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QUOTIENT MAPS WITH CONNECTED FIBERS AND THE

FUNDAMENTAL GROUP

JACK S. CALCUT, ROBERT E. GOMPF, AND JOHN D. MCCARTHY

Abstract. In classical covering space theory, a covering map induces an in-
jection of fundamental groups. This note reveals a dual property for quotient
maps having connected fibers, with applications to orbit spaces of smooth
vector fields and leaf spaces in general.

1. Introduction

The opening question in Arnold’s Problems on singularities and dynamical sys-
tems [1] asks whether an exotic R4 may appear as the orbit space of a polynomial
or trigonometric vector field on R5. If one asks merely for a smooth vector field,
then the answer is affirmative for every exotic R4 [1, p. 251]. Thus the gist of the
question is: does dynamics produce exotic differentiable manifolds in the simplest
possible scenario? This harks back to the quadratic polynomial vector field on
R3 producing the Lorenz attractor: chaos is exhibited by a continuous dynamical
system in the simplest possible setting.

Inspired by Arnold’s question, it is natural to ask: for a given manifold M , which
manifolds (smooth or topological) or spaces in general may appear as orbit spaces
of vector fields (polynomial, smooth, or Lipschitz) on M? Of course, a non-closed
orbit yields a non-Hausdorff orbit space. Still, nontrivial smooth manifolds arise:
CPn−1 is already the orbit space of a quadratic polynomial vector field on R2n−1,
as shown below in Section 3.6.

As a first step to addressing the above questions, we prove the following basic
result.

Lemma. Let X be a locally path connected topological space partitioned into con-
nected subsets (equivalence classes). Let π : X → X�∼ be the associated quotient
map. If X�∼ is semi-locally simply connected, then the induced homomorphism

π♯ : π1(X) → π1(X�∼)

of fundamental groups is surjective for each choice of basepoint in X.

No separation properties are assumed in this lemma. Intuitively, the lemma says
that π1 may not be created by collapsing connected subsets to points. The lemma
is optimal in general as shown by explicit examples in Section 3. Each example sat-
isfies two of the three hypotheses in the lemma, with the conclusion of the lemma
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failing. We take a moment now to outline these examples.

Section 3.1 presents probably the simplest example with a single element of the
partition not connected. Section 3.2 uses the well-known Warsaw circle to construct
an example that is not locally path connected. In this example each element of the
partition is connected as required, although one element is not path connected.
Section 3.3 modifies the previous example to obtain one where again X is not lo-
cally path connected but now every element of the partition is path connected.
Section 3.4 constructs a pair of spaces (HR, A) with the following properties. The
space HR, which we call the Hawaiian ropes, is Hausdorff, path connected, locally
contractible, paracompact (hence normal), homotopy equivalent to the wedge of
countably many circles, and not metrizable. The subspace A is closed in HR, has
all homotopy groups trivial (i.e. is weakly contractible) but is not contractible. The
quotient HR�A is homeomorphic to the well-known Hawaiian earring HE which is
not semi-locally simply connected. Thus π♯ : π1 (HR) → π1 (HR�A) maps from a
countable group to an uncountable one, failing radically to be surjective. This ex-
ample raises the question of whether X must have a nontrivial fundamental group
in order to create new π1 in the quotient; in fact it need not. Section 3.5 uses the
pair (HR, A) to construct a pair (X,A′) with the following properties. The space
X is contractible, locally contractible, Hausdorff, normal, and not metrizable. The
subspace A′ is closed in X and is weakly contractible. The quotient X�A′ has
an uncountable first integral homology group, in particular π1 (X�A′) is (highly!)
nontrivial. We present these examples in detail as they reveal the optimality of the
lemma.

The proof of the lemma makes essential use of a lift of π to an appropriate
covering space of X�∼.

X̂�∼

c

��
X

π //

g

>>|
|

|
|

X�∼

Rigid covering fibrations [2] generalize classical covering spaces, the key hypothesis
being that the topological fundamental group is totally disconnected rather than
discrete as in the classical theory (see [4]). Our example in Section 3.4 shows that
rigid covering fibrations may not be used to weaken the semi-local simple connec-
tivity hypothesis in the lemma. This may be further explained as follows. A rigid
covering fibration does not in general have local inverses: consider a simply con-
nected rigid covering fibration of HE and an arbitrary open set in HE containing
the wild point. Local inverses are used in classical covering space theory to con-
struct lifts such as g above.

For a familiar special case of the lemma, consider the projection p : E → B of
a fibration. The associated long exact sequence shows that if the fibers are path
connected, then p♯ : π1(E) → π1(B) is surjective. The above lemma is more gen-
eral in that the fibers need not be homotopy equivalent. On the other hand, the
lemma is special to the fundamental group in that it does not directly extend to
higher homotopy groups. Section 3.7 constructs a partition of closed upper 3–space
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(a contractible space) into connected arcs (one open, the rest closed, and all con-
tractible) where the quotient space is homeomorphic to the 2–sphere. The results
in Section 3.6 explicitly exhibit this quotient as the orbit space of a quadratic vector
field restricted to a linear half-space. Thus it is analytically very simple.

Let M be a smooth n–dimensional manifold that is connected, Hausdorff, and
separable. Let v : M → TM be a smooth vector field on M . Integrating v yields a
partition of M into connected orbits, each of which is an injective image of a point,
an open interval, or the unit circle. In this case M�∼ is called the orbit space of v
and the natural quotient map is π : M → M�∼. The lemma implies that if M�∼
is semi-locally simply connected, then π♯ is surjective. In particular, the lemma
restricts which manifolds may arise as M�∼ for a given M . Manifolds arising as
orbit spaces of Rn, for example, must be simply connected. Similar results apply
to p–dimensional foliations of M and associated leaf spaces.

The question arises whether every such orbit space M�∼ is semi-locally simply
connected. The authors know of no counterexample.

2. Proof of the Lemma

Consider a topological space X and a partition P = {Xi | i ∈ I} of X where I
is some index set. The associated equivalence relation on X is: x ∼ y if and only if
x, y ∈ Xi for some i ∈ I. Let x denote the equivalence class represented by x, X�∼
the set of equivalence classes, and π : X → X�∼ the canonical surjection. The set
X�∼ is equipped with the quotient topology making π continuous.

For the proof of the lemma, we assume that X is locally path connected, Xi is
connected for each i ∈ I, and X�∼ is semi-locally simply connected.

As X is locally path connected, its components and path components coincide
and are both open and closed in X . Each Xi is connected and π is surjective, so
each component C of X is saturated and π(C) is both open and closed in X�∼.
Thus choosing a basepoint in X amounts to simply restricting π to a path compo-
nent of X . Therefore we can and do assume X itself is path connected. As π is a
continuous surjection, X�∼ is path connected as well.

Next, we show that X�∼ is locally path connected. Note that π−1(E) ⊂ X is
saturated for every E ⊂ X�∼. Let U be an open neighborhood of x in X�∼. Then
π−1(U) is open in the locally path connected space X and so π−1(U) is locally path
connected. Thus the components of π−1(U) coincide with its path components, are
open in π−1(U), and hence are open in X . As π−1(U) is saturated and fibers of π
are connected, we see that each component of π−1(U) is saturated. Let V be the
component of π−1(U) containing the fiber π−1(x). Then π−1(π(V )) = V and so
π(V ) ⊂ U is an open path connected neighborhood of x as desired.
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By hypothesis, X�∼ is semi-locally simply connected and so classical covering
space theory applies to X�∼. To the subgroup π♯ (π1(X)) of π1 (X�∼) there corre-
sponds the commutative diagram

(1) X̂�∼

c

��
X

π //

g
>>|

|
|

|
X�∼

where c is a covering map, the induced homomorphisms of fundamental groups
satisfy

(2) Im(c♯) = Im(π♯),

and g is a lift of π. We will show that the restriction c|Im(g) of c to the image of g
is a homeomorphism onto X�∼.

Surjectivity of c|Im(g) is trivial since π is surjective. For injectivity, note that
fibers of c are discrete and fibers of π are connected. Commutativity of (1) implies
that g maps each fiber of π to a fiber of c. Hence g is constant on each fiber of π
and c|Im(g) is injective.

Next we show that Im(g) is open in X̂�∼. Let g(x) ∈ Im(g). Then x ∈ X�∼ lies
in a connected open set U evenly covered by c. Note that c−1(U) is the disjoint
union

c−1(U) =
∐

j∈J

Uj

of connected open sets in X̂�∼ where J is some index set, c|Uj
: Uj → U is a home-

omorphism for each j ∈ J , and g(x) ∈ U0. The connected components of π−1(U)
are open and saturated. So, their images under π are disjoint and open. Therefore
π−1(U) is connected, saturated, and open in X . It follows that g maps π−1(U)
into U0. To see g maps π−1(U) onto U0, let y ∈ U0. Then c(y) ∈ U and so there is
z ∈ π−1(U) such that π(z) = c(y). Now g(z) ∈ U0 and commutativity of (1) yields
c(g(z)) = π(z) = c(y). But c|U0

: U0 → U is a homeomorphism and so g(z) = y as

desired. Hence g(π−1(U)) = U0, which is an open neighborhood of g(x) in X̂�∼.

Whence Im(g) is open in X̂�∼.

As c is a local homeomorphism and Im(g) is open, we have c|Im(g) is a local
homeomorphism. As c|Im(g) is bijective, it is a homeomorphism onto X�∼.

Finally, let α : [0, 1] → X�∼ be a based loop. Then α̂ = c|−1
Im(g) ◦α is a based loop

in X̂�∼ and c♯ ([α̂]) = [α]. Therefore c♯ is surjective and, by (2), π♯ is surjective.
The proof of the lemma is complete.

Remark 1. As c is a covering map, c♯ is injective. Thus the lemma implies that c♯
is an isomorphism and c is a one sheeted cover. By a covering space isomorphism

we may take X̂�∼ = X�∼ and c = id. By commutativity of (1), π = g ◦ id = g. It
follows that g is surjective. The proof of the lemma may be reorganized to argue g
is surjective directly.
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3. Examples

This section contains the examples outlined in the introduction. Sections 3.1–
3.5 demonstrate the necessity of each hypothesis in the lemma. The titles of those
sections indicate the relevant hypothesis.

3.1. Connectedness of partition elements. The simplest example isX = [0, 1] ⊂
R and P = {{0, 1}}∪{{p} | p ∈ (0, 1)} where just one element of P is not connected.
The quotient X�∼ is homeomorphic to S1 and so π♯ is not surjective. For more
examples, consider any nontrivial classical covering map.

3.2. Local path connectedness I. Consider the Warsaw circle W shown in Fig-
ure 1 which is the subspace of R2 consisting of the points in the sets

A = {(0, y) | −1 ≤ y ≤ 1} ,

B = {(x, sin(1/x)) | 0 < x ≤ 1/π} , and

C = {(x, 0) | −2 ≤ x < 0 or 1/π < x ≤ 2} ∪
{
(x, y) | x2 + y2 = 4 & y ≤ 0

}
.

The set B is a portion of the topologists sine curve. The Warsaw circle is the

Figure 1. Warsaw circle W ⊂ R2.

classical example of a path connected but not locally path connected space. Notice
that W is simply connected. Consider the partition P = {A ∪B} ∪ {{c} | c ∈ C}
of W into connected subsets. The quotient W�∼ is homeomorphic to S1 and so
π♯ : π1(W ) → π1 (W�∼) is not surjective.

3.3. Local path connectedness II. This example serves the same purpose as
the previous one but it enjoys the additional property that every element of the
partition is path connected and not just connected. Consider the Warsaw circle W
and the partition P = {A,B} ∪ {{c} | c ∈ C} of W into path connected subsets.
Let π : W → W�∼ be the associated quotient map. While W�∼ and S1 are not
homeomorphic (the former is not Hausdorff), we will show that they are homotopy
equivalent thus completing the example.

Define the subspace V ⊂W shown in Figure 2 as follows

V = A ∪B ∪ {(x, 0) | −2 ≤ x < 0 or 1/π < x ≤ 2} .

Note that V is closed and saturated in W . It follows that π(V ) is a closed subspace
of W�∼ and the restriction π| : V → π(V ) is a quotient map.
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Figure 2. Closed subspace V ⊂W .

Let J = [−2, 2] and consider the equivalence relation ∼ on J generated by
x ∼ 1/π for 0 < x ≤ 1/π. The quotient map is α : J → J�∼. Define

V
f̃

// J

(x, y)
� // x

which is a continuous surjection. As V is compact and J is Hausdorff, f̃ is a closed
map. So f̃ is a quotient map and the composition α ◦ f̃ is a quotient map as well.
The function α ◦ f̃ factors as follows

(3) V
f̃

//

π|

��

J

α

��
π(V )

f
// J�∼

to yield a (unique) continuous map f : π(V ) → J�∼ making (3) commute. More

explicitly, one verifies that α ◦ f̃ is constant on each fiber π|
−1

(p) where p ∈ π(V );

only points with nontrivial fibers need to be checked, here they are p = (0, 0) and

p = (1/π, 0) and the verification is easy. Then the universal property of quotient
maps [6, Thm. 22.2] implies that the unique set function f making (3) commute is
in fact continuous. This universal property will often be used below. Presently f
is a bijection and so the universal property implies f is a homeomorphism.

Let K = [−2, 2] and consider the equivalence relation ∼ onK generated by x ∼ 1
for 0 < x ≤ 1. The quotient map is β : K → K�∼. The obvious piecewise linear
homeomorphism

K
s̃ // J

x � // x −2 ≤ x ≤ 0

x � // 1
π
x 0 < x ≤ 1

x � //
(
2 − 1

π

)
x− 2 + 2

π
1 < x ≤ 2

yields the commutative diagram

K
s̃ //

β

��

J

α

��
K�∼

s // J�∼
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where s is a homeomorphism. Using K instead of J simply eases notation in the
proof of the following key claim.

Claim 1. The spaces K and K�∼ are homotopy equivalent.

Proof. We already have the quotient map

K
β

// K�∼

x � // x −2 ≤ x ≤ 0 or 1 < x ≤ 2

x � // 1 0 < x ≤ 1

Define

K
g̃

// K
x � // x −2 ≤ x ≤ 0

x � // 0 0 < x ≤ 1

x � // 2x− 2 1 < x ≤ 2

which is a continuous surjection. The map g̃ factors as follows

K
g̃

//

β

��

K

K�∼

g

<<zzzzzzzz

to yield the continuous surjection

K�∼
g

// K

x
� // x −2 ≤ x ≤ 0

1
� // 0

x
� // 2x− 2 1 < x ≤ 2

We will show that β and g are homotopy inverses by constructing homotopies

H̃ : K × I → K

H : K�∼× I → K�∼

such that

H̃0 = g ◦ β and H̃1 = idK(4)

H0 = β ◦ g and H1 = idK�∼(5)

Define

K × I
eH // K

(x, t)
� // x −2 ≤ x ≤ 0

(x, t) � // t · x 0 < x ≤ 1

(x, t) � // (2 − t)x+ 2t− 2 1 < x ≤ 2

which is continuous. As H̃0 = g̃ = g ◦ β, (4) is satisfied.
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Consider the diagram

(6) K × I
eH //

β×idI

��

K

β

��
K�∼× I

H //___ K�∼

As β is a quotient map and I is (locally) compact and Hausdorff, β×idI is a quotient

map. The fiber (β × idI)
−1

(x, t) = β−1 (x)×{t}. So, the universal property applies

provided β ◦ H̃ is constant on β−1
(
1
)
× {t} = (0, 1] × {t} for each t ∈ I. If t = 0,

then H̃0((0, 1]) = {0}. If 0 < t ≤ 1, then H̃t((0, 1]) ⊂ (0, 1] and β is constant on
(0, 1]. Thus the unique set function H making (6) commute is continuous. By (6)
and (4) we have

H0 ◦ β = β ◦ H̃0 = β ◦ (g ◦ β) = (β ◦ g) ◦ β and

H1 ◦ β = β ◦ H̃1 = β ◦ idK = idK�∼ ◦ β

and, since β is surjective, (5) holds. For future reference, note that for every t ∈ I
we have

(7) H̃(−2, t) = −2 and H̃(2, t) = 2

and so by (6)

(8) H
(
−2, t

)
= −2 and H

(
2, t
)

= 2.

�

Claim 2. The spaces W�∼ and S1 are homotopy equivalent.

Proof. Let S =
{
(x, y) ∈ R2 | x2 + y2 = 4

}
and let S+ and S− denote the upper

and lower closed semicircles in S respectively. Thus S+ ∩ S− = {(±2, 0)}. We will
show that W�∼ and S are homotopy equivalent.

Let σ : K → S+ be any homeomorphism with σ(−2) = (−2, 0) (consequently
σ(2) = (2, 0)). We have the following diagram where ≈ indicates a homeomorphism

π(V )
f

≈
// J�∼ K�∼

s

≈
oo

g
))
K

β

kk
σ

≈
// S+

Define

ϕ+ = σ ◦ g ◦ s−1 ◦ f and

ψ+ = f−1 ◦ s ◦ β ◦ σ−1.

Let Φ+ denote the composition of the following maps

π(V ) × I
f×idI // J�∼× I

s−1×idI// K�∼× I
H // K�∼

s // J�∼
f−1

// π(V ).

Note that Φ+
0 = ψ+ ◦ ϕ+, Φ+

1 = idπ(V ), and, using (8), Φ+
t fixes (−2, 0) and (2, 0)

for each t ∈ I. Let Ψ+ denote the composition of the following maps

S+ × I
σ−1×idI// K × I

eH // K
σ // S+.
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Note that Ψ+
0 = ϕ+ ◦ ψ+, Ψ+

1 = idS+ , and, using (7), Ψ+
t fixes (−2, 0) and (2, 0)

for each t ∈ I.

Now S− is a closed and saturated subspace of W ⊂ R2 and W�∼ is the union of
the two closed subspaces π(V ) and π(S−). Their intersection

π(V ) ∩ π(S−) =
{
(±2, 0)

}

is closed in W�∼. Define

π(S−)
ϕ−

// S− and S−
ψ−

// π(S−)

p � // p p � // p

which are homeomorphisms. Paste together ϕ+ and ϕ− to obtain ϕ : W�∼ → S.
Paste together ψ+ and ψ− to obtain ψ : S → W�∼. Both ϕ and ψ are continuous.
Define

π(S−) × I
Φ−

// S− and S− × I
Ψ−

// S−

(p, t)
� // p (p, t)

� // p

Paste together Φ+ and Φ− to obtain Φ : W�∼× I →W�∼. Paste together Ψ+ and
Ψ− to obtain Ψ : S × I → S. Both Φ and Ψ are continuous. An easy verification
shows that

Φ0 = ψ ◦ ϕ and Φ1 = idW�∼

Ψ0 = ϕ ◦ ψ and Ψ1 = idS

Thus ϕ and ψ are homotopy inverses proving the claim. �

3.4. Semi-local simple connectedness. Let N denote the natural numbers, N0 =
N ∪ {0}, I = [0, 1] ⊂ R, and In = I × {n}. Consider the disjoint union

(9) X̃ =
∐

n∈N0

In = I × N0

and the equivalence relation ∼ on X̃ generated by (0, n) ∼ (0, 0) and (1, n) ∼
(1/n, 0) for n ≥ 1. Define HR, which we call the Hawaiian ropes, to be the quotient

space X = X̃�∼ as depicted in Figure 3. HR is noncompact and is not a subspace

(1,1)(0,0) (1,2)

Figure 3. Hawaiian ropes HR = X .

of R3. Intuitively, the attached arcs are large and their interiors do not accumulate.
Not to be confused with HR is the compact metric subspace of R2 shown in Figure 4.
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0 1
1
2

1
3

1
4

Figure 4. Compact metric subspace of R2.

Define
Ỹ = X̃ − ((0, 1]× {0})

and let ∼ be the equivalence relation on Ỹ generated by (0, n) ∼ (0, 0) ∼ (1, n)

for n ≥ 1. The quotient space Y = Ỹ�∼ is the wedge of countably many circles.
Not to be confused with Y is the well known compact subspace HE ⊂ R2 shown in
Figure 5 commonly called the Hawaiian earring.

Figure 5. Hawaiian earring HE ⊂ R2.

We have the quotient maps

(10) X̃
α // X = HR

x � // x

and

Ỹ
β

// Y

y � // y

Define the closed subspace A ⊂ X = HR, depicted in Figure 6, by

(11) A =
⋃

n≥1

α (In) .

In other words, A consists of all of the curved arcs (ropes) depicted in Figure 3.

Note that (0, 0) = (0, 1) in X , but we will write (0, 1) for the wild point in A

since (11) alone does not make obvious that (0, 0) lies in A.

We claim that X = HR is homotopy equivalent to Y and HR�A is homeomorphic
to HE. Assume these claims for the moment. Then π1 (HR) is free on countably
many generators, HR�A is not semi-locally simply connected, and π1 (HR�A) is
uncountable (and not free) [7]. Thus the quotient map π : HR → HR�A does not
induce a surjection of fundamental groups (far from it!). Below we prove these two
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(1,1)(0,1) (1,2)

Figure 6. Subspace A ⊂ X = HR.

claims and others made in the introduction concerning X = HR and A.

We begin by constructing a neighborhood basis of the wild point (0, 0) in X =
HR. If N ∈ N and a = {an} and b = {bn} are sequences of real numbers such that

0 < an <
1

2
for each n ≥ 1 and(12)

1

2
< bn < 1 for each n > N,(13)

then we define the set

Ṽ (N, a, b) ⊂ X̃ = I × N0

as follows

Ṽ (N, a, b) = ([0, 1/N)× {0}) ∪



⋃

n≥1

[0, an) × {n}


 ∪

(
⋃

n>N

(bn, 1] × {n}

)
.

Such a set is shown in Figure 7 with N = 3. Notice that each such Ṽ (N, a, b) is a

I1

1

N a1

a2

a3

a4
a5

a6

b4
b5

b6

1 1 1 1 1 1 1

0 0 0 0 0 0 0

I2 I3 I4 I5 I6I0

Figure 7. Saturated open set Ṽ (N, a, b) ⊂ X̃ with N = 3.

saturated open set in X̃ containing α−1
(
(0, 0)

)
and so

(14) V (N, a, b) = α
(
Ṽ (N, a, b)

)

is an open neighborhood of (0, 0) in X = HR.

Claim 3. The open sets V (N, a, b) with N ∈ N and sequences a and b satisfy-

ing (12) and (13) form a neighborhood basis of (0, 0) in X = HR.
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Proof. Let U be an open set inX containing (0, 0). Then Ũ = α−1(U) is a saturated

open set in X̃ containing (0, n) for n ∈ N0. Thus there is N ∈ N such that

[0, 1/N) × {0} ⊂ Ũ . Also there is a sequence a satisfying (12) such that [0, an) ×

{n} ⊂ Ũ for each n ≥ 1. As Ũ is saturated and contains [0, 1/N)×{0}, Ũ contains

(1, n) for n > N . As Ũ is open, there is a sequence b satisfying (13) such that

(bn, 1] × {n} ⊂ Ũ . Therefore V (N, a, b) ⊂ U as desired. �

Corollary 1. The space X = HR is Hausdorff.

Proof. This easy verification is left to the reader. �

Corollary 2. The space X = HR is not first countable. In particular X = HR is
not metrizable.

Proof. Suppose {Ui}i∈N is a countable neighborhood basis of (0, 0) in X . By
Claim 3 each Ui contains some basic open set

Vi = V (N(i), a(i), b(i)) .

Using a diagonal argument we construct a basic open set V (N, a, b) not containing
any Vi. Let N = 1, let b be the constant sequence bn = 3/4 for n > 1, and let a be
the sequence defined by

an =
1

2
a(n)n

for each n ≥ 1. Then V (N, a, b) is a basic open neighborhood of (0, 0) in X that

does not contain any Vi and hence any Ui ⊃ Vi. Therefore (0, 0) has no countable
neighborhood basis in X . The second claim is immediate as every metric space is
first countable. �

Claim 4. The space X = HR is homotopy equivalent to Y .

Proof. Define

X̃
f̃

// Ỹ

(s, 0)
� // (0, 0)

(s, n)
� // (s, n) n ≥ 1

which is continuous. Then β ◦ f̃ : X̃ → Y factors as follows

X̃
f̃

//

α

��

Ỹ

β

��
X

f
// Y

to yield a continuous map f : X → Y which crushes α (I0) to the basepoint (0, 0)
of Y .
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Define

Ỹ
g̃

// X

(0, 0) � // (0, 0)

(s, n)
� // (2s, n) 0 ≤ s ≤ 1

2 & n ≥ 1

(s, n)
� // ( 2−2s

n
, 0
) 1

2 ≤ s ≤ 1 & n ≥ 1

which is continuous and factors as follows

Ỹ

β

��

g̃

����
��

��
��

X Yg
oo

to yield a continuous map g : Y → X which maps the first half of the nth circle
β (In) of Y onto the nth rope α (In) ofX and the second half onto α ([0, 1/n]× {0}).
We will show that f and g are homotopy inverses by constructing homotopies

H : X × I → X

G : Y × I → Y

such that

H0 = g ◦ f and H1 = idX(15)

G0 = f ◦ g and G1 = idY(16)

Define

I0 × I
H0

// I0

(s, 0, t) � // (t · s, 0)

For each n ≥ 1, let

Sn = {(s, n, t) | 0 ≤ s ≤ (1 + t)/2 & 0 ≤ t ≤ 1} and

Tn = {(s, n, t) | (1 + t)/2 ≤ s ≤ 1 & 0 ≤ t ≤ 1} .

Define

Sn
Hn

− // In

(s, n, t) � //
(

2s
1+t , n

)

and

Tn
Hn

+ // I0

(s, n, t)
� //

(
2+t−2s

n
, 0
)

Define

X̃ × I
eH // X

(x, t) � // H0(x, t) (x, t) ∈ I0 × I

(x, t) � // Hn
−(x, t) (x, t) ∈ Sn

(x, t) � // Hn
+(x, t) (x, t) ∈ Tn
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which is continuous and factors as follows

X̃ × I

α×idI

��

eH

""EE
EE

EEE
E

X × I
H

// X

where α × idI is a quotient map since α is a quotient map and I is (locally) com-
pact and Hausdorff. By the universal property H is continuous, and one may verify
that (15) holds.

The space X is Hausdorff by Corollary 1 above and Y is Hausdorff by inspection.
Therefore

α : In → α (In) ⊂ X

is a homeomorphism for each n ≥ 0 and

β : In → β (In) ⊂ Y

is a quotient map for each n ≥ 1.

Define

Ỹ × I
eG // Ỹ

(0, 0, t) � // (0, 0)

(s, n, t) � //
(

2s
1+t , n

)
0 ≤ s ≤ 1+t

2 & n ≥ 1

(s, n, t)
� // (1, n) 1+t

2 ≤ s ≤ 1 & n ≥ 1

which is continuous and factors as follows

Ỹ × I
eG //

β×idI

��

Ỹ

β

��
Y × I

G // Y

where β× idI is a quotient map since β is a quotient map and I is (locally) compact
and Hausdorff. By the universal property G is continuous, and one may verify
that (16) holds. This completes the proof that X and Y are homotopy equivalent.

�

The fundamental group π1

(
Y, (0, 0)

)
is the free group

〈[g1] , [g2] , [g3] , . . .〉

where

I
gn // Y

s � // (s, n)

for each n ≥ 1. As g♯ is an isomorphism, π1

(
X, (0, 0)

)
is the free group

〈[h1] , [h2] , [h3] , . . .〉

where hn = g ◦ gn for each n ≥ 1.
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Claim 5. The quotient space X�A is homeomorphic to HE.

Proof. Recall that X = HR is depicted in Figure 3, A is the union of the curved arcs
(ropes) depicted in Figure 6, and HE is the Hawaiian earring shown in Figure 5. Up
to homeomorphism, the radii of the circles in HE are unimportant as long as they
tend to zero. To see this, note that any such space is compact and Hausdorff, so
the obvious bijection between any two of them is a homeomorphism (see also [7]).
For precision we take HE to be

Z =
⋃

n≥1

C

(
1 −

1

2n
,

1

2n

)

where
C(a, r) =

{
(x, y) ∈ R2 | (x− a)2 + y2 = r2

}
.

Define η : X → Z by a 7→ (1, 0) for each a ∈ A and

(s, 0) 7→

(
1 −

1

2n
, 0

)
+

1

2n
(cos (2πn [(n+ 1)s− 1]), sin (2πn [(n+ 1)s− 1]))

for each n ≥ 1 and 1
n+1 ≤ s ≤ 1

n
. Notice that η is a continuous surjection and

η−1((1, 0)) = A. Our tactic is to show that η is a quotient map. Once we show this,
the universal property of quotient maps will imply that Z is homeomorphic to X�A.

For each n ≥ 1 define

Zn = C

(
1 −

1

2n
,

1

2n

)
− {(1, 0)}

which is open in Z. Thus

Z − {(1, 0)} =
∐

n≥1

Zn

is a topological sum. For each n ≥ 1 define

Xn = α

((
1

n+ 1
,
1

n

)
× {0}

)

which is open in X . Thus

X −A =
∐

n≥1

Xn

is a topological sum and is open in X . Note that

(17) η| : X −A→ Z − {(1, 0)}

is a continuous bijection. We shall prove that it is a homeomorphism. Since the
domain and range are both topological sums it suffices to show that η| : Xn → Zn
is a homeomorphism for each n ≥ 1. For each n ≥ 1 we have the closures

Cl (Xn) = α

([
1

n+ 1
,
1

n

]
× {0}

)
and

Cl (Zn) = C

(
1 −

1

2n
,

1

2n

)
.

Consider the maps [
1

n+1 ,
1
n

]
fn // Cl (Xn)

s � // α((s, 0))
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and [
1

n+1 ,
1
n

]
gn // Cl (Zn)

where gn is given by

s 7→

(
1 −

1

2n
, 0

)
+

1

2n
(cos (2πn [(n+ 1)s− 1]), sin (2πn [(n+ 1)s− 1])) .

Both are continuous surjections from a compact space to a Hausdorff space and fn
is bijective, so fn is a homeomorphism and gn is a quotient map. Notice that

f−1
n (Xn) =

(
1

n+ 1
,
1

n

)
= g−1

n (Zn) .

It follows that

fn| :

(
1

n+ 1
,
1

n

)
→ Xn

is a homeomorphism and

gn| :

(
1

n+ 1
,
1

n

)
→ Zn

is a quotient map. But gn| is bijective hence it is a homeomorphism as well. We
have the commutative diagram

(
1

n+1 ,
1
n

)

fn| ≈

��

gn|

≈
##GGGGGGGG

Xn
η|

// Zn

Therefore η| : Xn → Zn is a homeomorphism. As noted above, this implies
that (17) is a homeomorphism.

We now complete the proof that η is a quotient map. Let V be a subset of Z
for which η−1(V ) is open in X . By (17)

η| : η−1(V ) −A→ V − {(1, 0)}

is a homeomorphism from an open subset of X − A onto an open subset of Z −
{(1, 0)}. Since Z − {(1, 0)} is open in Z, it follows that V − {(1, 0)} is open in Z.
In particular, every point of V − {(1, 0)} is in the interior Int(V ). If (1, 0) /∈ V ,
we have that V is open in Z and we are done. Otherwise (1, 0) ∈ V . In this case

η−1(V ) is an open neighborhood of A. Recall the quotient map α : X̃ → X . Note
that

α−1(A) = {(0, 0)} ∪ {(1/n, 0) | n ≥ 1} ∪ (I × N)

and α−1
(
η−1(V )

)
⊂ X̃ is an open neighborhood of α−1(A). It follows that there

exist ǫ > 0 and sequences {an} and {bn} such that for n ≥ 1 we have

1

n+ 1
< bn+1 < an <

1

n

and

([0, ǫ) × {0}) ∪ ((a1, 1]× {0}) ∪

(
⋃

n>1

(an, bn) × {0}

)
∪ (I × N) ⊂ α−1

(
η−1(V )

)
.
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Let

N = min {n ≥ 1 | bn+1 < ǫ}

and let

K̃ =
⋃

1≤n≤N

[bn+1, an] × {0} .

Then K̃ is a compact subset of X̃ and

X̃ − α−1
(
η−1(V )

)
⊂ K̃.

This implies that

X − η−1(V ) ⊂ α
(
K̃
)

and, hence, that

Z − V ⊂ η
(
α
(
K̃
))

.

Now η
(
α
(
K̃
))

is a compact subset of the Hausdorff space Z and thus is closed in

Z. It follows that Z − η
(
α
(
K̃
))

is contained in V and is open in Z. Note that

K̃ ∩ α−1(A) = ∅

and, hence, that

η
(
α
(
K̃
))

∩ {(1, 0)} = ∅.

It follows that

(1, 0) ∈ Z − η
(
α
(
K̃
))

⊂ V

and so Z−η
(
α
(
K̃
))

is an open neighborhood of (1, 0) contained in V . This implies

that (1, 0) ∈ Int(V ). Since V −{(1, 0)} ⊂ Int(V ), it follows that V ⊂ Int(V ). That
is to say, V is open in Z. This completes the proof that η : X → Z is a quotient
map. Hence X�A is homeomorphic to HE as desired. �

Claim 6. The space X = HR is locally contractible.

Proof. The claim is nontrivial only for neighborhoods of the wild point (0, 0) and
there it suffices to show that each basic open set V (N, a, b) from Claim 3 is con-

tractible. So let V = V (N, a, b) be a basic open neighborhood of (0, 0) in X . We

will show that (0, 0) is a strong deformation retract of V thus completing the proof.
Let

J = [0, 1/N)× {0} ,

U0 =
⋃

n≥1

[0, an) × {n} , and

U1 =
⋃

n>N

(bn, 1] × {n}

so that

Ṽ = α−1(V ) = J ∪ U0 ∪ U1.



18 J. CALCUT, R. GOMPF, AND J. MCCARTHY

The set Ṽ is open and saturated in X̃. In particular α|eV
: Ṽ → V is a quotient

map. Define

Ṽ × I
eF // Ṽ

(s, 0, t)
� // (s, 0)

(s, n, t) � // ((1 − t)s, n) 0 ≤ s < 1
2 & n ≥ 1

(s, n, t)
� // ((1 − t)s+ t, n) 1

2 < s ≤ 1 & n > N

which is continuous. Consider the diagram

(18) Ṽ × I
eF //

α| eV
×idI

��

Ṽ

α

��
V × I

F //___ V

As α|eV
is a quotient map and I is (locally) compact and Hausdorff, α|eV

× idI

is a quotient map. It is easy to check that α ◦ F̃ is constant on each fiber of(
α|eV

× idI
)−1

. So, the universal property implies that the unique function F mak-
ing (18) commute is continuous. It is simple to check that F is a strong deformation
retraction of V to α(J) with F0 = idV .

The restriction α|J : J → α(J) is a continuous bijection and an open map.
Thus α|J is a homeomorphism onto its image. It is now trivial to construct a
strong deformation retraction

G : α(J) × I → α(J)

of α(J) to (0, 0) with G0 = idα(J). Concatenating the homotopies F and G yields

the desired strong deformation retraction of V to (0, 0). �

We now show that A ⊂ X (see Figure 6) has all trivial homotopy groups (i.e. is
weakly contractible) but is not contractible.

Claim 7. If K ⊂ A is compact, then K intersects at most finitely many of the sets
α (Int(In)) where n ∈ N.

Proof. Otherwise K contains an infinite, discrete, and closed subset. �

Claim 8. If K ⊂ A is connected and contains (1, n1) and (1, n2) for distinct
n1, n2 ∈ N, then K contains α (In1

) and α (In2
).

Proof. This easy verification is left to the reader. �

Claim 9. If K ⊂ A is compact and connected, then there exists N ∈ N such that

K ⊂
⋃

1≤n≤N

α (In) .

Proof. This follows immediately from Claims 7 and 8. �

Claim 10. If N ∈ N, then ⋃

n>N

α (In)

is a strong deformation retract of A.
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Proof. Fix N ∈ N. Define

P̃ =
∐

1≤n≤N

In = I × {1, 2, . . . , N}

and let ∼ be the equivalence relation on P̃ generated by (0, n) ∼ (0, 1) for n ≤ N .

The quotient space P = P̃�∼ is the N–prong. The quotient map is γ : P̃ → P .
Define

P̃
h̃ // X̃

(s, n) � // (s, n)

which is continuous. The composition α ◦ h̃ factors as follows

P̃
h̃ //

γ

��

X̃

α

��
P

h // X

to yield the continuous map h. As h is a continuous injection from a compact
space to a Hausdorff one, it is a homeomorphism onto its image. Note that
Im(h) ⊂ A ⊂ X is closed in X and in A.

Define

P̃ × I
eG // P̃

(s, n, t)
� // (t · s, n)

which is continuous and factors as follows

P̃ × I
eG //

γ×idI

��

P̃

γ

��
P × I

G // P

where γ× idI is a quotient map since γ is a quotient map and I is (locally) compact

and Hausdorff. Thus (0, 1) is a strong deformation retract of P by the homotopy G.

The map H = h× idI : P × I → A× I is a continuous bijection from a compact
space to a Hausdorff one. Hence H is a homeomorphism onto its image




⋃

1≤n≤N

α (In)



× I ⊂ A× I

which is closed in A× I. Define F− to be the composition

Im(H)
H−1

// P × I
G // P

h // Im(h).

Note that F−
1 is the identity on Im(h), F−

0 sends everything to (0, 1), and F−
t fixes

(0, 1) for every t ∈ I.
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The set ⋃

n>N

α (In) ⊂ A

is closed in X and in A. Further
(
⋃

n>N

α (In)

)
× I ⊂ A× I

is closed in A× I. Define

F+ :

(
⋃

n>N

α (In)

)
× I →

⋃

n>N

α (In)

by (x, t) 7→ x for every t ∈ I. Being a projection, F+ is continuous. The continuous
maps F− and F+ are defined on closed subsets of A × I and they agree on the

intersection of their domains, namely
{
(0, 1)

}
× I where each is projection onto

the first factor. Thus these functions paste together to yield the desired homotopy
F : A× I → A. �

Claim 11. If k ≥ 0, then πk(A) is trivial.

Proof. Fix k ≥ 0. Let f : Sk → A be continuous. It suffices to show that f is
homotopic to a constant map. There exists N ∈ N such that

Im(f) ⊂
⋃

1≤n≤N

α (In) .

For k = 0 this is obvious and for k ≥ 1 it follows from Claim 9. Let F : A× I → A
be the homotopy provided by Claim 10. The map

f × idI : Sk × I → A× I

is continuous. The composition F ◦ (f × idI) is the desired homotopy. �

The following claim immediately implies that A is not contractible.

Claim 12. If F : A × I → A is a homotopy with F0 = idA, then there exists a
cofinite subset E ⊂ N such that

F
(
(0, 1), t

)
= (0, 1) and(19)

F
(
(1, n), t

)
= (1, n)(20)

for every n ∈ E and t ∈ I.

Proof. Consider the set J ⊂ I defined by: τ ∈ J if and only if there exists a cofinite
subset E ⊂ N such that (19) and (20) hold for every n ∈ E and t ∈ [0, τ ]. As
F0 = idA, 0 ∈ J . Let b be the least upper bound of J . Then J is a connected
interval containing [0, b). First we show that b ∈ J .

For each a ∈ A the set {t ∈ I | F (a, t) = a} is closed in I since A is Hausdorff.
Thus (19) holds for t ∈ [0, b]. Let

U = A−
{
(1/2, n) | n ∈ N

}
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which is just the ropes A (see Figure 6) minus their midpoints. As U is open in A,
F−1(U) is open in A× I. Also

(0, 1) × [0, b] ⊂ F−1(U).

By compactness of [0, b], there is an open set V ⊂ A so that the tube V × [0, b] ⊂

F−1(U) contains (0, 1) × [0, b]. As V is an open neighborhood of (0, 1) in A and
A ⊂ X has the subspace topology, there exists a cofinite subset D ⊂ N such that
(1, n) ∈ V for n ∈ D. Therefore

F
(
(1, n), t

)
∈ U

for every n ∈ D and t ∈ [0, b]. By a connectedness argument we get

F
(
(1, n), t

)
∈ α ((1/2, 1]× {n})

for every n ∈ D and t ∈ [0, b]. We now show there exists a cofinite subset E ⊂ D
such that (20) holds for every n ∈ E and t ∈ [0, b]. Suppose not, then there is a
sequence 1 ≤ n1 < n2 < · · · of numbers in D and a sequence tk ∈ [0, b], k ∈ N,
such that

(21) F
(
(1, nk), tk

)
∈ α ((1/2, 1)× {nk})

for each k ∈ N. Without loss of generality, we assume the sequence {tk} converges
since it is bounded and has a convergent subsequence. Note that the sequence{
(1, nk)

}
converges to (0, 1) in A. Thus the sequence

{(
(1, nk), tk

)}
converges in

A × I, however by (21) its image under the continuous function F : A × I → A
does not converge which is a contradiction. Thus the cofinite subset E ⊂ D exists.
Hence b ∈ J .

Thus J = [0, b]. Suppose b < 1. Note that F−1(U) is an open neighborhood of

(0, 1)× [0, b] in A× I. As above, there is a tube in F−1(U) containing (0, 1)× [0, b].

This tube combines with an open rectangle neighborhood of
(
(0, 1), b

)
in F−1(U)

to yield an open set V ⊂ A and an ǫ > 0 so that

(0, 1) × [0, b+ ǫ) ⊂ V × [0, b+ ǫ) ⊂ F−1(U).

There is a cofinite subset D ⊂ N such that (1, n) ∈ V for n ∈ D. Using connected-
ness as above, we get

F
(
(1, n), t

)
∈ α ((1/2, 1]× {n})

for every n ∈ D and t ∈ [0, b+ǫ). We now show there exists a cofinite subset E ⊂ D
such that (20) holds for every n ∈ E and t ∈ [0, b+ ǫ). Suppose not, then there is a
sequence 1 ≤ n1 < n2 < · · · of numbers in D and a sequence tk ∈ [0, b+ ǫ), k ∈ N,
such that (21) holds for each k ∈ N. Without loss of generality, the sequence {tk}

converges. Thus the sequence
{(

(1, nk), tk

)}
converges in A× I, however by (21)

its image under the continuous function F : A × I → A does not converge which
is a contradiction. Thus the cofinite subset E ⊂ D exists. Therefore (20) holds for
every n ∈ E and t ∈ [0, b+ ǫ). Fix t ∈ [0, b+ ǫ). Then

(
(1, n), t

)
→
(
(0, 1), t

)
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in A× I. As F is continuous we have

F
(
(1, n), t

)
→ F

(
(0, 1), t

)

in A. As E ⊂ N is cofinite and (20) holds for n ∈ E and our fixed t, we have

F
(
(1, n), t

)
→ (0, 1).

As A is Hausdorff, limits are unique. Therefore (19) holds for our fixed t. So (19)
and (20) hold for every n ∈ E and t ∈ [0, b+ ǫ). This contradicts the assumption
that b is the least upper bound of J . Therefore b = 1, J = [0, 1], and the claim is
proved. �

We close this example by showing X is paracompact. As X is Hausdorff (see
Corollary 1 above), the following claim and [6, Thm. 41.1] imply that X is a normal
space.

Claim 13. The space X = HR is paracompact.

Proof. Let U = {Uj}j∈J be an open cover of X where J is an arbitrary index set.

We must produce a locally finite open refinement V of U that covers X . As U is
an open cover of X there exists U0 ∈ U with (0, 0) ∈ U0. By Claim 3 there is a

basic open neighborhood V = V (N, a, b) of (0, 0) contained in U0. Figure 7 depicts

Ṽ = α−1(V ).

Fix an arbitrary n > N . Observe that α ([an, bn] × {n}) is compact and thus is
covered by finitely many open sets

U(n, 1), U(n, 2), . . . , U(n,Mn) ∈ U

for some Mn ∈ N. The interval
(
an
2
,
1 + bn

2

)
× {n} ⊂ In

is an open and saturated subset of X̃ . Thus

α

((
an
2
,
1 + bn

2

)
× {n}

)

is open in X , is contained within the nth rope of X , and contains α ([an, bn] × {n}).
For each 1 ≤ k ≤Mn define

V (n, k) = U(n, k) ∩ α

((
an
2
,
1 + bn

2

)
× {n}

)

which is open in X . By construction, each V (n, k) is contained in some element of
U and

(22) α ([an, bn] × {n}) ⊂




⋃

1≤k≤Mn

V (n, k)


 ⊂ α

((
an
2
,
1 + bn

2

)
× {n}

)
.

Next let a0 = 1/N and let

K̃ = (I × {0, 1, 2, . . . , N}) − Ṽ =
⋃

0≤n≤N

[an, 1] × {n}
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which is compact. Thus K = α
(
K̃
)
⊂ X is compact and is covered by finitely

many open sets
V1, V2, . . . , VM ∈ U

for some M ∈ N. Define

V = {V, V1, V2, . . . , VM} ∪ {V (n, k) | n > N & 1 ≤ k ≤Mn}

which, by construction, is an open cover ofX that refines the cover U . It remains to
show that V is locally finite. For each x ∈ X we must produce an open neighborhood
Wx ⊂ X of x that intersects nontrivially only finitely many elements in V . First, if
x ∈ α ((0, 1) × {n}) for some n ≥ 1, then let

Wx = α ((0, 1) × {n})

which is an open neighborhood of x in X . Now, if 1 ≤ n ≤ N , then Wx intersects
at most V, V1, . . . , VM , while if n > N , then Wx may further intersect at most

V (n, 1), . . . , V (n,Mn). Second, if x = (0, 0), then recall V = V (N, a, b) from earlier
in the proof and define the sequences a′ and b′ by a′n = an/2 and b′n = (1 + bn)/2.
Let

Wx = V (N, a′, b′)

which is a basic open neighborhood of x = (0, 0) in X . By (22), Wx intersects
at most V, V1, . . . , VM . Third, if α−1(x) = {(s, 0)} is a single point in I0 where
1/(n+ 1) < s < 1/n for some n ∈ N, then let

Wx = α

((
1

n+ 1
,
1

n

)
× {0}

)

which is an open neighborhood of x in X that intersects at most V, V1, . . . , VM .
Fourth, if α−1(x) = {(1/n, 0), (1, n)}, then let

Wx = α

((
1

n+ 1
,

1

n− 1

)
× {0}

)
∪ α

((
1

2
, 1

]
× {n}

)

when n > 1 and let

Wx = α

((
1

2
, 1

]
× {0}

)
∪ α

((
1

2
, 1

]
× {n}

)

when n = 1. In both subcases Wx is an open neighborhood of x in X . Now, if
1 ≤ n ≤ N , then Wx intersects at most V, V1, . . . , VM , while if n > N , then Wx

may further intersect at most V (n, 1), . . . , V (n,Mn). These four cases exhaust all
possibilities and the claim follows. �

3.5. Semi-local simple connectedness II. The previous example raises the
question of whether nontriviality of π1(X) is necessary in order to create new π1 in
the quotient X�∼. This condition is not necessary, as we now show. Let X be the
cone on HR as follows

HR × I
q

// HR × I�HR × {0} = X.

Recall the closed subspaceA ⊂ HR depicted in Figure 6 and defined in equation (11)
above. Define the quotient map

X
π // X�q (A× {1}) .

Claim 14. The space X�q (A× {1}) is given as the quotient of a contractible and
locally contractible space by a closed weakly contractible subspace.
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Proof. As X is the cone on the locally contractible space HR (see Claim 6), it is
contractible and locally contractible. Observe that q|HR×(0,1] is a homeomorphism

onto its image. To see this, note that q|HR×(0,1] is clearly a continuous bijection

and, being the restriction of a quotient map to an open saturated subset, is itself
a quotient map. Thus q|HR×(0,1] is an open map and hence a homeomorphism.

In particular q (A× {1}) is homeomorphic to A which is weakly contractible by
Lemma 11. Lastly q (A× {1}) is closed in q (HR × {1}) which in turn is closed in
X and so q (A× {1}) is closed in X . �

Claim 15. The space X is Hausdorff and normal but is not metrizable.

Proof. By Corollary 1, HR is Hausdorff. Thus HR × I and the cone X on HR are
both Hausdorff spaces. By Claim 13, HR is paracompact and normal, thus a result
of Dowker [3] implies that HR× I is normal. An easy exercise shows that a normal
space mod a closed subspace is normal. As HR × {0} is closed in HR × I, we see
that X is normal. Alternatively one may see that normality of HR × I implies X
is normal by realizing the cone X as an obvious adjunction space of HR × I and
the one point space {∗} and then applying [5, Thm. 37.2]. Nonmetrizability of X
is immediate: metrizability is hereditary, HR is homeomorphic to HR × {1} ⊂ X ,
and HR is not metrizable by Corollary 2 in the previous section. �

We complete this example by showing X�q (A× {1}) has an uncountable first
homology group and hence an uncountable (and nontrivial!) fundamental group.
All homology groups are taken with integer coefficients.

Claim 16. The group H1 (X�q (A× {1})) is uncountable.

Proof. Define the closed subspaces T,B ⊂ X�q (A× {1}) (for top and bottom) as
follows

T = π ◦ q (HR × [0, 2/3]) and

B = π ◦ q (HR × [1/3, 1]) .

Clearly T is contractible (being a cone). Observe that π ◦ q|HR×(0,1) is a homeo-

morphism onto its image. To see this, note that π ◦ q is a quotient map since it
is the composition of quotient maps. Now reason as in the proof of Claim 14. So
T ∩ B is homeomorphic to HR × [1/3, 2/3] and hence is homotopy equivalent to
HR. Let f be the quotient map

HR
f

// HR�A

Notice that B is homeomorphic to the mapping cylinder of f . Thus B is homotopy
equivalent to HE by Claim 5 above. Applying the Mayer-Vietoris sequence to the
splitting of X�q (A× {1}) into T ∪B we see that

H1 (X�q (A× {1})) ∼= H1 (HE)�Im (H1 (HR)) .

Now π1 (HR) is free on a countably infinite number of generators, as shown in the
previous section, and is therefore a countable group. Thus its quotient H1 (HR)
is countable as well. So it suffices to show that H1 (HE) is uncountable. For each
n ∈ N the winding number around the nth circle Cn ⊂ HE is well-defined on
H1 (HE) as shown using the obvious retraction HE → Cn. Using this observation
it is straightforward to construct for each S in the power set of N a singular 1–cycle
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in HE (with a single 1–simplex) whose winding number around Cn is nonzero if
and only if n ∈ S. Thus H1 (HE) is uncountable as desired. �

3.6. Stereographic projection of Hopf field. Multiplication by i ∈ C on Cn is
the vector field given in real coordinates by

v(x) = (−x2, x1,−x4, x3, . . . ,−x2n, x2n−1)
t
.

Clearly v is tangent to each sphere about the origin in R2n. Let S2n−1 ⊂ R2n denote
the unit sphere. The orbits of v on S2n−1 are great circles, one for each complex
line through 0 ∈ Cn. The orbit space of v restricted to S2n−1 is CPn−1 ∼= S2n−1�S1.

We obtain the vector field u on R2n−1 =
{
y ∈ R2n | y2n = 0

}
using stereographic

projection as follows. Fix p = (0, 0, . . . , 0, 1) ∈ S2n−1 and let x = (x1, x2, . . . , x2n),
then stereographic projection

s : S2n−1 − {p} → R2n−1

is the diffeomorphism given by

s(x) =
1

1 − x2n
(x1, x2, . . . , x2n−1, 0).

If y = (y1, y2, . . . , y2n−1, 0), then the inverse diffeomorphism is given by

s−1(y) =
2

1 + ‖y‖
2

(
y1, y2, . . . , y2n−1,

‖y‖2 − 1

2

)
.

Define u on R2n−1 by applying ds to v. In y coordinates, u is

u(y) = ds|s−1(y) v
(
s−1(y)

)
.

Notice that

ds|x =
1

1 − x2n
[I | A]

where I is the (2n− 1) × (2n− 1) identity matrix and A is the column vector

A =
1

1 − x2n
(x1, x2, . . . , x2n−1)

t.

So

ds|s−1(y) =
1 + ‖y‖

2

2
[I | B]

where B = (y1, y2, . . . , y2n−1)
t. As

v(s−1(y)) =
2

1 + ‖y‖
2

(
−y2, y1, . . . ,−y2n−2, y2n−3,

1 − ‖y‖
2

2
, y2n−1

)t
,

we have

u(y) =




−y2 + y1y2n−1

y1 + y2y2n−1

−y4 + y3y2n−1

y3 + y4y2n−1

...
−y2n−2 + y2n−3y2n−1

y2n−3 + y2n−2y2n−1
1−‖y‖2

2 + y2
2n−1




.
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Thus, u is a quadratic polynomial vector field on R2n−1. One orbit of u is a prop-
erly embedded copy of R while the rest are smooth circles. It remains to show that
the orbit space R2n−1�∼ with ∼ induced by u is homeomorphic to CPn−1.

Consider the diagram

R2n−1 s−1

//

q′

��

S2n−1

q

��
R2n−1�∼

f
//___ S2n−1�S1

where q and q′ are the associated quotient maps. By construction, q ◦ s−1 is
constant on each fiber of q′ so the universal property of quotient maps implies that
there exists a unique continuous function f making the diagram commute. Also
by construction, f is a bijection. Let D =

{
x ∈ S2n−1 | x2n ≤ 0

}
be the lower

hemisphere of S2n−1. Notice that each orbit in S2n−1 intersects D in at least a
nontrivial arc of points and that D is compact. Thus s(D) is compact and maps
by q′ surjectively to R2n−1�∼. Thus R2n−1�∼ is compact. As S2n−1�S1 is Hausdorff,
we have that f is a homeomorphism as desired.

3.7. Higher homotopy. We construct a contractible space partitioned into con-
tractible fibers and satisfying the hypotheses of the main lemma (with all spaces
locally contractible), whose quotient, while necessarily simply connected, has higher
homotopy and homology. This shows that the analogy of our main lemma with the
long exact sequence associated to a fibration does not extend to higher homotopy
groups and thus is a special property of the fundamental group.

Fix notation as in the previous section with n = 2, so q is the classical Hopf
fibration. Let ∼ denote the associated equivalence relation on S3. The unique
complex line contained in {(x1 + ix2, x3 + ix4) | x4 = 0} is C × {0}. Thus D in-
tersects orbits of q in the following way: one intersection is a complete orbit{
(x1, x2, 0, 0) | x2

1 + x2
2 = 1

}
and the rest are semicircles each intersecting ∂D in

a pair of antipodal points. Let D′ = D− {(1, 0, 0, 0)} and let ∼ denote the restric-
tion of ∼ to D′ where no confusion should arise. We have the diagram

D′
j

//

π

��

S3

q

��
D′�∼

g
//___ S3�S1

where j is inclusion and π is a quotient map. The composition q ◦ j is constant
on each fiber of π and so the universal property of quotient maps implies that the
unique function g making the diagram commute is continuous. It is easy to see
that g is a bijection. We claim that D′�∼ is compact. To see this let B ⊂ R4 denote
the open ball of radius 1/2 centered at (1, 0, 0, 0). Note that D′ − B is a compact
subset of D′. Note also that each fiber of π has diameter 2 and thus intersects
D′ −B nontrivially. Therefore π|D′−B is surjective and D′�∼ is compact. As S3�S1

is Hausdorff, g is a homeomorphism. Thus we have D′, which is diffeomorphic to
closed upper 3–space, partitioned into connected arcs (one open and the rest closed)
with quotient S2, completing the example. Note that stereographic projection
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from (1, 0, 0, 0) explicitly exhibits a diffeomorphism from D′ to half-space, with the
partition induced by a quadratic vector field (cf. 3.6), so the example is remarkably
simple from an analytic viewpoint.
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