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In the theory of Artin presentations, a smooth four manifold is already

determined by an Artin presentation of the fundamental group of its boundary.

Thus, one of the central problems in four dimensional smooth topology, namely the

study of smooth structures on these manifolds and their Donaldson and

Seiberg-Witten invariants, can be approached in an entirely new, exterior, purely

group theoretic manner.

The main purpose of this thesis is to explicitly demonstrate how to change the

smooth structure in this manner, while preserving the underlying continuous

topological structure. These examples also have physical relevance.



We also solve some related problems. Namely, we study knot and link theory

in Artin presentation theory, give a group theoretic formula for the Casson

invariant, study the combinatorial group theory of Artin presentations, and state

some important open problems.
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CHAPTER 1

Introduction

Artin Presentation theory (AP theory) is a discrete, purely group theoretic

theory of smooth, compact, simply connected 4-manifolds, their boundaries, and

knots and links therein [W],[CW].

By definition, an Artin presentation r is a finite presentation:

hx1, . . . , xn | r1, . . . , rni

satisfying the following equation in Fn (the free group on x1, . . . , xn):

x1x2 · · ·xn =
¡
r−11 x1r1

¢ ¡
r−12 x2r2

¢ · · · ¡r−1n xnrn
¢
.

The name, given by González-Acuña in 1975, was well chosen as Emil Artin first

considered such presentations in 1925 [A], p.416-441, regarding his theory of braids.

Details and proofs of the following statements are in [W],[CW], and they

appear in Chapter 2 for the sake of completeness.

For n > 0, Rn will denote the set of Artin presentations on n generators. Rn

forms a group canonically isomorphic to Pn × Zn, where Pn is the classical pure

1
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braid group on n strands. Let Ωn denote the compact 2-disk with n holes. An

Artin presentation r ∈ Rn determines:

π (r) = the group presented by r,

A (r) = an n× n symmetric integer matrix,

h (r) = a self homeomorphism of Ωn that is the identity

on ∂Ωn and is unique up to isotopy rel ∂Ωn,

M3 (r) = a closed, connected, orientable 3-manifold,

W 4 (r) = a smooth, compact, connected,

simply connected 4-manifold.

The manifold M3 (r) is the open book with planar page Ωn defined by h (r),

has fundamental group isomorphic to π (r), and bounds W 4 (r). The matrix A (r)

is the exponent sum matrix of the presentation r, is a presentation matrix of

H1 (M
3 (r) ;Z), and represents the quadratic form of W 4 (r). In particular, M3 (r)

is a rational homology 3-sphere if and only if detA (r) 6= 0 and is an integral

homology 3-sphere if and only if detA (r) = ±1. We have:

Theorem (González-Acuña [GA]). Every closed, connected, orientable 3-manifold

is homeomorphic to some M3 (r).
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Thus, Artin Presentations characterize the fundamental groups of closed,

orientable 3-manifolds.

Artin presentations whose exponent sum matrices are identically zero are

called Torelli and are usually denoted by t. The set of all Torelli in Rn forms a

subgroup canonically isomorphic to [Pn, Pn], the commutator subgroup of Pn. The

Torelli in AP theory are a subgroup of the classical Torelli group consisting of

elements of the mapping class group of the closed, orientable genus n surface that

act trivially on the first homology group of the surface.

A is a group homomorphism. If r, r0 ∈ Rn and · denotes the group operation in

Rn then:

A (r0 · r) = A (r0) +A (r) .

It follows that A (t · r) = A (r) for all Torelli t.

The Torelli subgroup acts on Rn by left translation. This action preserves the

integer homology of both M3 (r) and W 4 (r), although it can change the topology

and the knot and linking theory of the manifolds concerned.

Observe that Theorem I of [W] reveals a somewhat surprising tie in of

Donaldson’s theorem with discrete pure group theory.

Theorem (Winkelnkemper [W], Th. I, p.240). Let r be an Artin Presentation

whose exponent sum matrix A (r) is definite, but not congruent to ±I over Z.
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Then, the group π (r) is nontrivial. In fact, there is a nontrivial representation of

π (r) into SU (2).

This theorem is a consequence of 4D AP theory and Taubes’ augmentation of

Donaldson’s theorem [W], p.240, and is purely group theoretic, despite the fact that

Donaldson’s theorem is arrived at via smooth, differential geometric methods.

In fact, there also exists a nontrivial, purely group theoretic theory of

Donaldson invariants [CW].

One of the central problems of modern differential topology and physics is the

study of the smooth structures of simply connected, compact 4-manifolds. The

theory is of utmost importance and considerable subtlety, not only mathematically

but also physically. See for example, Fintushel and Stern [FS] and Witten

[Wi1],[Wi2].

The main purpose of this thesis is to show that one can change the smooth

structure of a compact, smooth, simply connected 4-manifold while preserving the

underlying continuous topology in an entirely different manner than that of [FS]

and others, namely with the Torelli action as follows.

Let r be an Artin presentation such that detA (r) = ±1, then W 4 (r) is a

compact, smooth, simply connected 4-manifold whose boundary is an oriented,

integral homology 3-sphere. Suppose t is a Torelli such that M3 (r) and M3 (t · r)

are orientation preserving homeomorphic. Then, since A (r) = A (t · r), the
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4-manifolds W 4 (r) and W 4 (t · r) will be homeomorphic by Freedman’s theorem

[FrQ], see also [GS], p.448. However, the important question arises whether they

are diffeomorphic also.

Using work of Akbulut [Ak1],[Ak2] we show that:

Theorem 5 (Chapter 3 below). There exists Artin Presentations r ∈ Rn and

Torelli t ∈ Rn for all n ≥ 10 such that W 4 (r) and W 4 (t · r) are homeomorphic

but not diffeomorphic.

The common boundaries of these 4-manifolds is the simplest hyperbolic

integral homology 3-sphere, namely the 1/2 Dehn sphere of the figure eight knot of

S3 (see Section 3.2).

Thus, smooth structures on an underlying topological 4-manifold can be

changed in a general, ‘exterior’, purely group theoretic manner, as opposed to the

more ‘internal’, classical surgery methods of [FS] and others. It is pure group

theory that generates new 4D smooth structures, i.e. structures that are ultimately

at the foundation of General Relativity.

An intriguing question arises, further discussion of which we defer to other

papers. The global consequences of solving the 4D quantum Yang-Mills mass gap

(‘Millennium’) problem [JWi], p.6, are closely related to the behavior of Donaldson

invariants on algebraic surfaces [Wi2], p.25. Since generalizing Witten’s work

[Wi1] on this subject from the Kähler case to the general case involves serious
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analytical obstructions, it is natural to hope that developing our purely group

theoretic Donaldson invariants, where analytic problems of moduli are absent,

could be a promising attack.

Another problem of a difficult nature is, since AP theory has an analogue of

Donaldson theory, to find an analogue of Floer theory in AP theory. A hint that

this is possible is that the Casson invariant of an integral homology 3-sphere is the

Euler characteristic of the Floer homology. In Chapter 5 we show how to compute

the Casson invariant of M3 (r) with detA (r) 6= 0 in function of r purely group

theoretically. This already shows that at least all 3D Seiberg-Witten invariants can

be computed group theoretically in AP theory by Lim’s result [Lim]. The

analogous 4D problem is open.

An important strength of AP theory is its canonical group theoretic knot/link

theory [W], p.226,227, which plays a key role in computing the Casson invariant.

Fix r = hx1, . . . , xn | r1, . . . , rni ∈ Rn. Then, there are n+ 1 distinguished knots,

k0, k1, . . . , kn, in M3 (r). These knots are the boundary of Ωn in the open book

construction. The knot groups Gi of the knots ki are presented by ([W], p.226,227

and [CW], Section 2.1):

G0 = hx1, . . . , xn | r1 = r2 = · · · = rni ,

Gi = hx1, . . . , xn | r1, r2, . . . ri−1, ri+1, . . . , rni , i 6= 0.
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In Chapter 4 we prove that these knots are sufficiently general. In particular,

every link in every closed, connected, orientable 3-manifold M3 appears as a

sublink of the union of the ki (r)s for some Artin presentation r such that M3 (r) is

homeomorphic to M3. We are indebted to González-Acuña for this fundamental,

unpublished result.

Furthermore [W], p.226,227, if A (r) is unimodular (i.e. M3 (r) is an integral

homology 3-sphere), then the peripheral structures mi, li of the knots ki are given

by: m0 =any ri, l0 = x1x2 · · ·xnm−s
0 where s is the sum of all elements in A (r)−1 ,

and for i 6= 0, mi = ri, li = xim
−bi
i where bi =

£
A (r)−1

¤
ii
. Thus, using a computer

algebra system, such as MAGMA, one can systematically explore link theory in

closed, orientable 3-manifolds.

Artin presentation knot theory does not use skein methods, is functorial with

respect to the Torelli action, and framings are not put in ‘by hand.’

Recall that relationships between Alexander polynomials of knots and smooth

invariants have already surfaced [MeTa],[FS]. Thus, it is natural to expect that

smooth invariants of the 4-manifolds W 4 (r) are related to the Alexander

polynomials of the canonical knots ki (r).

In Chapter 6 we discuss combinatorial group theoretic aspects of Artin

presentations. Using only combinatorial group theory, we characterize Artin

presentations in R2, we show that the j-reduction of an Artin presentation is an
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Artin presentation, and as a corollary we obtain a new, purely group theoretic

proof of the symmetry of A (r) for any Artin presentation.

We close this introduction by stating some fundamental open problems which

can be attacked with AP theory.

First, there is the 11/8 conjecture (see [GS], p.16). If X4 is a smooth, closed,

simply connected 4-manifold with indefinite, even intersection form Q, then Q is

isomorphic to 2kE8 ⊕ lH for some integers k and l (see [GS], p.14-17). It is known

that l ≥ 2 |k|+ 1; the 11/8 conjecture states that l ≥ 3 |k|. This problem is

computer approachable due to AP theory as follows. Choose a unimodular,

symmetric integer matrix A that satisfies the above conditions but contradicts the

11/8 conjecture. Construct an Artin presentation r such that A (r) = A (this is

always possible [W], p.248). Now, using a computer algebra system such as

MAGMA, compose r with many Torelli hoping to find a Torelli t such that

π (t · r) = 1.

Second, is every closed, smooth, connected, simply connected 4-manifold

obtained as a W 4 (r) union D4 where r is an Artin presentation of S3? No

counterexamples are known, see [GS], p.344. An affirmative answer, plus the truth

of the Poincaré conjecture, would imply that the study of such 4-manifolds embeds

into the theory of Artin presentations of the trivial group.
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Finally, is every integral homology 3-sphere Σ3 homeomorphic to M3 (r) where

r is an Artin presentation such that its exponent sum matrix A (r) equals I, the

identity matrix? For these spheres, González-Acuña discovered a beautiful, purely

group theoretic, formula for the Rohlin invariant (see Chapter 5 below). Our

formula for the Casson invariant in Chapter 5 generalizes González-Acuña’s

formula.



CHAPTER 2

Artin Presentations

Recall that by definition an Artin presentation r is a finite presentation:

hx1, . . . , xn | r1, . . . , rni

satisfying the following equation in Fn (the free group on x1, . . . , xn):

x1x2 · · ·xn =
¡
r−11 x1r1

¢ ¡
r−12 x2r2

¢ · · · ¡r−1n xnrn
¢
.

This equation means that the right hand side freely reduces to the word x1x2 · · ·xn
in Fn. We will always assume, and it is natural to do so, that the words ri are

freely reduced in an Artin presentation.

The purpose of this chapter is to provide the details and proofs of statements

made in the previous chapter. We will discuss homeomorphisms of the punctured

2-disk, pure braids, 3-manifolds, and 4-manifolds.

2.1. Homeomorphisms of the punctured 2-disk

Artin presentations arise naturally as follows. Let Ωn denote the compact

2-disk with n > 0 holes. Let ∂0, ∂1, . . . , ∂n denote the boundary components of Ωn

10
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s1
s2

sn

p1 p2 pn

p0

Figure 2.1. Ωn the compact 2-disk with n holes. Also depicted are
oriented boundary components ∂0, . . . , ∂n with basepoints p0, . . . , pn
and oriented segments si from p0 to pi, i = 1, . . . , n.

oriented clockwise with a basepoint pi on each ∂i as in Figure 2.1. Also depicted in

the figure are oriented segments si from p0 to pi, i = 1, . . . , n. For i = 1, . . . , n the

loops si∂is−1i define generators xi of the fundamental group π1 (Ωn, p0) which is

isomorphic to Fn the free group on x1, . . . , xn. Let x0 = x1x2 · · ·xn denote the

element of π1 (Ωn, p0) determined by ∂0.

Let h be any self homeomorphism of Ωn that restricts to the identity on the

boundary ∂Ωn. This induces the isomorphism h# : π1 (Ωn, p0)→ π1 (Ωn, p0). Let

ri = ri (h) ∈ Fn be defined by the loop sih
¡
s−1i
¢
. Notice that h# (xi) = r−1i xiri



12

since:

h# (xi) =
£
h
¡
si∂is

−1
i

¢¤
=

£
h (si) ∂ih

¡
s−1i
¢¤

=
£
h (si) s

−1
i si∂is

−1
i sih

¡
s−1i
¢¤

=
£
h (si) s

−1
i

¤ £
si∂is

−1
i

¤ £
sih
¡
s−1i
¢¤

= r−1i xiri.

Hence:

x1x2 · · ·xn = x0

= h# (x0) (since h is identity on ∂Ωn)

=
¡
r−11 x1r1

¢ ¡
r−12 x2r2

¢ · · · ¡r−1n xnrn
¢
,

and so such an h determines r = hx1, . . . , xn | r1, . . . , rni an Artin presentation.

The converse is also true and was implicitly known to Artin in 1925 [A],

p.416-441. Namely, an Artin presentation r = hx1, . . . , xn | r1, . . . , rni determines a

self homeomorphism h = h (r) of Ωn that is the identity on ∂Ωn and is unique up to

isotopy rel ∂Ωn. We will prove this result in the following section.
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The remainder of this section discusses representatives of isotopy classes of

homeomorphisms of Ωn. To be succinct, we tacitly assume all self homeomorphisms

of Ωn are the identity on ∂Ωn and all isotopies of such homeomorphisms are rel ∂Ωn.

Theorem 1. Every self homeomorphism h of Ωn has a PL representative h0 in its

isotopy class. Moreover, if h1, h2 are two self homeomorphisms of Ωn that agree on

any of the segments si, then PL representatives h01, h
0
2 for the isotopy classes of

h1, h2 respectively can be chosen that also agree on those segments.

Proof. This is classical and follows from results in Moise [Mo]. We sketch the

proof. Triangulate Ωn as a PL subset of R2. By assumption, h is the identity on

∂Ωn and so is PL there. Now, one uses the techniques in the proof of Theorem 7,

p.73-76 of [Mo] to isotop h rel ∂Ωn so that it is PL on the 1-skeleton of Ωn. This is

not difficult noting that the homeomorphisms hν and ha described in Moise’s proof

each have support in the interior of a nice PL 2-cell Nν,Na respectively. Then, each

individual homeomorphism hν or ha is isotopic to the identity rel R2 − intNν or rel

R2 − intNa respectively.

Now, we have h PL on the 1-skeleton of Ωn. Let σ be a 2-simplex in Ωn. Then,

h (∂σ) is PL and so by Theorem 2, p.18 of [Mo], |h (σ)| is a combinatorial 2-cell.

Thus, Theorem 4, p.43 of [Mo] implies that h restricted to ∂σ extends PL

homeomorphically to σ. As this PL extension to the interior of σ equals h on the

boundary, the extension is isotopic (rel boundary) to h using Alexander’s trick (see
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[Mo], Theorem 1, p.81, and use uniqueness of disk embedding as in Chapter 5 of

[Mo]). This completes the proof of the first statement in the theorem. The second

part follows similarly with a little care. ¤

Corollary 2. A self homeomorphism h of Ωn is completely determined up to

isotopy by the images h (si) , i = 1, 2, . . . , n.

Proof. Let h1 and h2 be two self homeomorphisms of Ωn that agree on all si. By

the previous theorem, we may assume these homeomorphisms are PL and still

agree on the si. By standard PL techniques, we may further assume h1 and h2

agree in some closed regular neighborhood N of ∂Ωn ∪ {si | i = 1, 2, . . . , n}. Then,

restricting to D = Ωn − intN , h1 and h2 are two PL homeomorphic embeddings of

PL 2-cells D into R2 that agree on ∂D. Hence, they are isotopic to one another rel

∂D using Alexander’s trick. Extending by the identity on N gives the desired

isotopy of h1 to h2. ¤

The above PL results imply the corresponding DIFF (smooth) formulations

(e.g. see [T], Section 3.10).

Therefore, while smoothness of a homeomorphism h of Ωn need not be be

postulated, it is uniquely inherited for free.



15

2.2. Pure braids

In this section we will show that the set of all Artin presentations Rn on n

generators forms a group canonically isomorphic to Pn × Zn where Pn is the

classical n strand pure braid group.

Recall that the classical braid group Bn has a faithful representation as a

group of automorphisms of Fn as shown in Birman [B], p.25, and so we regard

Bn ⊂ AutFn. There is also a canonical representation of Bn to the symmetric

group on n letters Sym (n); the kernel of this homomorphism is the pure braid

group which we regard as Pn ⊂ Bn ⊂ AutFn.

Notice that the group of isotopy classes (rel ∂Ωn) of homeomorphisms of Ωn

that are the identity on the boundary is canonically isomorphic to Pn × Zn. To see

this, extend such a homeomorphism to all of D2 by the identity inside the inner

boundary components ∂1, . . . , ∂n. This extension is isotopic to the identity (rel ∂0)

say by F : D2 × I → D2. Extending this map to f : D2 × I → D2 × I by

f (x, t) = (F (x, t) , t) one immediately sees the boundary components ∂1, . . . , ∂n

trace out an n strand pure braid. The Zn factor comes from how many times each

individual ∂i twists completely around. For a concrete identification, let

(β, v) ∈ Pn × Zn. Let h be the homeomorphism of Ωn obtained by taking Ωn and

sliding it up β; during this slide the boundary components ∂i intertwine with each

other, but should not twist themselves. Next compose this homeomorphism with
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one that simply twists each ∂i the number of complete twists given by vi, where a

positive number means to twist clockwise and a negative number means to twist

counterclockwise.

An Artin presentation r = hx1, . . . , xn | r1, . . . , rni determines a

homomorphism β : Fn → Fn defined by xi 7→ r−1i xiri. That r is Artin is exactly

what is needed to show:

Lemma 3. β is a pure braid automorphism of Fn.

Proof. A detailed proof is in Birman [B], p.30-32. The main idea is that since r is

Artin the word: ¡
r−11 x1r1

¢ ¡
r−12 x2r2

¢ · · · ¡r−1n xnrn
¢

must freely reduce to x1x2 · · ·xn in Fn. Analysis of this reduction shows that

precomposing β with some generator of the braid automorphisms Bn ⊂ AutFn

gives a similar presentation that is shorter. Repeating this process, one obtains a

braid automorphism α ∈ Bn that precomposed with β is the identity. This implies

that β itself is a braid automorphism that must be pure since β is defined by

xi 7→ r−1i xiri. ¤

From this it follows that every Artin presentation determines a unique pure

braid, compare Birman [B], p.32-34. Thus, we identify Rn with Pn × Zn by
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associating to r the pure braid as just shown and the ith component of the vector

in Zn given by the exponent of xi in the abelianized ri. Thus we have shown:

Theorem 4. An Artin presentation r = hx1, . . . , xn | r1, . . . , rni determines a self

homeomorphism h = h (r) of Ωn that is the identity on ∂Ωn and is unique up to

isotopy rel ∂Ωn.

In this way, we see that Rn is in fact a group. Let r, r0 ∈ Rn and let Ri be

obtained by substituting r−1j xjrj for each xj in ri. Then, r00 = r0 · r is given by

hx1, . . . , xn | r01R1, . . . , r0nRni. This composition law is consistent with those on

Pn × Zn and the group of homeomorphisms of Ωn described above.

The above is summarized by the short exact sequence of groups, which splits:

0→ Zn → Rn → Pn → 0.

2.3. The 3-manifolds M3 (r)

Let r be an Artin presentation and h = h (r) a self homeomorphism of Ωn

determined by r (h restricts to the identity on ∂Ωn). One obtains a closed,

connected, orientable 3-manifold M3 (r) by the open book construction [GA],[W].

Namely, let Ω (h) denote the mapping torus of h; the boundary of Ω (h) is

(∂Ωn)× S1. M3 (r) is obtained by glueing on (∂Ωn)×D2 by the identity on
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(∂Ωn)× S1. Here Ωn is called the page and ∂Ωn is called the binding in the open

book construction.

The fundamental group of M3 (r) is isomorphic to the group π (r) presented

by r (see [W], p.247).

Every closed, connected, orientable 3-manifold is homeomorphic to some

M3 (r) [GA], see also Chapter 4 below.

The n× n integer matrix A (r) is defined to be the exponent sum matrix of r.

This matrix A (r) is a presentation matrix of H1 (M
3 (r) ;Z). Namely, let

ϕ : Zn → Zn be the homomorphism induced by A (r), then:

H1

¡
M3 (r) ;Z

¢ ∼= ZnÁ Imϕ.

To see this, note that the first integral homology group is isomorphic to

π (r)Á [π (r) , π (r)]. This latter group is abelian and by [MKS], Sec.2.1, admits

the presentation:

Ab (r) =
­
x1, . . . , xn | r1, . . . , rn, xixjx−1i x−1j , 1 ≤ i < j ≤ n

®
.

On the other hand, one can start with the presentation:

FAn =
­
x1, . . . , xn | xixjx−1i x−1j , 1 ≤ i < j ≤ n

®
,
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which presents the free abelian group Zn of rank n. In Zn, presented by FAn, the

words ri generate a normal subgroup which we denote by N 0. Again by [MKS],

Sec. 2.1, the factor group ZnÁN 0 admits the presentation Ab (r). Hence, by

[MKS], Sec. 1.2, π (r)Á [π (r) , π (r)] is isomorphic to ZnÁN 0. It is easy to see

that ZnÁN 0 is isomorphic to ZnÁ Imϕ.

A (r) is always symmetric for Artin presentations [W], p.248-250. There are

multiple geometric proofs of this interesting fact; a new proof using only

combinatorial group theory is in Chapter 6.

Thus, A (r) contains all of the homological information about M3 (r). It

follows that H1 (M
3 (r) ;Z) is finite if and only if detA (r) 6= 0, and in this case has

order equal to |detA (r)| . M3 (r) is an integral homology 3-sphere if and only if

detA (r) = ±1 and is a rational homology 3-sphere if and only if detA (r) 6= 0.

Thus, as Winkelnkemper points out in [W], detA (r) 6= ±1 is an abelian

condition preventing π (r) from being trivial, and his Theorem I [W], p.240, is

another such abelian condition (see Chapter 1 above). It is interesting to ask what

other such abelian conditions exist.

We note that M3 (r) can also be obtained by performing integral surgery on

the closure of the pure braid determined by r with surgery coefficients given by the

diagonal of A (r) (see [CW]).
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We close this section with some simple examples. When n = 1, A (r) clearly

determines r and the 3-manifold corresponding to A (r) = k is the Lens space

L (k, 1). When n = 2, A (r) also determines r; this follows geometrically from braid

considerations, but it also can be proved purely group theoretically (see Chapter 6

below). Let r ∈ R2 be given by:

r1 = x31 (x1x2)
−2 ,

r2 = x52 (x1x2)
−2 ,

then M3 (r) is the Poincaré homology 3-sphere, π (r) = π1 (M
3 (r)) = I (120) and:

A (r) =

 1 −2

−2 3

 .
2.4. The 4-manifolds W 4 (r)

Let r be an Artin presentation and h = h (r) an associated self

homeomorphism of Ωn. As shown in Section 2.1, we can, and do, choose h to be

smooth. One obtains a smooth, compact, connected, simply connected 4-manifold

W 4 (r) with connected boundary M3 (r) as follows [W], p.250. Embed Ωn in S2

and let cΩ denote the closure of S2 − Ωn. Extend h to all of S2, then extend to all

of D3 by a diffeomorphism H : D3 → D3 (which is unique up to isotopy rel
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∂D3 = S2). Let W (H) denote the mapping torus of H. Then, cΩ× S1 ⊂ ∂W (H)

and one obtains W 4 (r) by glueing on cΩ×D2 in the canonical way.

As shown in [W], p.250, W 4 (r) is simply connected and its intersection form

is represented by A (r).

In [CW], we showed that W 4 (r) can also be obtained by attaching n 2-handles

to D4 along the framed link given by the closure of the pure braid determined by r

with framings given by the diagonal of A (r). As pointed out in [GS], “. . . the

complexity of a 4-dimensional handlebody is mainly due to the 2-handles.”

If the boundary M3 (r) of W 4 (r) is homeomorphic to S3 then it is natural to

view W 4 (r) as a closed, smooth, simply connected 4-manifold (close up with a

4-handle). An immediate question is: which closed, smooth, simply connected

4-manifolds are W 4 (r)s? This is an open problem (see [GS], p.344). It is possible

that all such manifolds are obtained as W 4 (r) ∪D4.

It is easy to see that the following appear in AP theory: CP 2, CP 2
, S2 × S2

(see [GS], p.127), and S4 (considered as the empty Artin presentation h|i). Clearly

the connected sum of manifolds appearing also appears.

More interesting 4-manifolds are known to appear. In particular, in [CW] we

showed that all elliptic surfaces E (n) admit Artin presentations, in particular the

Kummer surface K3 = E (2). These were the first known examples of 4-manifolds
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in AP theory with nontrivial Donaldson and Seiberg-Witten invariants. The

following chapter provides further examples.



CHAPTER 3

Torelli Actions

In this chapter, the main chapter of this thesis, we will show how the purely

group theoretic action of the Torelli can change smooth structures on 4-manifolds.

Let r ∈ Rn be an Artin presentation with A (r) unimodular, so M3 (r) is an

integral homology 3-sphere. Note that W 4 (r) and M3 (r) are both oriented (view

them in terms of 2-handlebodies). Suppose t ∈ Rn is a Torelli such that M3 (t · r)

is orientation preserving homeomorphic to M3 (r). Then, Freedman’s theorem

(extended form with oriented boundary a fixed homology 3-sphere) implies that

W 4 (t · r) and W 4 (r) are homeomorphic 4-manifolds [FrQ] (see also [GS], p.448).

In case, W 4 (t · r) and W 4 (r) are not diffeomorphic we say the Torelli t ‘juggles’

the smooth structure of the 4-manifold W 4 (r).

Figure 3.1 contains two framed, pure braids s1 and s2 on ten strands. In

[CW], we gave an explicit way to construct Artin presentations from framed, pure

braids. Thus, we also let s1 and s2 denote the Artin presentations in R10

corresponding to these framed, pure braids where no confusion should arise. We

have:

23
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Figure 3.1. Pure braids s1 (left) and s2 (right) each with framings
−1,−2,−1,−2,−1,−1,−1,−1,−23,−1 from left to right.

Theorem 5. The Artin presentations s1 and s2 differ by multiplication by a Torelli

t. Furthermore, W 4 (s1) and W 4 (s2) are homeomorphic but not diffeomorphic.

Before proceeding to the proof of this theorem (Section 3.1 below), we will

discuss some properties of these Artin presentations and some broader aspects of

Torelli juggling.

The matrices A (s1) and A (s2) are equal and of determinant one (see Figure

3.2). Hence, M3 (s1) and M3 (s2) are integral homology 3-spheres and s1 and s2

differ by multiplication by the Torelli t = s2−1 · s1. The inverse matrix A (s1)−1 in
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− −
− −

− −
− +

− −
− −

− −
− −

− − − + − − − − −
−

1 1

2 1

1 1

2 1

1 2

1 2

1 2

1 2

1 1 1 1 2 2 2 2 23

1

Figure 3.2. Matrix A (s1) = A (s2) of determinant one.

Figure 3.3 gives the peripheral structures of the knots ki. That M3 (s1) and

M3 (s2) are orientation preserving homeomorphic follows from Akbulut

[Ak1],[Ak2] (see also [GS], p.449) along with our construction of these pure braids

in following section.

In Section 3.2 below, we identify the 3-manifolds M3 (s1) and M3 (s2) as the

simplest hyperbolic, integral homology 3-sphere, namely the 1/2 Dehn sphere of

the figure eight knot of S3.

The above discussion of Freedman’s theorem implies W 4 (s1) and W 4 (s2) are

homeomorphic. In Section 3.1 below we show that they are not diffeomorphic. In

fact, this remains true stably (after blowing up with finitely many CP 2
s

[Ak1],[Ak2], see also Section 3.1) and hence one easily obtains similar examples of

Torelli juggling in Rn for all n ≥ 10.
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− − − − − −
−

− − − − − −
− −

−

3 1 3 2 2 2 2 2 1 0

1 1 0 0 0 0 0 0 0 0

3 0 11 7 6 6 6 6 3 0

2 0 7 5 4 4 4 4 2 0

2 00 6 4 5 4 4 4 2 0

2 0 6 4 4 5 4 4 2 0

2 0 6 4 4 4 5 4 2 0

2 0 6 4 4 4

− − − − −
− − − − − −
− − − − − −
− − − − −44 5 2 0

1 0 3 2 2 2 2 2 1 0

0 0 0 0 0 0 0 0 0 1

−
− −

−

Figure 3.3. Matrix A (s1)−1 = A (s2)−1.

These examples are entirely new. They show how multiplying an Artin

presentation by a Torelli in the discrete group Rn can represent changing the

smooth structure of a compact, simply connected 4-manifold while preserving its

continuous topology. In fact, this action changes the Donaldson and

Seiberg-Witten invariants of the manifolds.

The only Torelli in R1 and R2 are the trivial ones, namely the identity in each

of these groups. However, in R3 the Torelli subgroup is already infinitely generated.

Thus, it is natural to think that the Torelli action is in fact very effective in

changing smooth structures. One expects to find more examples of Torelli juggling

where 3 ≤ n < 10 and/or the boundary 3-manifolds are simply connected.

Our examples are meant to show that the Torelli can and do juggle the smooth

structures on 4-manifolds purely group theoretically. In the future, one would hope
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to compute smooth invariants (Donaldson and Seiberg-Witten) group theoretically

in function of r so as to obtain much broader juggling.

The lengths of the individual relations in s1 and s2 are:

Relation s1 s2

1 3187 1723

2 13506 734

3 8103 243

4 7132 5624

5 323 1787

6 269 1733

7 251 1715

8 245 1709

9 7475 8215

10 4891 1

Thus, s1 has total relator length 45382 and s2 has total relator length 23484.

Notice that even though s2 splits off a CP 2
summand, it is the manifold giving

nontrivial Donaldson invariants [Ak1],[Ak2]; it seems curious that s2 is the tighter

presentation. The Kummer surface K3 also has nontrivial smooth invariants and

one of our presentations for K3 in R22 is of total relator length 4562 [CW].
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We remark that of the knots ki (s1) and ki (s2) in the 3-manifolds M3 (s1) and

M3 (s2) , the only ones whose knot groups we recognize are k9 (s1) and k10 (s2).

The group of k9 (s1) is isomorphic to the group of the 52 knot in S3. It is easy to

see that k10 (s2) is the trivial knot in M3 (s2) from the braid s2. The Torelli t takes

the knot k9 (s1) to the knot k9 (s2), the latter of which has a huge presentation and

Alexander polynomial (t2 − t+ 1)
2.

The knots k0 (s1) and k0 (s2) both have Alexander polynomials of degree 108

(when normalized so the lowest degree term is t0). However, the Alexander

polynomial of k0 (s1) is irreducible while that of k0 (s2) factors into the product of:

t2 − t+ 1,

t6 − t3 + 1,

t8 − t7 + t5 − t4 + t3 − t+ 1,

t8 + t7 − t5 − t4 − t3 + t+ 1,

t18 − t9 + 1,

t24 − t21 + t15 − t12 + t9 − t3 + 1, and

t24 + t21 − t15 − t12 − t9 + t3 + 1.
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The reader is reminded of our comment in the introduction on the relationship

between smooth invariants and Alexander polynomials.

Finally, the lengths of the individual relations in the Torelli t are:

Relation t

1 4764

2 21430

3 12778

4 11724

5 196

6 196

7 196

8 196

9 10400

10 6850

Thus, the Torelli t has total relator length 68730.

3.1. Proof of Theorem 5

Our starting point is the two manifolds Q1 and Q2 shown in Figure 3.4. These

interesting manifolds were originally discovered by Akbulut [Ak1],[Ak2]. In

particular, by reversing each crossing and changing the sign of the framing from -1
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-2

-1

-4

-1

Figure 3.4. Two 4-manifolds Q1 (left) and Q2(right).

to +1, one obtains Akbulut’s manifolds Q1, Q2 respectively (see [Ak2], p.357). We

are following standard convention and letting M denote the oriented manifold

obtained from the oriented manifold M by changing the orientation on every

component (all of our manifolds will have just one component).

Akbulut showed in [Ak2] that Q1 and Q2 are homeomorphic but not

diffeomorphic. Hence, Q1 and Q2 are homeomorphic but not diffeomorphic. His

proof relies on the computation of a Donaldson invariant in [Ak1]. The same result

follows from different considerations in [GS], p.448,449.

For our purposes, we need the above result to be true stably. This is already

implicit in Akbulut’s work:

Claim 6. Q1#kCP
2
and Q2#kCP

2
are homeomorphic but not diffeomorphic for

all k ≥ 0.
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Proof of claim. We will follow the notation of [Ak2]. The manifolds in question

are homeomorphic since Q1 and Q2 are homeomorphic. In [Ak1], Akbulut

constructed a smooth, compact, connected, simply connected 4-manifold M1 with

∂M1 = ∂Q1 = ∂Q2. In [Ak2], p.359, Akbulut showed that Q2 splits off a CP 2

summand, that is Q2 =W1#CP 2 where W1 is a smooth, compact, contractible

4-manifold with ∂W1 = ∂Q2. Thus, Q2 =W 1#CP
2
splits off a CP 2

.

Assume Q1#kCP
2
and Q2#kCP

2
are diffeomorphic. Since Q2 =W 1#CP

2
, it

follows that there are k + 1 disjoint smoothly embedded 2-spheres in Q1#kCP
2

each of self intersection number −1. Thus, Q1#kCP
2
= V#k+1CP

2
for some

smooth, contractible 4-manifold V with ∂V = ∂Q1 (see [GS], p.46). Let

fM =M1 ∪∂ Q1 and M 0 =M1 ∪∂ V . Then, we have:

fM#kCP
2
=

¡
M1 ∪∂ Q1

¢
#kCP

2

= M1 ∪∂
³
Q1#kCP

2
´

= M1 ∪∂
³
V#k+1CP

2
´

= M 0#k+1CP
2
.

This contradicts [Ak2], p.358 Property (2), and the claim follows. ¤
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We remark that the previous claim can also be deduced using uniqueness of

minimal models of surfaces of general type. We thank Professor Bob Gompf for

pointing this out.

The remainder of the proof of Theorem 5 will consist of blowing up Q1 and Q2

with finitely many CP 2
s and using isotopy to obtain the closure of two pure braids

with equal linking matrices. It is not difficult to blow up a knot or link and apply

isotopy and handle slides to obtain a pure link; the difficulty lies in doing this to

two different links with the ultimate goal of obtaining equal linking matrices.

Below we show how to blow up Q1 and Q2 each with 9 CP
2
s and apply

isotopy to obtain the closure of the pure braids in Figure 3.1 with equal linking

matrices given by Figure 3.2.

For an excellent reference on the Kirby calculus see Gompf and Stipsicz [GS],

particularly Chapters 4 and 5.

We begin by modifying Q1. Blowing up Q1 (from Figure 3.4) we obtain the

first diagram in Figure 3.5. The rest of the figure modifies Q1#CP
2
by isotopy.

Blowing up again produces the first diagram in Figure 3.6. The rest of Figure 3.6

modifies Q1#2CP
2
by isotopy.

One blows up once, then once more, to obtain the first and second diagrams in

Figure 3.7 respectively.
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-2

-5

-1 -2 -2

-5

-1

-5

-1

Figure 3.5. Two isotopies of Q1#CP
2
.

-2 -2

-1

-6

-2

-6

-2

-1

-2

-6

-2

-1

Figure 3.6. Blow up of Q1#CP
2
and two isotopies.

By an isotopy of the second diagram in Figure 3.7, one obtains the first

diagram in Figure 3.8; another isotopy yields the second diagram in Figure 3.8.

Figure 3.9 is then obtained by blowing up.

Now, we describe a useful operation to blow up and eliminate twists. The first

diagram in Figure 3.10 represents a local picture of a single knot, where the top

two free strands connect elsewhere, and similarly the bottom two strands connect
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-3 -3

-6

-1

-2

-1

-7

-2

-2

-1

-1

Figure 3.7. Two blow ups of Q1#2CP
2
.

-3

-7

-2

-1

-1

-2

-3

-7

-2

-1

-2

-1

Figure 3.8. Two isotopies of Q1#4CP
2
.

elsewhere. This knot’s framing coefficient equals d. We only change this diagram

locally. The box with −1 in it represents a single twist, as shown by the second

diagram in Figure 3.10. We blow that up as shown with CP 2
obtaining the third



35

-4

-7

-2

-1

-2
-1

-1

Figure 3.9. Blow up of Q1#4CP
2
.

-1

d d d-4

-1

d-4

-1

Figure 3.10. Blowing up to remove a twist in a single component.

diagram, and finally a simple local isotopy produces the final diagram. The framing

d changes to d− 4 as shown in [GS], p.152.

It is useful to see diagrammatically how to apply this operation and then

perform isotopy to obtain pure links. In Figure 3.11 we show how to remove

multiple twists by blowing up. Note that the thickened lines represent parts of the

link diagram that do not change at all.



36

-4

a
a-16

-1

-1

-1

-1

Figure 3.11. Four blow ups to remove four twists.

Figure 3.12. Isotopy of untwist operation to braid.

Figure 3.12 shows how to perform isotopy to the second diagram in Figure 3.11

in order to put the new components in pure link form; no framings change here.
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-1

-1

Figure 3.13. Isotopy of loop to braid.

-4

-5

-4

-6

-1

-2 -1

-1

-1-4

-5

-1-1

Figure 3.14. Isotopy of Q2#2CP
2
followed by blow up.

One obtains the pure braid s1 in Figure 3.1 as follows. The -1 framed circle C

(just above the ‘-4’ box) in Figure 3.9 should be thought of as laying in the upper

thickened line in Figure 3.11 that cuts across the shown knot twice. Perform the

operations shown in Figures 3.11 and 3.12, and then perform the operation in

Figure 3.13 on the -1 framed circle C just described. Now, take the portion of the

link that was in the upper thickened line and slide it up and all the way around to

the bottom of the diagram. This produces the pure braid s1.
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-4 -4 -4

-1

-1

-2

-6

-1

-1

-2
-2

-1

-1

Figure 3.15. Isotopies of Q2#3CP
2
.

-4

-1

-1

-6

-2

-4

-2

-1

-6

-1

Figure 3.16. Isotopies of Q2#3CP
2
.

Now, we proceed to Q2. Blow up Q2 (from Figure 3.4) twice to obtain the first

diagram in Figure 3.14. Perform a simple isotopy and then blow up again to obtain

the rest of Figure 3.14. Figures 3.15 and 3.16 contain straightforward isotopies.

The first diagram in Figure 3.17 is obtained by isotopy, and the second by

blowing up. Another isotopy yields Figure 3.18. Perform the operations in Figures

3.11 and 3.12 to Figure 3.18. Take the portion of the link that was in the upper
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-4 -4

-1

-7

-2

Figure 3.17. Isotopy of Q2#3CP
2
followed by blow up.

-4

-2

-1

-1

-2

-7

Figure 3.18. Isotopy of Q2#4CP
2
.

thickened line in the operation in Figures 3.11 and 3.12 and slide it up and all the

way around to the bottom of the diagram. Blow up once more and leave this as the

trivial tenth strand (not linking anything). This produces the second pure braid s2

in Figure 3.1.

This completes the proof of Theorem 5.
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-2

-1 -1

+1

+1

-1

-1

+1

0

Figure 3.19. Blow ups of Q1, first with two CP 2s, then with one CP
2
.

3.2. Identifying Boundaries

In this section we show that the 3-manifolds M3 (s1) and M3 (s2) are both

homeomorphic to the 1/2 Dehn sphere of the figure eight knot of S3, the simplest

hyperbolic integral homology 3-sphere. It suffices to identify ∂Q1 from Figure 3.4

as this Dehn sphere, since the 3-manifolds M3 (s1) , M3 (s2), ∂Q1, and ∂Q2 are all

homeomorphic by above discussions. Here, one can blow up with CP 2
and CP 2

since we are only concerned with the 3-manifolds.

As in Figure 3.19, blow up Q1 with two CP 2s to remove the two twists, then

blow up with CP 2
as shown. Next, slide the 0 framed component over the +1

framed component in a very simple way (use a trivial band) to obtain the first

diagram in Figure 3.20. The second diagram in Figure 3.20 is then obtained by

blowing down the right +1 framed component, and the third diagram is obtained
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-1

-1

+1
+1

-1

-2

0 -1

-2

0

Figure 3.20. A 2-handle slide, a blow down (of right +1), and an isotopy.

1/2

-2

0

Figure 3.21. Blow down and slam dunk.

by interchanging the 0 and -1 framed components by isotopy (exactly as one does

with a Whitehead link). Now, take the third diagram in Figure 3.20, rotate it 90

degrees clockwise, then blow down the -1 framed component to introduce a twist;

the result is the first diagram in Figure 3.21. Finally, perform a slam dunk (see

[GS], p.163-164) to obtain 1/2 surgery on the figure eight knot as in Figure 3.21, as

desired.



CHAPTER 4

Knots and Links

In the knot theory of AP theory, one need not use skein methods, projections

into the plane, categorification, etc., and knot/link groups and peripheral

structures are obtained without putting in framings ‘by hand.’

Fix r ∈ Rn. Then, there are n+ 1 distinguished knots, k0, k1, . . . , kn, in M3 (r)

given by the boundary components of the planar page Ωn in the open book

construction. The knot groups Gi of the knots ki are presented by ([W], p.226,227

and [CW], Section 2.1):

G0 = hx1, . . . , xn | r1 = r2 = · · · = rni ,

Gi = hx1, . . . , xn | r1, r2, . . . ri−1, ri+1, . . . , rni , i 6= 0.

Moreover, if A (r) is unimodular (i.e. M3 (r) is an integral homology 3-sphere) then

the peripheral structures mi, li of the knots ki are given by: m0 =any ri,

l0 = x1x2 · · ·xnm−s
0 where s is the sum of all elements in A (r)−1 , and for i 6= 0,

mi = ri, li = xim
−bi
i where bi =

£
A (r)−1

¤
ii
.

The proof of the following fundamental theorem is due to González-Acuña

(unpublished). In particular, by taking L to be the empty link we obtain

42
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González-Acuña’s result [GA] that every closed, connected, orientable 3-manifold

is homeomorphic to M3 (r) for some Artin presentation r.

Theorem 7. Let L be a link in a closed, connected, orientable 3-manifold M3.

Then, (M3, L) is homeomorphic to (M3 (r) ,K) for some Artin presentation r,

where K is the sublink k1, . . . , km of the boundary of Ωn.

Proof. Let l1, . . . , lm be the components of L. Let Y be the subset of M3 obtained

from a tubular neighborhood T (L) of L by connecting each component of T (L) to

a disjoint 3-disk D3 ⊂M3− T (L) with an embedded 1-handle. Y is homeomorphic

to the standard, orientable handlebody Hm of genus m. By attaching finitely more

1-handles to D3 in M3 (disjoint from Y −D3) one obtains Z ⊂M3 such that Z is

homeomorphic to Hg, g ≥ m, and also W =M3 − intZ is homeomorphic to

another copy H 0
g of the standard handlebody; this follows from Morse/handle

theory [GS], Chapter 4.

Following Lickorish [L1],[L2], the homeotopy group of ∂Hg is generated by

Dehn twists about the simple curves a1, . . . , ag, b1, . . . , bg, and c1, . . . , cg−1 in ∂Hg

where the ais are not contractible in Hg. Then, Z is homeomorphic to the

standardly embedded Hg in R3 such that li is parallel to ai by our construction

above. Moreover, M3 is homeomorphic Hg ∪f H 0
g for some homeomorphism f that

is isotopic to a product of finitely many Dehn twists De1, . . . , Dek, where each ei is

one of the curves a1, . . . , ag,b1, . . . , bg,c1, . . . , cg−1 (see [L2]). We may assume that
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ei = ai for i = 1, 2, . . . ,m, since if we perform the Dehn twists Da1, . . . , Dam,

Da−11 , . . . , Da−1m , and then De1, . . . , Dek, the resulting homeomorphism of ∂Hg is

isotopic to f .

As Lickorish showed [L1] each Dehn twist Dx can be accomplished by

performing ±1 surgery on a knot in the interior of Hg that is parallel x. Let si be a

knot in the interior of Hg that is parallel to ai for i = 1, . . . ,m such that li is a

longitude of si that does not link si. Since si has framing ±1, one can slide li over

si by isotopy so that li becomes a meridian of si. Each of the remaining Dehn

twists contributes a knot to be surgered; these are all disjoint and each is disjoint

from a neighborhood of each si that contains li as a meridian. Let β be the union

of all the knots to be surgered (including the si). It follows from [L3], p.418-419, or

[R], p.279,340,341, that β is isotopic to the closure of a pure braid. The result

follows since each component li of our link L is a meridian of a component of β. ¤

There are other canonical knot groups resulting from an Artin presentation.

Fix r ∈ Rn. Let β = β (r) denote the framed pure braid associated to r with

components βi framed with ai = [A (r)]ii for i = 1, . . . , n. Let M
3 (β1, . . . , βk)

denote the closed, orientable 3-manifold obtained by just performing surgery on the

closure of the first k components of β. Notice that by performing j-reduction (see

discussion before Lemma 14 in Chapter 6 below) on r for j = k + 1, k + 2, . . . , n

one obtains an Artin presentation s such that M3 (s) is homeomorphic to
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M3 (β1, . . . , βk) . Notice further that the closure of βk is a knot in

M3
¡
β1, . . . , βk−1

¢
whose knot group is presented by:

Hi = hx1, . . . , xn | r1, . . . , ri−1, xi+1, . . . , xni .

This follows from the HNN construction (see [W], p.247).

The knot groups Gi and Hi will both be used in the following chapter

pertaining to the computation of the Casson invariant.



CHAPTER 5

The Casson Invariant in AP Theory

An important theme of AP theory is that invariants of the 3- and 4-manifolds

M3 (r) and W 4 (r) should be computed group theoretically in function of r. The

purpose of this chapter is to show how to compute the Casson invariant of any

rational homology 3-sphere M3 (r) (i.e. detA (r) 6= 0) in such a way.

First, let us recall the beautiful formula of González-Acuña for the Rohlin

invariant of an integral homology 3-sphere M3 (r), where for simplicity we assume

A (r) = I (see [GA]). Let ∆ be the Alexander polynomial of the associated

presentation (which clearly abelianizes to Z):

hx1, . . . , xn | x1r1 = r1x2, x2r2 = r2x3, . . . , xn−1rn−1 = rn−1xni .

Let d = ∆ (−1) . Then:

µ
¡
M3 (r)

¢
=

d2 − 1
8

mod 2.

Our formula for the Casson invariant of M3 (r) with A (r) = I is as follows.

For i = 1, . . . , n, let Hi be the presentation:

Hi = hx1, . . . , xn | r1, . . . , ri−1, xi+1, . . . , xni ,
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described in the end of the previous chapter and let ∆i denote the Conway

normalized Alexander polynomial of the group presented by Hi. Recall that

Conway normalized means ∆i (1) = 1 and ∆i (t) = ∆i (t
−1). Notice that ∆i can be

computed group theoretically in function of Hi (which is in function of r) using the

Fox free calculus and MAGMA. We let ∆00
i (1) denote the second derivative of ∆i

evaluated at 1. Then, we have:

λ
¡
M3 (r)

¢
=
1

2

nX
i=1

∆00
i (1) .

This formula follows from the discussion at the end of the previous chapter

and [AkMc].

The above two formulas for µ and λ have particularly nice forms, which is

largely due to the fact that A (r) = I. In case A (r) is a diagonal matrix with

[A (r)]ii = �i = ±1, our formula for λ is exactly as above except:

λ
¡
M3 (r)

¢
=
1

2

nX
i=1

�i∆
00
i (1) .

The general case where detA (r) 6= 0 is more involved. First, we need a

definition. Let A be an n× n integer matrix. Let A1···k denote the upper left k × k

minor of A. We say A is permissible provided detA1···k 6= 0 for k = 1, . . . , n.
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Notice that if r ∈ Rn is an Artin presentation and A (r) is permissible, then

M3 (β1, . . . , βk) is a rational homology 3-sphere for i = 1, . . . , n, in particular

M3 (r) is a rational homology 3-sphere. So, we can obtain M3 (r) by a sequence of

surgeries on β1, . . . , βn and at each stage we will have a rational homology

3-sphere. This agrees with Walker’s notion of permissible in [Wa], p.96. In this

case, one can compute λ (M3 (r)) using the Alexander polynomials ∆i described

above and Walker’s formula [Wa], p.95,96. Notice that the homological data in

Walker’s formula is strictly in function of A (r) and a computer can be

programmed to compute these numbers.

Finally, suppose r ∈ Rn is an Artin presentation with detA (r) 6= 0, but with

A (r) not permissible. Walker [Wa], p.105,106, describes a method of

circumventing difficulties in this case, however, his method is unduly complicated.

Our goal is to modify r in a simple way so we can use our formula for the

permissible case. We thank Henry King for discussions pertaining to the following

technical lemma. Let � denote a diagonal n× n matrix where each diagonal entry

�i = ±1 or 0. Let A+ �1···k denote the result of adding A to the diagonal matrix

with entries �1, . . . , �k, 0, . . . , 0 where we have n− k zeroes.

Claim 8. Suppose A is an n× n integer matrix with detA 6= 0 that is not

permissible. Then, for some choice of � the matrix A+ � is permissible and

det (A+ �1···k) 6= 0 for k = 1, . . . , n.
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Proof. Here is a constructive way to choose �. Choose �1 such that

det (A1···1 + �1···1) 6= 0 and det (A+ �1···1) 6= 0. Having chosen �1, . . . , �k−1, choose �k

so that det (A1···k + �1···k) 6= 0 and det (A+ �1···k) 6= 0.

One can inductively choose the �i to satisfy these requirements since at each

stage one will encounter two linear equations to satisfy and one has three choices

for �k (0 and ±1). Inspection of the linear equations shows an appropriate choice

can be made.

Having chosen � in this way, the result follows immediately. ¤

Returning to where we have A (r) of nonzero determinant and not permissible,

let � be given by the claim. We know M3 (r) has a surgery diagram given by

closure of the pure braid β. For each i = 1, . . . , n, if �i 6= 0 then introduce a

meridian to βi with framing ∞ in the surgery diagram of M3 (r). This does not

change the 3-manifold; notice that the meridian to βi is in fact ki = ki (r) (a main

point). Now, perform a Rolfsen twist ([R], p.264-267 or see [GS], p.162,163) in the

correct direction (+ or - depending on �i) that simply changes framings in our

diagram: the framing ai = [A (r)]ii of βi becomes ai + �i and the framing ∞ of ki

becomes �i. One obtains M3 (r) by surgering (in this order) β1, . . . , βn with new

framings and then kn, . . . , k1 with framings �i; here one skips any ki where �i = 0.

Then, by our choice of � from the claim, we have a rational homology 3-sphere at
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each stage. Moreover, all of the knot groups in this series of successive surgeries is

either a Gi or an Hi and so is determined by r.

Details of this process, along with a computer program to carry it out in

practice, will appear elsewhere.



CHAPTER 6

Combinatorial Group Theory

Relationships between Artin presentations and topology provide topological

proofs of many interesting properties of Artin presentations. The purpose of this

chapter is to give purely combinatorial group theoretic proofs of some of these

properties. The methods of proof are elementary and it is hoped that the

techniques will lead to deeper studies of Artin presentations using combinatorial

group theory and possibly computer aided proofs.

Recall that an Artin presentation r is a finite presentation:

hx1, . . . , xn | r1, . . . , rni

satisfying the following equation in Fn (the free group on x1, . . . , xn):

x1x2 · · ·xn =
¡
r−11 x1r1

¢ ¡
r−12 x2r2

¢ · · · ¡r−1n xnrn
¢
.

Also, Rn denotes the set of Artin presentations on n generators x1, x2, . . . , xn. By

convention, one may assume the empty presentation h|i is the unique Artin

presentation in R0. For the remainder of this chapter we assume n > 0. We always
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assume that the words ri are freely reduced in an Artin presentation (free reduction

in Fn is discussed below in Section 6.1). Thus, it is clear that:

R1 =
©hx1 | r1i | r1 = xk1 for some k ∈ Z

ª
.

Associated to an Artin presentation r = hx1, . . . , xn | r1, . . . , rni is the

exponent sum matrix A (r), namely the n× n integer matrix given by:

[A (r)]ij = exponent of xj in abelianized ri.

Of course, one can define such a matrix for non-Artin presentations.

A main result is:

Theorem 9. If r is any Artin presentation then A (r) is symmetric.

This will follow from a technical result (j-reduction) and a characterization of

Artin presentations on two generators.

Theorem 10. Artin presentations r = hx1, x2 | r1, r2i in R2 are characterized by

the following:

r1 = xa1 (x1x2)
c , and

r2 = xb2 (x1x2)
c , for some a, b, c ∈ Z.
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Notice that if r ∈ R2 is as above with a, b, c ∈ Z then:

A (r) =

 a+ c c

c b+ c

 ,
is symmetric.

Characterizing Artin presentations for larger n is an open problem and is

discussed below in Section 6.4.

6.1. Basic Properties of Free Groups

In this section we recall basic notions about free groups and fix some notation.

Two excellent references are Magnus, Karrass and Solitar [MKS] and Stillwell [St].

The free group Fn = hx1, . . . , xni is defined combinatorially in [St], Sec.

0.5.2-0.5.6, and [MKS], Sec. 1.2 and 1.4. We will abuse notation and write w to

mean both a word in the generators x1, . . . , xn and the equivalence class it

represents in Fn = hx1, . . . , xni, which is common practice [MKS], p.19, and [St],

p.42; the context should make clear which is actually meant. A simple free

reduction on a word w in Fn is the removal of a term xix
−1
i or x−1i xi for some

1 ≤ i ≤ n. A word is freely reduced if no such cancellation is possible. As shown in

[St], p.94, performing simple free reductions on w as far as possible and in any

order always produces the same freely reduced word denoted ρ (w). This process

solves the word problem in Fn. As Stillwell states, “This confirms the
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commonsense impression that one decides whether a given element equals 1 in Fn

simply by cancelling as much as possible.” Stillwell proves this result using the

Cayley diagram of a free group. A purely group theoretic proof of this result is in

[MKS], pp.34-35. In fact, Magnus, Karrass and Solitar give a concrete process,

also denoted ρ, for producing the unique free reduction ρ (w) of a word w in Fn.

From here on ρ will denote this concrete process.

Given any two words u, v in Fn we write u = v in case they are identically

equal when written out as products of x±1i , 1 ≤ i ≤ n, without performing any free

reductions. Thus, we regard u = x21 and v = x1x1 as being equal, and u = x−11 x1

and v = 1 as not being equal. Above we defined a simple free reduction; a free

insertion on a word w in Fn is the inverse process, namely the insertion of a term

xix
−1
i or x−1i xi for some 1 ≤ i ≤ n. Two words u, v in Fn are freely equal, written

u ≈ v, provided one can be obtained from the other by free reductions and

insertions. Thus, the following are equivalent: u and v determine the same element

in Fn, u ≈ v, and ρ (u) = ρ (v).

We note that in previous chapters we used = instead of ≈. Only in this

chapter are we so pedantic.

The definition of an Artin presentation can be rephrased using the notation

above. Let ri, 1 ≤ i ≤ n, be freely reduced words in Fn. Then the presentation:

r = hx1, . . . , xn | r1, . . . , rni
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is an Artin presentation if and only if:

x1x2 · · ·xn ≈
¡
r−11 x1r1

¢ ¡
r−12 x2r2

¢ · · · ¡r−1n xnrn
¢
,

which is equivalent to:

x1x2 · · ·xn = ρ
¡¡
r−11 x1r1

¢ ¡
r−12 x2r2

¢ · · · ¡r−1n xnrn
¢¢

.

We refer to either of these equivalent conditions as AC, the ‘Artin condition’.

It is important to note that given n words ri, 1 ≤ i ≤ n, one can easily check if

the Artin condition AC is satisfied using the solution of the word problem in Fn

stated above. For large words ri one can use a computer algebra system such as

MAGMA to quickly check whether AC is satisfied.

It will be useful to perform substitutions on words in Fn. Let w be a word in

Fn. We write w = w (xµ) to emphasize that w is a word in the letters xµ,

1 ≤ µ ≤ n. Let yµ, 1 ≤ µ ≤ n, be any expressions. Then, we let w (yµ) denote the

result of substituting yµ for xµ in w (xµ). It is implicit that y−1µ is substituted for

x−1µ . Notice that no free reduction takes place in this definition. For example, let

w (xµ) be the word x1x2x
−1
1 in F2. Let y1 = x1 and y2 = 1. Then,

w (yµ) = x11x
−1
1 = x1x

−1
1 . Of course, removing appearances of 1 in a nontrivial

expression (except if the expression is identically equal to 1) is allowed.



56

We present some lemmas that will be needed later.

Lemma 11. Let ui, 1 ≤ i ≤ k, be any words in Fn. Then:

ρ

µ
kQ
i=1

ui

¶
= ρ

µ
kQ
i=1

ρ (ui)

¶
.

Proof. For 1 ≤ i ≤ k we have ui ≈ ρ (ui) and so
kQ
i=1

ui ≈
kQ
i=1

ρ (ui). The result

follows by applying ρ to this last equation. ¤

Lemma 12. Let u be a freely reduced word in Fn and suppose u−1xiu ≈ xi for

some 1 ≤ i ≤ n, then u = xki for some integer k.

Proof. Commuting elements in Fn are powers of a common word [MKS], p.42.

So, xi ≈ wm and u ≈ wk for some freely reduced word w and integers m and k. We

claim that xi ≈ wm implies w = x±1i and m = ±1. Notice that the lemma follows

immediately from this claim. Without loss, we may assume m > 1 and w 6= 1 in

proving the claim. As w is freely reduced and xi ≈ wm, we must have

w = x±1j w0x∓1j . Let a denote the longest initial segement of w that equals the initial

segment of w−1. It is easy to see that we must have w = aca−1 for freely reduced

a, c 6= 1. Furthermore, our choice of a implies that the initial letter of c does not

equal the initial letter of c−1; it follows that cm is freely reduced. Thus,

wm ≈ acma−1 and the latter is freely reduced, and hence equal to xi. This is a

contradiction, proving the claim. ¤
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Along the same lines, we point out that:

Corollary 13. If r ∈ Rn is an Artin presentation such that ri = w for all

i = 1, . . . , n, then w = (x1x2 · · ·xn)k for some integer k.

Proof. By the Artin condition:

x1x2 · · ·xn ≈
¡
r−11 x1r1

¢ ¡
r−12 x2r2

¢ · · · ¡r−1n xnrn
¢

≈ w−1x1x2 · · ·xnw.

By [MKS], p.42, we have x1x2 · · ·xn ≈ uk and w ≈ uj for some freely reduced word

u and integers k and j. Clearly k 6= 0, and if k = ±1 the result follows. Without

loss, assume k > 1. Again, write u = aca−1 for the longest possible initial segment

a of u. Since k > 1, we must have a, c 6= 1. As in the previous lemma, ck and

u = aca−1 are freely reduced. It follows that x1x2 · · ·xn = acka−1, a contradiction

proving the corollary. ¤

Another class of basic Artin presentations is: let a = (a1, a2, . . . , an) be an

element of Zn and define ri = xaii . Then r = hx1, . . . , xn | r1, . . . , rni is an Artin

presentation with A (r) the diagonal matrix with diagonal equal to a.

We close this section with a technical result. Recall the notion of the

j-reduction of an Artin presentation [W], p.227,251. Let

r = hx1, . . . , xn | r1, . . . , rni be an Artin presentation and let 1 ≤ j ≤ n. The idea is
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that by deleting rj, setting xj = 1 in the other ri, freely reducing these resulting

words and renumbering, one obtains an Artin presentation in Rn−1. It was noted

in [W], p.251, that the result is in fact an Artin presentation by topological

considerations. We present a purely group theoretic proof of this fact. We choose

not to renumber simply for notational reasons; our result immediately implies that

the j-reduction given in [W] is an Artin presentation. With r ∈ Rn and 1 ≤ j ≤ n

fixed, we define:

yµ = xµ, for 1 ≤ i ≤ n and µ 6= j,

yj = 1,

ui = ri (yµ) , for 1 ≤ i ≤ n and i 6= j,

uj = 1,

si = ρ (ui) , for 1 ≤ i ≤ n.

Lemma 14. With r ∈ Rn and yµ, ui, and si as directly above, we have that:

x1 · · ·xj−1xj+1 · · ·xn ≈
¡
s−11 x1s1

¢ · · · ¡s−1j−1xj−1sj−1¢ ¡s−1j+1xj+1sj+1¢ · · · ¡s−1n xnsn
¢
.

Notice that the free reductions required in the above equation occur in

Fn−1 = hx1, . . . , xj−1, xj+1, . . . , xni since no xj appear anywhere.
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Proof. First, we claim that if w = w (xµ) is any word in Fn then:

ρ (w (yµ)) = ρ ([ρ (w (xµ))] (yµ)) .

Intuitively, this means that setting xj = 1 in w and then freely reducing produces

exactly the same freely reduced word as freely reducing w, setting all xj = 1 and

then freely reducing again. To see this, let Fn−1 = hx1, . . . , xj−1, xj+1, . . . , xni and

define the homomorphism ψ : Fn → Fn−1 by xi 7→ xi, i 6= j, and xj 7→ 1. Since

w (xµ) ≈ ρ (w (xµ)) , the well definition of ψ implies that

ψ (w (xµ)) ≈ ψ (ρ (w (xµ))) . So, we have that:

w (yµ) = ψ (w (xµ))

≈ ψ (ρ (w (xµ)))

= [ρ (w (xµ))] (yµ) .

Hence, ρ (w (yµ)) = ρ ([ρ (w (xµ))] (yµ)), as desired.
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Now, let w (xµ) =
¡
r−11 x1r1

¢ ¡
r−12 x2r2

¢ · · · (r−1n xnrn) . Since r is an Artin

presentation, we have ρ (w (xµ)) = x1x2 · · ·xn. Thus, we compute:

x1 · · ·xj−1xj+1 · · ·xn = ρ ([x1x2 · · ·xn] (yµ))

= ρ ([ρ (w (xµ))] (yµ))

= ρ (w (yµ)) ,

where the last equality follows from the claim. We also have:

w (yµ) =
nQ
i=1

¡£
r−1i xiri

¤
(yµ)

¢
=

·
j−1Q
i=1

u−1i xiui

¸ £
u−1j 1uj

¤ " nQ
i=j

u−1i xiui

#

≈
nQ

i=1, i6=j
u−1i xiui.

Applying ρ and using Lemma 11 gives:

ρ (w (yµ)) = ρ

Ã
nQ

i=1, i6=j
ρ
¡
u−1i
¢
xiρ (ui)

!

= ρ

Ã
nQ

i=1, i6=j
s−1i xisi

!
,
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and the result follows. ¤

6.2. Proof of Theorem 10

First, suppose that r = hx1, x2 | r1, r2i and:

r1 = xa1 (x1x2)
c , and

r2 = xb2 (x1x2)
c , for some a, b, c ∈ Z.

Then, an easy computation shows that r is in fact Artin.

The following two lemmas will be useful in proving the converse in our

characterization of R2. If w is a freely reduced word in Fn then we let #w denote

the length of w. That is, write w = x�i1i1 · · ·x�ikik where �ij = ±1 for each j = 1, . . . , k,

then #w = k ≥ 0. If r is an Artin presentation then we define #r to be

#r1 + · · ·+#rn.

Lemma 15. If u, v are freely reduced words in F2 = hx1, x2i and uv ≈ x1x2 then

#u is equal to either #v − 2, #v, or #v + 2.

Proof. We proceed by induction on k = #u+#v. Since #(uv) ≤ k, uv ≈ x1x2

clearly implies k ≥ 2. If k = 2 then either u = 1 and v = x1x2, u = x1x2 and v = 1,

or u = x1 and v = x2, which satisfy the lemma.
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So, we may assume k ≥ 3 and #u,#v ≥ 1. Since uv ≈ x1x2 and u, v are freely

reduced, we must have:

u = u0x�i , and

v = x−�i v0,

where i = 1 or 2, � = ±1, and u0, v0 are freely reduced (either possibly equal to 1).

Thus:

x1x2 ≈ uv

= u0x�ix
−�
i v0

≈ u0v0,

where k0 = #u0 +#v0 = #u− 1+#v− 1 = k− 2. Furthermore, x1x2 ≈ u0v0 implies

k − 2 ≥ 2, and so the result follows easily by induction. ¤
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Lemma 16. If u, v are freely reduced words in F2 = hx1, x2i and uv ≈ x1x2, then

either:

i) u begins with x1x2,

ii) v ends with x1x2, or

iii) u begins with x1 and v ends with x2.

Proof. The previous lemma implies that #u equals either #v − 2, #v, or #v + 2.

The same method of proof implies that #u = #v − 2 if and only if ii holds,

#u = #v if and only if iii holds, and #u = #v + 2 if and only if i holds. ¤

We now return to the proof proper of Theorem 10. Fix r = hx1, x2 | r1, r2i in

R2. In particular, r1, r2 are freely reduced. The proof is by induction on

#r = #r1 +#r2.

If #r = 0, then we are done. If #r = 1, we have four cases:

i) r1 = x±11 and r2 = 1,

ii) r1 = 1 and r2 = x±12 ,

iii) r1 = x±12 and r2 = 1,

iv) r1 = 1 and r2 = x±11 .
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Cases i and ii yield Artin presentations and are of the desired form, while

cases iii and iv do not give Artin presentations. Hence, we may assume #r ≥ 2.

Suppose r1 = 1. Then x1x2 ≈ x1r
−1
2 x2r2, which implies that r−12 x2r2 ≈ x2, and

so r2 = xm2 for some m ∈ Z by Lemma 12. These presentations are Artin and of the

desired form; a similar result follows if r2 = 1. Hence, we may assume ri 6= 1,

i = 1, 2.

Suppose r1 begins with x±11 . Let s1 = ρ
¡
x∓11 r1

¢
and s2 = r2. Then

s = hx1, x2 | s1, s2i is an Artin presentation and #s = #r − 1. By induction, s has

the desired form, and so r has the desired form as well. The same result holds if r2

begins with x±12 . Hence, we may assume that ri does not begin with a nonzero

power of xi.

Thus, we have ri 6= 1, i = 1, 2, and:

r1 = xα2w1,

r2 = xβ1w2,

where α, β are nonzero integers, w1, w2 are freely reduced words (either may equal

1), w1 does not begin with a nonzero power of x2, and w2 does not begin with a

nonzero power of x1. Let A = r−11 x1r1 and B = r−12 x2r2, which are both freely

reduced. Thus, AB ≈ x1x2 and so #A equals either #B or #B ± 2 by Lemma 15.

This implies #r1 equals either #r2 or #r2 ± 1. Suppose #r1 = #r2, then since
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A,B are freely reduced and AB ≈ x1x2, we must have that r1r−12 ≈ 1. But this

implies that r1 ≈ r2 which is a contradiction since r1 and r2 are freely reduced and

begin with different letters. So, #r1 = #r2 ± 1.

We claim that |α| = |β| = 1. To see this, suppose |α| ≥ 2. We have:

#r1 = |α|+#w1, and

#r2 = |β|+#w2.

There are two cases:

i) #r1 = #r2 + 1, and

ii) #r1 = #r2 − 1.

In case ii we have |α|+#w1 = |β|+#w2 − 1. But, again inspection of AB ≈ x1x2

shows that cancelling the last |α|+#w1 letters in A with the first |α|+#w1 letters

in B (which must cancel for AB ≈ x1x2 to hold) gives:

x1x2 ≈
¡
r−11 x1

¢
(x�1x2r2) ,

and so we must have � = −1 and:

x1x2 ≈
¡
w−11 x−α2

¢ ³
x2x

β
1w2

´
.
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This implies α > 0 and:

x1x2 ≈
¡
w−11 x−α+12

¢ ³
xβ1w2

´
,

where −α+ 1, β are nonzero and both words in parentheses are freely reduced.

This is a contradiction. Similar contradictions arise in case i and when |β| 6= 1.

The claim follows.

Taking stock, we have reduced to the situation where:

r1 = xα2w1,

r2 = xβ1w2,

and |α| = |β| = 1, w1, w2 are freely reduced words (either may equal 1), w1 does

not begin with a nonzero power of x2, w2 does not begin with a nonzero power of

x1, and #r1 = #r2 ± 1.

Case 1. #r1 = #r2 − 1. This implies #A = #B − 2 and so B ends with x1x2

by Lemma 16. Since B = r−12 x2r2 = w−12 x−β1 x2x
β
1w2, there are two subcases: either

w2 = x2 or w2 6= x2.

Case 1.1. w2 = x2. This implies β = 1, r2 = x1x2, #r1 = 1, and r1 = xα2 . The

Artin condition implies α = 1. This presentation is Artin and corresponds to the

desired form with a = −1, b = 0 and c = 1.
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Case 1.2. w2 6= x2. This implies w2 = wx1x2 where w is freely reduced and

does not end in x−11 . The word w contains some nonzero power of x2 since we

assumed w2 did not begin with a nonzero power of x1. Recalling that

#r1 = #r2 − 1, which see that #w1 = #w2 − 1 = #w + 2− 1 ≥ 2. Therefore,

AB ≈ x1x2 implies w1 ends in x1x2. Define s = hx1, x2 | s1, s2i by:

s1 = ρ
¡
r1x

−1
2 x−11

¢
,

s2 = ρ
¡
r2x

−1
2 x−11

¢
.

Then, we compute:

¡
s−11 x1s1

¢ ¡
s−12 x2s2

¢ ≈ x1x2x
−1
2 x−11

¡
s−11 x1s1

¢
x1x2x

−1
2 x−11

¡
s−12 x2s2

¢
x1x2x

−1
2 x−11

= x1x2
¡
r−11 x1r1

¢ ¡
r−12 x2r2

¢
x−12 x−11

≈ x1x2 (x1x2)x
−1
2 x−11

≈ x1x2,

and so s is an Artin presentation. Also, #s ≤ #r − 4 and so s is of the desired

form by induction. This implies r is of the desired form.

Case 2. #r1 = #r2 + 1. This implies #A = #B + 2 and so A starts with x1x2

by Lemma 16. The proof follows in the same way as case 1.
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This completes the proof of Theorem 10.

6.3. Proof of Theorem 9

Let r = hx1, . . . , xn | r1, . . . , rni be an Artin presentation in Rn. We will show

A (r) is symmetric by induction on n. If n = 1 there is nothing to show. If n = 2

the result follows by the characterization of R2 in Theorem 10. So, assume n ≥ 3

and the result holds for all Artin presentations on n− 1 generators.

Fix j = n and define yµ, ui, and si exactly as they were defined preceding

Lemma 14 on j-reduction. Lemma 14 implies that s = hx1, . . . , xn−1 | s1, . . . , sn−1i

is an Artin presentation in Rn−1. Hence, A (s) is symmetric by induction. We

claim that for all 1 ≤ α, β ≤ n− 1:

[A (r)]α,β = [A (s)]α,β .

To see this note that:

[A (r)]α,β = exponent of xβ in abelianized rα, and

[A (s)]α,β = exponent of xβ in abelianized sα.

Now, [A (r)]α,β also equals the exponent of xβ in abelianized uα since uα is obtained

from rα by setting xn = 1. Moreover, sα = ρ (uα) and each simple free reduction in

passing from uα to sα preserves the exponent sum of every xµ. Hence, the exponent
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of xβ in abelianized uα equals the exponent of xβ in abelianized sα, and the claim

follows.

The claim implies that the upper left (n− 1)× (n− 1) block of A (r) is

symmetric. Repeating this process for j = n− 1 and j = n− 2 (this is where we

need n = 2 as a basecase) shows that A (r) is symmetric, as desired.

6.4. Characterizing the ri

One hopes to characterize the words ri in Artin presentations in a useful,

combinatorial group theoretic manner. Two questions arise. Which words can be

an ri in some Artin presentation? Given an Artin presentation r ∈ Rn, how can

one extend r to an Artin presentation r0 ∈ Rn+1 such that the j-reduction of r0 for

j = n+ 1 is exactly r? These are open problems. We close with some observations

related to these problems.

The Jordan curve theorem restricts the words ri in an Artin presentation r in

the following way. Every ri = xki r
0
i for some integer k and freely reduced word r0i

such that r0i does not begin with x±1i , adjacent letters in r0i are distinct and they

appear to the power of ±1. This restriction follows geometrically by considering Ωn

(see Corollary 2). Can one prove this result algebraically?

There are further restrictions, though. The word r1 = x2x
−1
1 satisfies the above

restriction, but r1 cannot be the first defining word in an Artin presentation in R2

by our characterization of R2 Theorem 10.
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Characterizing the words in Artin presentations should be useful for ordering

Artin presentations and attacking the problem of whether the Gassner

representation of Pn is faithful using AP theory, see [B], p.133 and [W], p.266.
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