
Ideal Pendulum Handout #3
Math 427K
Jack Calcut

Recall: start the pendulum at π/2 ≤ θ (0) < π and let T denote the time it takes the
pendulum to fall to π/2 (horizontal). We found a lower bound for T :

LB =
p
L/g cosh−1

µ
π

2 [π − θ (0)]

¶
and we found an upper bound for T :

UB =
p
π/2

p
L/g cosh−1

µ
π

2 [π − θ (0)]

¶
.

Note that UB =
p
π/2LB ≈ 1.2533LB. Thus we have:

LB ≤ T ≤
p
π/2LB.

These are crude, yet useful bounds.

Example 1 Let L = 1 m and g = +9.8 m/ s2 as in the previous handout. We have:

θ (0) Lower Bound LB Actual Time T Upper bound UB
3π/6 0.000 0.000 0.000
4π/6 0.307 0.344 0.385
5π/6 0.563 0.590 0.706
11π/12 0.792 0.811 0.992
23π/24 1.015 1.033 1.272

Exercise 2 Why is the actual time T closer to the lower bound LB?

Example 3 Let L = 1 m and g = +9.8 m/ s2. Start the pendulum at θ (0) = 179 ◦. How
long will it take the pendulum to fall to the horizontal position?
Answer: Between 1.6588 and 2.0791 seconds.

Exercise 4 Where should one start the pendulum so that it takes at least 5 seconds to fall
to the horizontal position? (Besides θ (0) = π.)
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Damped Motion

The original pendulum ODE:

θ00 = − g

L
sin θ. (1)

ignored friction and wind resistance.
How do we account for these factors?
The following is the simplest and most common method.
We make two observations about friction and wind resistance:

1. They decelerate the object in the direction of motion.

2. Their effects are stronger at higher velocities.

We conclude that acceleration should be reduced by a quantity proportional to velocity.
Thus, we have the ODE of the damped pendulum:

θ00 = − g

L
sin θ − γθ0, (2)

where γ > 0 is a constant called the damping coefficient (γ has units s−1). Usually γ is
small.

Example 5 Let L = 1 m and g = +9.8 m/ s2. Let θ (0) = π/4 rad. We plot θ (t) for
undamped and damped motion with damping coefficient γ = 0.1 s−1.
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Now, let us linearize (2) at θ = 0 and solve. Again, we replace sin θ with θ to obtain:

θ00 = − g

L
θ − γθ0, or (3)

θ00 + γθ0 +
g

L
θ = 0.

The characteristic equation is:
r2 + γr +

g

L
= 0

with roots:

r1, r2 =
−γ ±pγ2 − 4g/L

2
.

Usually γ > 0 is small. So, from here on assume γ2−4g/L < 0. Thus, r1 and r2 are complex
conjugates. Write:

r1 =
−γ
2
+ i

p−γ2 + 4g/L
2

= λ+ iμ

where:

λ =
−γ
2
and μ =

p−γ2 + 4g/L
2

.

Recall that the solution to (3) is:

θ (t) = c1e
λt cos (μt) + c2e

λt sin (μt) . (4)

Key observation: λ < 0 and so the eλt terms cause θ (t) to approach zero as t tends to
+∞! The damping kills the motion.
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Let us rewrite the solution (4). Recall the cosine angle addition formula:

cos (α+ β) = cosα cosβ − sinα sinβ.

Hence:

θ (t) = c1e
λt cos (μt) + c2e

λt sin (μt)

θ (t) = eλt (c1 cos (μt) + c2 sin (μt))

θ (t) = ceλt cos (μt+ φ)

where φ (the phase angle) and c are constants.
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Concluding Remarks

We have used the problem of pendulum motion as a guide to explore:

• Producing an ODE that models a physical situation.
• Nonlinear ODEs such as:

θ00 = − g

L
sin θ.

• Linearizing nonlinear ODEs:

θ00 = − g

L
θ at θ = 0.

• Understanding the behavior of solutions to ODEs that we cannot explicitly solve.
• Using the complex numbers to obtain real solutions.
• Differences between homogenous and nonhomogeneous equations, specifically in the
form of their solutions. See table on page 1 of the second pendulum handout.

• Hyperbolic trigonometric functions.
• Equilibrium solutions

• Stability/Instability of equilibrium solutions.

• Galileo’s observation on the period of a pendulum (close, but incorrect).

• Damped motion.

Remark 6 The pendulum is one of the simplest physical situations, yet working with its
ODE is already nontrivial (its solutions are not elementary functions). What should we
expect with more complicated physical situations (e.g. spinning top, many body problems,
and fluid flow)?

Exercise 7 List a few physical situations whose governing ODEs are easier to solve than
that of the pendulum.
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