
& \text { form. } 3 \notin T . \\
& F(5,7)=6 \cdot 5-1 \cdot 7=23 .
\end{aligned}
$$

Example 2: Frobenius Problem

Reminder: $T=\langle a, c\rangle$ and $S=\langle a, b, c\rangle=T \cup(b+T)$.
Want: Largest integer $u \notin S$. That is, $u \notin T$ and $u \notin b+T$.

Let $u=p a+q c$ be canonical form for $u, 0 \leq p<c$.
$u \notin T$ means $q<0$.

$$
\begin{aligned}
& t=5 . \\
& a=5, b=6, c=7 . \\
& 3=2 \cdot 5-1 \cdot 7 \text { is in canonical } \\
& \text { form. } 3 \notin T . \\
& F(5,7)=6 \cdot 5-1 \cdot 7=23 .
\end{aligned}
$$

Example 2: Frobenius Problem

Reminder: $T=\langle a, c\rangle$ and $S=\langle a, b, c\rangle=T \cup(b+T)$.
Want: Largest integer $u \notin S$. That is, $u \notin T$ and $u \notin b+T$.

Let $u=p a+q c$ be canonical form for $u, 0 \leq p<c$.
$u \notin T$ means $q<0$.

$$
\begin{aligned}
& t=5 . \\
& a=5, b=6, c=7 . \\
& 3=2 \cdot 5-1 \cdot 7 \text { is in canonical } \\
& \text { form. } 3 \notin T . \\
& F(5,7)=6 \cdot 5-1 \cdot 7=23 .
\end{aligned}
$$

Example 2: Frobenius Problem

Reminder: $T=\langle a, c\rangle$ and $S=\langle a, b, c\rangle=T \cup(b+T)$.
Want: Largest integer $u \notin S$. That is, $u \notin T$ and $u \notin b+T$.

Let $u=p a+q c$ be canonical form for $u, 0 \leq p<c$.
$u \notin T$ means $q<0$.

$$
\begin{aligned}
& t=5 . \\
& a=5, b=6, c=7 . \\
& 3=2 \cdot 5-1 \cdot 7 \text { is in canonical } \\
& \text { form. } 3 \notin T . \\
& F(5,7)=6 \cdot 5-1 \cdot 7=23 .
\end{aligned}
$$

Example 2: Frobenius Problem

Reminder: $T=\langle a, c\rangle$ and $S=\langle a, b, c\rangle=T \cup(b+T)$.
Want: Largest integer $u \notin S$. That is, $u \notin T$ and $u \notin b+T$.

Let $u=p a+q c$ be canonical form for $u, 0 \leq p<c$.
$u \notin T$ means $q<0$.

$$
\begin{aligned}
& t=5 . \\
& a=5, b=6, c=7 . \\
& 3=2 \cdot 5-1 \cdot 7 \text { is in canonical } \\
& \text { form. } 3 \notin T . \\
& F(5,7)=6 \cdot 5-1 \cdot 7=23 .
\end{aligned}
$$

Example 2: Frobenius Problem

Reminder: $T=\langle a, c\rangle$ and $S=\langle a, b, c\rangle=T \cup(b+T)$.
Want: Largest integer $u \notin S$. That is, $u \notin T$ and $u \notin b+T$.

Let $u=p a+q c$ be canonical form for $u, 0 \leq p<c$.
$u \notin T$ means $q<0$.

$$
\begin{aligned}
& t=5 . \\
& a=5, b=6, c=7 . \\
& 3=2 \cdot 5-1 \cdot 7 \text { is in canonical } \\
& \text { form. } 3 \notin T . \\
& F(5,7)=6 \cdot 5-1 \cdot 7=23 .
\end{aligned}
$$

Example 2: Frobenius Problem

Want: $u \notin T$ and $u \notin b+T$.
Reminder: $b=(s+2) a-s c$.

Example 2: Frobenius Problem

Want: $u \notin T$ and $u \notin b+T$.
Reminder: $b=(s+2) a-s c$.

$$
\begin{aligned}
& t=5 \\
& a=5, b=6, c=7
\end{aligned}
$$

Example 2: Frobenius Problem

Want: $u \notin T$ and $u \notin b+T$.
Reminder: $b=(s+2) a-s c$.

$$
\begin{aligned}
& t=5 \\
& a=5, b=6, c=7 . \\
& b+T \text { shown in red. }
\end{aligned}
$$

Example 2: Frobenius Problem

Want: $u \notin T$ and $u \notin b+T$.
Reminder: $b=(s+2) a-s c$.

Example 2: Frobenius Problem

Want: $u \notin T$ and $u \notin b+T$. Reminder: $b=(s+2) a-s c$.

Candidates for $F(a, b, c)$ are the "corners".
$F(5,6,7)=\max \{8,9\}=9$.

Example 2: Frobenius Problem

Want: $u \notin T$ and $u \notin b+T$.
Reminder: $b=(s+2) a-s c$.

General corners:

$$
\begin{aligned}
& p=s+1, q=-1 \text { and } \\
& \begin{aligned}
p= & 2 s+2, q=-s-1 . \\
& F(t, t+1, t+2) \\
& =\max \{(s+1) a-1 c, \\
& \quad(2 s+2) a+(-s-1) c\} \\
& =2 s^{2}+s-1 \\
& =\frac{t^{2}}{2}-\frac{t}{2}-1 \quad(t \text { odd }) .
\end{aligned}
\end{aligned}
$$

Example 2: Frobenius Problem

Want: $u \notin T$ and $u \notin b+T$.
Reminder: $b=(s+2) a-s c$.

General corners:

$$
\begin{aligned}
& p=s+1, q=-1 \text { and } \\
& \begin{aligned}
p= & 2 s+2, q=-s-1 . \\
& F(t, t+1, t+2) \\
& =\max \{(s+1) a-1 c, \\
& \quad(2 s+2) a+(-s-1) c\} \\
& =2 s^{2}+s-1 \\
& =\frac{t^{2}}{2}-\frac{t}{2}-1 \quad(t \text { odd }) .
\end{aligned}
\end{aligned}
$$

Example 2: Frobenius Problem

Want: $u \notin T$ and $u \notin b+T$.
Reminder: $b=(s+2) a-s c$.

General corners:

$$
\begin{aligned}
& p=s+1, q=-1 \text { and } \\
& \begin{aligned}
p= & 2 s+2, q=-s-1 . \\
& F(t, t+1, t+2) \\
& =\max \{(s+1) a-1 c, \\
& \quad(2 s+2) a+(-s-1) c\} \\
& =2 s^{2}+s-1 \\
& =\frac{t^{2}}{2}-\frac{t}{2}-1 \quad(t \text { odd }) .
\end{aligned}
\end{aligned}
$$

Example 2: Frobenius Problem

Want: $u \notin T$ and $u \notin b+T$.
Reminder: $b=(s+2) a-s c$.

General corners:

$$
\begin{aligned}
& p=s+1, q=-1 \text { and } \\
& p=2 s+2, q=-s-1
\end{aligned}
$$

$$
\begin{aligned}
& F(t, t+1, t+2) \\
& \quad=\max \{(s+1) a-1 c, \\
& \quad(2 s+2) a+(-s-1) c\} \\
& =2 s^{2}+s-1 \\
& =\frac{t^{2}}{2}-\frac{t}{2}-1 \quad(t \text { odd }) .
\end{aligned}
$$

Example 2: Frobenius Problem

Want: $u \notin T$ and $u \notin b+T$.
Reminder: $b=(s+2) a-s c$.

General corners:

$$
\begin{aligned}
& p=s+1, q=-1 \text { and } \\
& \begin{aligned}
p= & 2 s+2, q=-s-1 . \\
& F(t, t+1, t+2) \\
& =\max \{(s+1) a-1 c, \\
\quad & (2 s+2) a+(-s-1) c\} \\
& =2 s^{2}+s-1 \\
& =\frac{t^{2}}{2}-\frac{t}{2}-1 \quad(t \text { odd }) .
\end{aligned}
\end{aligned}
$$

Example 2: Frobenius Problem

Want: $u \notin T$ and $u \notin b+T$.
Reminder: $b=(s+2) a-s c$.

General corners:

$$
\begin{aligned}
& p=s+1, q=-1 \text { and } \\
& \begin{aligned}
p= & 2 s+2, q=-s-1 . \\
& F(t, t+1, t+2) \\
& =\max \{(s+1) a-1 c, \\
\quad & (2 s+2) a+(-s-1) c\} \\
& =2 s^{2}+s-1 \\
& =\frac{t^{2}}{2}-\frac{t}{2}-1 \quad(t \text { odd }) .
\end{aligned}
\end{aligned}
$$

Example 2: Frobenius Problem

Want: $u \notin T$ and $u \notin b+T$. Reminder: $b=(s+2) a-s c$.

Similarly,

$$
F(t, t+1, t+2)=\frac{t^{2}}{2} \quad(t \text { even })
$$

What's Different?

$$
\langle t, t+1, t+2\rangle=\left\{x \in \mathbb{N}: \exists y_{1}, y_{2}, y_{3} \in \mathbb{N}, x=t y_{1}+(t+1) y_{2}+(t+2) y_{3}\right\} .
$$

What's Different?

$\langle t, t+1, t+2\rangle=\left\{x \in \mathbb{N}: \exists y_{1}, y_{2}, y_{3} \in \mathbb{N}, x=t y_{1}+(t+1) y_{2}+(t+2) y_{3}\right\}$.
Coefficients of the variables depend on t.
As t changes, the normal vectors of (in)equalities change.
Still seems to be quasi-polynomial behavior in this situation, for sufficiently large t.

What's Different?

$\langle t, t+1, t+2\rangle=\left\{x \in \mathbb{N}: \exists y_{1}, y_{2}, y_{3} \in \mathbb{N}, x=t y_{1}+(t+1) y_{2}+(t+2) y_{3}\right\}$.
Coefficients of the variables depend on t. As t changes, the normal vectors of (in)equalities change.

Still seems to be quasi-polynomial behavior in this situation, for sufficiently large t.

What's Different?

$\langle t, t+1, t+2\rangle=\left\{x \in \mathbb{N}: \exists y_{1}, y_{2}, y_{3} \in \mathbb{N}, x=t y_{1}+(t+1) y_{2}+(t+2) y_{3}\right\}$.
Coefficients of the variables depend on t.
As t changes, the normal vectors of (in)equalities change.
Still seems to be quasi-polynomial behavior in this situation, for sufficiently large t.

What's Different?

Theorem (Roune-W)
If $a_{1}(t), \ldots, a_{n}(t)$ are linear functions of t, then
$F\left(a_{1}(t), \ldots, a_{n}(t)\right)$ agrees with a quasi-polynomial, for sufficiently large t.

Theorem (Chen-Li-Sam)
If P_{t} is a polyhedron defined by linear inequalities of the form

$$
a_{1}(t) x_{1}+\cdots+a_{d}(t) x_{d} \leq a_{0}(t)
$$

where $a_{i}(t)$ are polynomials in t, then $\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

Similar phenomenon for integer hulls of such polyhedra [Calegari-Walker].

What's Different?

Theorem (Roune-W)
If $a_{1}(t), \ldots, a_{n}(t)$ are linear functions of t, then
$F\left(a_{1}(t), \ldots, a_{n}(t)\right)$ agrees with a quasi-polynomial, for sufficiently large t.

Theorem (Chen-Li-Sam)
If P_{t} is a polyhedron defined by linear inequalities of the form

$$
a_{1}(t) x_{1}+\cdots+a_{d}(t) x_{d} \leq a_{0}(t)
$$

where $a_{i}(t)$ are polynomials in t, then $\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

Similar phenomenon for integer hulls of such polyhedra [Calegari-Walker].

What's Different?

Theorem (Roune-W)
If $a_{1}(t), \ldots, a_{n}(t)$ are linear functions of t, then
$F\left(a_{1}(t), \ldots, a_{n}(t)\right)$ agrees with a quasi-polynomial, for sufficiently large t.

Theorem (Chen-Li-Sam)
If P_{t} is a polyhedron defined by linear inequalities of the form

$$
a_{1}(t) x_{1}+\cdots+a_{d}(t) x_{d} \leq a_{0}(t)
$$

where $a_{i}(t)$ are polynomials in t, then $\left|P_{t} \cap \mathbb{Z}^{d}\right|$ agrees with a quasi-polynomial, for sufficiently large t.

Similar phenomenon for integer hulls of such polyhedra [Calegari-Walker].

What's Different?

Conjecture: This works in general, for formulas in Presburger arithmetic, extended to allow coefficients of the linear inequalities to be polynomials in t.

Caution: Only works with one parameter. For example

$$
S_{s, t}=\left\{(x, y) \in \mathbb{N}^{2}: s x+t y=s t\right\}
$$

is the line segment between $(t, 0)$ and $(0, s)$, so

$$
\left|S_{s, t}\right|=\operatorname{gcd}(s, t)+1
$$

is not a quasi-polynomial.

What's Different?

Conjecture: This works in general, for formulas in Presburger arithmetic, extended to allow coefficients of the linear inequalities to be polynomials in t.

Caution: Only works with one parameter. For example

$$
S_{s, t}=\left\{(x, y) \in \mathbb{N}^{2}: s x+t y=s t\right\}
$$

is the line segment between $(t, 0)$ and $(0, s)$, so

$$
\left|S_{s, t}\right|=\operatorname{gcd}(s, t)+1
$$

is not a quasi-polynomial.

What's Different?

Conjecture: This works in general, for formulas in Presburger arithmetic, extended to allow coefficients of the linear inequalities to be polynomials in t.

Caution: Only works with one parameter. For example

$$
S_{s, t}=\left\{(x, y) \in \mathbb{N}^{2}: s x+t y=s t\right\}
$$

is the line segment between $(t, 0)$ and $(0, s)$, so

$$
\left|S_{s, t}\right|=\operatorname{gcd}(s, t)+1
$$

is not a quasi-polynomial.

What's Different?

Conjecture: This works in general, for formulas in Presburger arithmetic, extended to allow coefficients of the linear inequalities to be polynomials in t.

Caution: Only works with one parameter. For example

$$
S_{s, t}=\left\{(x, y) \in \mathbb{N}^{2}: s x+t y=s t\right\}
$$

is the line segment between $(t, 0)$ and $(0, s)$, so

$$
\left|S_{s, t}\right|=\operatorname{gcd}(s, t)+1
$$

is not a quasi-polynomial.

What's Different?

Key Tool: Division algorithm - and hence gcd - yields quasi-polynomial behavior.

Example: Divide $a=t^{2}-t+3$ by $b=2 t$.
Usual division algorithm in $\mathbb{Q}[t]$:

$$
a=\left(\frac{t}{2}-\frac{1}{2}\right) \cdot b+3 .
$$

What's Different?

Key Tool: Division algorithm - and hence gcd - yields quasi-polynomial behavior.

Example: Divide $a=t^{2}-t+3$ by $b=2 t$.
Usual division algorithm in $\mathbb{Q}[t]$:

$$
a=\left(\frac{t}{2}-\frac{1}{2}\right) \cdot b+3 .
$$

What's Different?

Key Tool: Division algorithm - and hence gcd - yields quasi-polynomial behavior.

Example: Divide $a=t^{2}-t+3$ by $b=2 t$.
Usual division algorithm in $\mathbb{Q}[t]$:

$$
a=\left(\frac{t}{2}-\frac{1}{2}\right) \cdot b+3
$$

What's Different?

Key Tool: Division algorithm - and hence gcd - yields quasi-polynomial behavior.

Example: Divide $a=t^{2}-t+3$ by $b=2 t$.
Usual division algorithm in $\mathbb{Q}[t]$:

$$
a=\left(\frac{t}{2}-\frac{1}{2}\right) \cdot b+3 .
$$

But quotient may not be integral!

What's Different?

Break into cases based on parity of t. If $t=2 s$ is even:

$$
\begin{aligned}
a & =t^{2}-t+3=4 s^{2}-2 s+3 \\
b & =2 t=4 s \\
a & =s \cdot b+(-2 s+3) \\
& =(s-1) \cdot b+(b-2 s+3) \\
& =(s-1) \cdot b+(2 s+3)
\end{aligned}
$$

with $0 \leq 2 s+3<b$ for sufficiently large s.

What's Different?

Break into cases based on parity of t. If $t=2 s$ is even:

$$
\begin{aligned}
a & =t^{2}-t+3=4 s^{2}-2 s+3 \\
b & =2 t=4 s \\
a & =s \cdot b+(-2 s+3) \\
& =(s-1) \cdot b+(b-2 s+3) \\
& =(s-1) \cdot b+(2 s+3)
\end{aligned}
$$

with $0 \leq 2 s+3<b$ for sufficiently large s.

What's Different?

Break into cases based on parity of t. If $t=2 s$ is even:

$$
\begin{aligned}
a & =t^{2}-t+3=4 s^{2}-2 s+3 \\
b & =2 t=4 s \\
a & =s \cdot b+(-2 s+3) \\
& =(s-1) \cdot b+(b-2 s+3) \\
& =(s-1) \cdot b+(2 s+3)
\end{aligned}
$$

with $0 \leq 2 s+3<b$ for sufficiently large s.

What's Different?

Break into cases based on parity of t. If $t=2 s$ is even:

$$
\begin{aligned}
a & =t^{2}-t+3=4 s^{2}-2 s+3 \\
b & =2 t=4 s \\
a & =s \cdot b+(-2 s+3) \\
& =(s-1) \cdot b+(b-2 s+3) \\
& =(s-1) \cdot b+(2 s+3)
\end{aligned}
$$

with $0 \leq 2 s+3<b$ for sufficiently large s.

What's Different?

Break into cases based on parity of t. If $t=2 s$ is even:

$$
\begin{aligned}
a & =t^{2}-t+3=4 s^{2}-2 s+3 \\
b & =2 t=4 s \\
a & =s \cdot b+(-2 s+3) \\
& =(s-1) \cdot b+(b-2 s+3) \\
& =(s-1) \cdot b+(2 s+3)
\end{aligned}
$$

with $0 \leq 2 s+3<b$ for sufficiently large s.

What's Different?

- [Roune-W], [Chen-Li-Sam], [Calegari-Walker] all use division algoirthm heavily.
- But all have their own tricks on top of that.
- An algorithm like quantifier elimination would be desirable.

What's Different?

- [Roune-W], [Chen-Li-Sam], [Calegari-Walker] all use division algoirthm heavily.
- But all have their own tricks on top of that.
- An algorithm like quantifier elimination would be desirable.

What's Different?

- [Roune-W], [Chen-Li-Sam], [Calegari-Walker] all use division algoirthm heavily.
- But all have their own tricks on top of that.
- An algorithm like quantifier elimination would be desirable.

Thank You!

