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Quasi-polynomials

Definition: g : N→ N is a quasi-polynomial of period m if there
exist polynomials g0, g1, . . . , gm−1 such that

g(t) = gt mod m(t),∀t ∈ N.

Example: For t ∈ N, let

St = {x ∈ N : 1 ≤ 2x ≤ t} = {1, 2, . . . , bt/2c}.

Then

|St | =
⌊ t

2

⌋
=

{
t/2 if t mod 2 = 0,

(t − 1)/2 if t mod 2 = 1.
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Example 1: Parametric Polyhedron

Let P be the triangle with vertices (0, 0), (1/2, 0), and (1/2, 1).

Let St = tP ∩ Z2, for t ∈ N.
What is |St |, as a function of t?

t = 1 : t = 2 : t = 3 : t = 4 :
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Example 1: Parametric Polyhedron

The hard (but insightful) way to
calculate |St |:

Definition: The generating function
for S ⊆ Z2 is given by

f (S ; x , y) =
∑

(c,d)∈S

xcyd .

Example:

f (S3; x , y) = x0y0+x1y0+x1y1+x1y2.

Let’s find f (St ; x , y).
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Example 1: Parametric Polyhedron

Let’s first find f (S ; x , y) for this set.



Example 1: Parametric Polyhedron

f (S ; x , y) =

(x0y0 + x1y1)

· (1 + x1 + x2 + x3 + · · · )
· (1 + (x1y2)1 + (x1y2)2 + · · · )

=
1 + xy

(1− x)(1− xy2)

x4y5 = x1y1(x)1(x1y2)2

x4y2 = x0y0(x)3(x1y2)1
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Example 1: Parametric Polyhedron

Let k = bt/2c.

−xk+1y0

· (1 + x + x2 + · · · )
· (1 + y + y2 + · · · )

=− xk+1

(1− x)(1− y)
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1 + xy

(1− x)(1− xy2)

− xk+1

(1− x)(1− y)



Example 1: Parametric Polyhedron

+xk+1y2(k+1)+1

· (1 + xy2 + (xy2)2 + · · · )
· (1 + y + y2 + · · · )

=
xk+1y2k+3

(1− xy2)(1− y)



Example 1: Parametric Polyhedron

f (St ; x , y) =

1 + xy

(1− x)(1− xy2)

− xk+1

(1− x)(1− y)

+
xk+1y2k+3

(1− xy2)(1− y)
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Example 1: Parametric Polyhedron

f (St ; x , y) =
1 + xy

(1− x)(1− xy2)
− xk+1

(1− x)(1− y)
+

xk+1y2k+3

(1− xy2)(1− y)
.

f (St ; 1, 1) =
∑

(c,d)∈St

1c1d = |St |.

So plug in x = 1, y = 1!

Uh oh.
Take limit as (x , y)→ (1, 1), e.g, get common denominator, then
repeated L’Hôpital’s rule, one variable at a time:

|St | = (k + 1)2 = (bt/2c+ 1)2 .
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Generalizing Example 1

Definition: A parametric polyhedron, Pt ⊆ Rd , is the solution set
to a system of linear inequalities of the form

a1x1 + · · ·+ adxd ≤ bt + c .

Theorem (McMullen, Brion, Barvinok)

|Pt ∩ Zd | agrees with a quasi-polynomial, for sufficiently large t.

I Inclusion-exclusion on generating functions reduces to cones.

I Cones simply translate with t.

I Generating function of such a cone is easy.

I Compute f (S ; 1, . . . , 1) with L’Hôpital’s rule.
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Generalizing Example 1
Our Example:

(x , y) ∈ Z2 : (y ≥ 0) ∧ (2x ≤ t) ∧ (y − 2x ≤ 0)

t = 1 : t = 2 : t = 3 : t = 4 :

How about allowing other Boolean operations like ∨ (or)?

No problem [Barvinok–Pommersheim].
For example, Disjunctive Normal Form yields union of parametric
polyhedra:

A ∧ (B ∨ C ∨ D) is (A ∧ B) ∨ (A ∧ C ) ∨ (A ∧ D).



Generalizing Example 1
Our Example:

(x , y) ∈ Z2 : (y ≥ 0) ∧ (2x ≤ t) ∧ (y − 2x ≤ 0)

t = 1 : t = 2 : t = 3 : t = 4 :

How about allowing other Boolean operations like ∨ (or)?

No problem [Barvinok–Pommersheim].
For example, Disjunctive Normal Form yields union of parametric
polyhedra:

A ∧ (B ∨ C ∨ D) is (A ∧ B) ∨ (A ∧ C ) ∨ (A ∧ D).



Generalizing Example 1

How about adding quantifiers (∃,∀)?

No problem [W].

I Quantifiers can be eliminated [Presburger], by also using
mod k operation, for constants k:{

x ∈ N : ∃y ∈ N, x = 3y + 1} =
{
x ∈ N : x = 1 mod 3

}
.

I mod plays nicely with generating functions:

S = {1, 4, 7, . . .}, f (S ; x) = x1 + x4 + x7 + · · · =
x

1− x3
.
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Generalizing Example 1

How about adding more parameter variables than simply t?

No problem [Barvinok–Pommersheim, W], with one new wrinkle:

{a, b ∈ Z : a ≥ 0, b ≥ 0, 2b − a ≤ 2t − s, a− b ≤ s − t}.

t ≤ s ≤ 2t

0 ≤ 2t ≤ s 0 ≤ s ≤ t
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Generalizing Example 1

End up with

c(s, t) =


s2

2 − b
s
2cs + s

2 + b s2c
2 + b s2c+ 1 if t ≤ s ≤ 2t

st − b s2cs −
t2

2 + t
2 + b s2c

2 + b s2c+ 1 if 0 ≤ 2t ≤ s
t2

2 + 3t
2 + 1 if 0 ≤ s ≤ t

.

Theorem (W)

Suppose F is a first-order formula over the natural numbers,
defined using linear inequalities, Boolean operations, and
quantifiers (Presburger arithmetic). Suppose the free
(unquantified) variables in F are c1, . . . cd (the counted variables)
and p1, . . . , pn (the parameter variables). Then

g(p1, . . . , pn) = #(c1, . . . , cd) making F true

is a piecewise quasi-polynomial, defined on polyhedral pieces.
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Example 2: Frobenius Problem

Definition: Let 〈a1, . . . , an〉 be the semigroup generated by
a1, . . . , an, that is, {

n∑
i=1

piai

∣∣∣ pi ∈ Z≥0

}
.

Example 〈3, 7〉 = {0, 3, 6, 7, 9, 10, 12, 13, 14, . . .}.

Definition: The Frobenius number, F (a1, . . . , an), is the largest
integer not in 〈a1, . . . , an〉 (exists when ai are relatively prime).

So F(3,7)=11.
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Example 2: Frobenius Problem

What is F (t, t + 1, t + 2)?

We’ll work through this in a minute.



Example 2: Frobenius Problem

Simpler problem: What is F (a, b), for a, b relatively prime?

Definition: The canonical form for an integer c is c = pa + qb
with p, q ∈ Z and 0 ≤ p < b.

Facts:

I If c = p′a + q′b is any form with p′, q′ ∈ Z, then all forms can
be written as c = (p′ − kb)a + (q′ + ka)b, for k ∈ Z.

I Canonical form exists and is unique. In fact, it is
ra + (q′+ ka)b, where k and r are the quotient and remainder
when dividing p′ by b.

I If c = pa + qb is in canonical form, c ∈ 〈a, b〉 if and only if
q ≥ 0. (⇐: p, q ≥ 0, so immediate. ⇒: take c = p′a + q′b
with p′, q′ ≥ 0 and use previous fact.)
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Example 2: Frobenius Problem

How about F (t, t + 1, t + 2)?

Let

I a = t, b = t + 1, c = t + 2,

I S = 〈a, b, c〉,
I T = 〈a, c〉.

Note: 2b = a + c.

So if u = pa + qb + rc , with p, q, r ≥ 0 is a representation of
u ∈ S , and if q ≥ 2, then so is

(p + 1)a + (q − 2)b + (r + 1)c .

S = T ∪ (b + T ).
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Example 2: Frobenius Problem

gcd(a, c) = gcd(t, t + 2) = gcd(2, t).

Case: t is odd. Let t = 2s + 1.
So a = t = 2s + 1, b = t + 1 = 2s + 2, c = t + 2 = 2s + 3.

gcd(a, c) = gcd(2s + 1, 2s + 3) = gcd(2, 2s + 1) = gcd(1, 2) = 1.

Extended Euclidean algorithm yields

1 = (s + 1)a− sc .
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1 = (s + 1)a− sc.

So one form for b is

b = b(s + 1)a− bsc = (2s2 + 4s + 2)a− (2s2 + 2s)c .

To get canonical form, divide (2s2 + 4s + 2) by c = 2s + 3.

Quotient is s, with remainder s + 2, so the canonical form for b is(
(2s2 + 4s + 2)− sc

)
a +

(
− (2s2 + 2s) + sa

)
c = (s + 2)a− sc.
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Example 2: Frobenius Problem

Reminder: T = 〈a, c〉 and S = 〈a, b, c〉 = T ∪ (b + T ).
Want: Largest integer u /∈ S . That is, u /∈ T and u /∈ b + T .

Let u = pa + qc be canonical form for u, 0 ≤ p < c.
u /∈ T means q < 0.

3 8

1

4 9

2

q

p

13 18 23

16116

t = 5.
a = 5, b = 6, c = 7.

3 = 2 · 5− 1 · 7 is in canonical
form. 3 /∈ T .

F (5, 7) = 6 · 5− 1 · 7 = 23.
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Candidates for F (a, b, c) are

the “corners”.

F (5, 6, 7) = max{8, 9} = 9.
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General corners:
p = s + 1, q = − 1 and
p = 2s + 2, q = − s − 1.

F (t, t + 1, t + 2)

= max{(s + 1)a− 1c ,

(2s + 2)a + (−s − 1)c}
= 2s2 + s − 1

=
t2

2
− t

2
− 1 (t odd).
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Example 2: Frobenius Problem

Want: u /∈ T and u /∈ b + T .
Reminder: b = (s + 2)a− sc.
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Similarly,

F (t, t + 1, t + 2) =
t2

2
(t even).



What’s Different?

〈t, t+1, t+2〉 =
{
x ∈ N : ∃y1, y2, y3 ∈ N, x = ty1+(t+1)y2+(t+2)y3

}
.

Coefficients of the variables depend on t.
As t changes, the normal vectors of (in)equalities change.

Still seems to be quasi-polynomial behavior in this situation, for
sufficiently large t.
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What’s Different?

Theorem (Roune–W)

If a1(t), . . . , an(t) are linear functions of t, then
F
(
a1(t), . . . , an(t)

)
agrees with a quasi-polynomial, for sufficiently

large t.

Theorem (Chen–Li–Sam)

If Pt is a polyhedron defined by linear inequalities of the form

a1(t)x1 + · · ·+ ad(t)xd ≤ a0(t),

where ai (t) are polynomials in t, then |Pt ∩ Zd | agrees with a
quasi-polynomial, for sufficiently large t.

Similar phenomenon for integer hulls of such polyhedra
[Calegari–Walker].
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What’s Different?

Conjecture: This works in general, for formulas in Presburger
arithmetic, extended to allow coefficients of the linear inequalities
to be polynomials in t.

Caution: Only works with one parameter. For example

Ss,t = {(x , y) ∈ N2 : sx + ty = st}

is the line segment between (t, 0) and (0, s), so

|Ss,t | = gcd(s, t) + 1

is not a quasi-polynomial.
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What’s Different?

Key Tool: Division algorithm – and hence gcd – yields
quasi-polynomial behavior.

Example: Divide a = t2 − t + 3 by b = 2t.

Usual division algorithm in Q[t]:

a =

(
t

2
− 1

2

)
· b + 3.

But quotient may not be integral!
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Break into cases based on parity of t. If t = 2s is even:

a = t2 − t + 3 = 4s2 − 2s + 3,

b = 2t = 4s,

a = s · b + (−2s + 3)

= (s − 1) · b + (b − 2s + 3)

= (s − 1) · b + (2s + 3),

with 0 ≤ 2s + 3 < b for sufficiently large s.
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What’s Different?

I [Roune–W], [Chen–Li–Sam], [Calegari–Walker] all use division
algoirthm heavily.

I But all have their own tricks on top of that.

I An algorithm like quantifier elimination would be desirable.
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Thank You!


