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Quasi-polynomials
Definition: g : N — N is a quasi-polynomial of period m if there
exist polynomials go, g1, ..., &m—1 such that

g(t) = 8t mod m(t),Vt e N.

Example: For t € N, let

Se={xeN: 1<2x<t}={12...,[t/2]}

Then

12 (t—1)/2 iftmod2=1.
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Example 1: Parametric Polyhedron

Let P be the triangle with vertices (0,0), (1/2,0), and (1/2,1).

Let S; = tPNZ?, for t € N.
What is |S¢|, as a function of t?
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Example 1: Parametric Polyhedron

The hard (but insightful) way to
calculate |S;|:

Definition: The generating function
for S C Z? is given by

f(S;x,y) = ny

(c,d)eS

Example:

F(Ssix,y) = Xy +xlyPtxlytxly?.

Let's find (S x,y).
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Example 1: Parametric Polyhedron

Let's first find f(S; x, y) for this set.
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Example 1: Parametric Polyhedron

Let k = |t/2].
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Example 1: Parametric Polyhedron

f(st;xay) =
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(1=x)(1-xy?)
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Example 1: Parametric Polyhedron

1+X Xk+1 Xk+1 2k+3
F(Seix,y) = Y Y

L0002 -0y @01y

F(Sa1,1)= Y 1917 =1S.
(c,d)ES:

So plugin x =1,y = 1!
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Example 1: Parametric Polyhedron

1 + xy xk+1 Xk+1y2k+3

f(St;x,y) = (1 _ X)(l — xy2)_(1 — X)(l — y)+(1 — xy2)(1 — y).

F(Sa1,1)= Y 1917 =1S.
(c,d)ES:

So plugin x =1,y = 1!
Uh oh.
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Take limit as (x,y) — (1,1), e.g, get common denominator, then
repeated L'Hopital's rule, one variable at a time:

[Sel = (k+1)* = ([t/2] +1)*.
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Generalizing Example 1

Definition: A parametric polyhedron, P; C R is the solution set
to a system of linear inequalities of the form

aixy + -+ agxqg < bt + c.

Theorem (McMullen, Brion, Barvinok)

|P. N Z9| agrees with a quasi-polynomial, for sufficiently large t.

v

Inclusion-exclusion on generating functions reduces to cones.

Cones simply translate with t.

v

v

Generating function of such a cone is easy.
Compute f(5;1,...,1) with L'Hopital's rule.

v
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Generalizing Example 1
Our Example:

(x,y)€Z%: (y>0)A(2x <t)A(y —2x <0)

t:z: t:3
[ ]

How about allowing other Boolean operations like \/ (or)?



Generalizing Example 1
Our Example:

(x,y)€Z%: (y>0)A(x <t)A(y —2x <0)

t=2: t=3: t=4:
°

How about allowing other Boolean operations like \V (or)?

No problem [Barvinok—Pommersheim].
For example, Disjunctive Normal Form yields union of parametric
polyhedra:

AAN(BV CVD) is (ANB)V(AAC)V(AAD).
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How about adding quantifiers (3,V)?
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How about adding quantifiers (3,V)?

No problem [W].

» Quantifiers can be eliminated [Presburger], by also using
mod k operation, for constants k:

{XGN: EIyEN,x:3y—|—1}:{XEN: x:1m0d3}.
» mod plays nicely with generating functions:

S={L47...} f(S;X)=X1+X4+x7+~-:ﬁ.
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Theorem (W)

Suppose F is a first-order formula over the natural numbers,
defined using linear inequalities, Boolean operations, and
quantifiers (Presburger arithmetic). Suppose the free
(unquantified) variables in F are c1,...cq (the counted variables)
and p1,...,pn (the parameter variables). Then

g(p1,...,pn) =#(c1,...,cq) making F true

is a piecewise quasi-polynomial, defined on polyhedral pieces.
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Example 2: Frobenius Problem

Definition: Let (a1,...,a,) be the semigroup generated by
ai,...,ap, thatis,

n
{Zpiai pi € Z>0} .
i—1

Example (3,7) = {0,3,6,7,9,10,12,13,14,...}.

Definition: The Frobenius number, F(a1,...,a,), is the largest
integer not in (ai,...,an) (exists when a; are relatively prime).

So F(3,7)=11.
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Example 2: Frobenius Problem

What is F(t,t+1,t+2)?

We'll work through this in a minute.



Example 2: Frobenius Problem

Simpler problem: What is F(a, b), for a, b relatively prime?

Definition: The canonical form for an integer c is ¢ = pa+ gb
with p,g € Z and 0 < p < b.

Facts:

» If c = p'a+ ¢'bis any form with p’, ¢’ € Z, then all forms can
be written as ¢ = (p’ — kb)a + (q’ + ka)b, for k € Z.

» Canonical form exists and is unique. In fact, it is
ra+ (g’ + ka)b, where k and r are the quotient and remainder
when dividing p’ by b.

» If ¢ = pa+ gb is in canonical form, ¢ € (a, b) if and only if
g>0. (<: p,g >0, soimmediate. =: take c = p'a+ q'b
with p’, ¢’ > 0 and use previous fact.)
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So ¢ € 7Z are in bijection to canonical forms (p, g) with 0 < p < b.
c € (a, b) are in bijection to canonical forms with g > 0.

Largest ¢ ¢ (a, b) correspondsto p=b—1,q = —1.

F(a,b)=(b—1)a+ (-1)b=ab—a—b.
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Example 2: Frobenius Problem

So ¢ € Z are in bijection to canonical forms (p, g) with 0 < p < b.
c € (a, b) are in bijection to canonical forms with g > 0.

Largest ¢ ¢ (a, b) correspondsto p=b—1,q = —1.

F(a,b)=(b—1)a+ (-1)b=ab—a—b.

F(3,7)=3-7-3-7=11.



Example 2: Frobenius Problem
How about F(t,t+1,t+ 2)?

Let
»a=t, b=t+1 c=t+2,
» S={(a,b,c),
» T =(a,c).

Note: 2b = a+ c.

So if u=pa+ gb+ rc, with p,g,r > 0 is a representation of
u€eS, andif g > 2, then so is

(p+1a+(g—2)b+ (r+1)c.

S=TU(b+T).
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3=2-5—1-7is in canonical
form. 3¢ T.

F(5,7)=6-5—1-7=23.
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t = 5.
a=5 b=6 c=".

b+ T shown in red.
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Candidates for F(a, b, c) are
the “corners”.

F(5,6,7) = max{8,9} = 9.
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Similarly,

£2
F(t,t+1,t+2)= > (t even).
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What's Different?

Theorem (Roune-W)

If ai(t), ..., an(t) are linear functions of t, then
F(ai(t),....an(t)) agrees with a quasi-polynomial, for sufficiently
large t.

Theorem (Chen-Li-Sam)
If P; is a polyhedron defined by linear inequalities of the form

al(t)xl + -+ ad(t)xd < ao(t),

where a;(t) are polynomials in t, then |P; N 79| agrees with a
quasi-polynomial, for sufficiently large t.

Similar phenomenon for integer hulls of such polyhedra
[Calegari-Walker].
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What's Different?

Conjecture: This works in general, for formulas in Presburger
arithmetic, extended to allow coefficients of the linear inequalities
to be polynomials in t.

Caution: Only works with one parameter. For example
St ={(x,y) € N?: sx+ ty = st}
is the line segment between (t,0) and (0, s), so

|Ss,¢

= gcd(s,t) +1

is not a quasi-polynomial.
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What's Different?

Key Tool: Division algorithm — and hence gcd — yields
quasi-polynomial behavior.

Example: Divide a=t> —t +3 by b = 2t.
Usual division algorithm in Q[¢]:

t 1

But quotient may not be integral!



What's Different?

Break into cases based on parity of t. If t = 25 is even:
a=1t>—t+3=4s>—2s+3,
b =2t = 4s,

a=s-b+(—2s+3)
—(s—1)-b+(b—25+3)
=(s—1)-b+(25s+3),

with 0 < 2s + 3 < b for sufficiently large s.
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