
Ideal Pendulum Handout #2
Math 427K
Jack Calcut

This handout explores examples following the previous handout. Some solutions in this
handout are numerical; you are required to understand the results.
The ODE governing the motion of the ideal pendulum is:

θ00 = − g

L
sin θ. (1)

We assume θ0 (0) = 0 and −π < θ (0) ≤ π. The two equilibrium solutions to (1) are:

θ0 (t) = 0 (hang straight down; stable), and

θπ (t) = π (point straight up; unstable).

Throughout we fix L = 1 m and g = +9.8 m/ s2. This corresponds roughly to a
grandfather clock sized pendulum on the surface of the earth.
The linearization of our main ODE (1) is:

Linearization Solution

θ = 0 θ00 = − g
L
θ θ (t) = θ (0) cos

³
t
p
g/L

´
θ = π θ00 = − g

L
(−θ + π) θ (t) = [θ (0)− π] cosh

³
t
p
g/L

´
+ π

Recall that the hyperbolic cosine is:

coshx =
ex + e−x

2
.

Most often in basic physics one studies the linearized ODE at θ = 0 with solution θ (t) =

θ (0) cos
³
t
p
g/L

´
where θ (0) is the amplitude and 2π

p
L/g is the period. Note: in this case

the period is independent of m (mass of pendulum) and θ (0) (the initial displacement); if
θ (0) = 0 we say the pendulum has any period (this is common convention).
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Linearization at θ = 0 vs. Main ODE
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Solutions θ (t) to linearization at θ = 0 for θ (0) = π/6 (thin), θ (0) = 2π/6 (medium), and
θ (0) = 3π/6 (thick).
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Solutions θ (t) to main ODE (1) for θ (0) = π/6 (thin), θ (0) = 2π/6 (medium), and
θ (0) = 3π/6 (thick).

Exercise 1 Compare and contrast the two plots above. What are the main features to note?
Recall the discussion of Galileo at the end of the previous handout.
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Bounds for Actual Period using Linearization

The second plot above shows that the actual period seems to increase as θ (0) increases in
magnitude. Let us explore this further, first numerically:
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Solutions θ (t) to main ODE (1) for θ (0) = 3π/6 (thin), θ (0) = 4π/6 (medium),
θ (0) = 5π/6 (thick), θ (0) = 11π/12 (thindot), and θ (0) = 23π/24 (mediumdot).

The actual period continues to increase as θ (0) increases to π.
Our goal is to obtain bounds for the actual period when θ (0) is close to π.
Instead, let us bound the time it takes for the pendulum to fall from π/2 < θ (0) < π to

π/2 rad.

Lower Bound via Linearization at θ = π

This linearization:
θ00 = − g

L
(−θ + π)

was obtained by replacing sin θ with −θ + π in our ODE (1):

θ00 = − g

L
sin θ.

Note that |sin θ| ≤ |−θ + π| for ALL θ, with equality only for θ = π. Thus, by linearizing
we have INCREASED the magnitude of acceleration of our pendulum. This means we have
only DECREASED the time it takes to fall to π/2 (so we obtain a lower bound on the time).
The solution to our linearized ODE is:

θ (t) = [θ (0)− π] cosh
³
t
p
g/L

´
+ π.
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Thus, we solve θ (t) = π/2 for t (as a function of θ (0)):

π/2 = θ (t) = [θ (0)− π] cosh
³
t
p
g/L

´
+ π

−π/2 = [θ (0)− π] cosh
³
t
p
g/L

´
π

2 [π − θ (0)]
= cosh

³
t
p
g/L

´
t
p
g/L = cosh−1

µ
π

2 [π − θ (0)]

¶
t =

p
L/g cosh−1

µ
π

2 [π − θ (0)]

¶
.

Recall that:
cosh−1 (x) = ln

³
x+
√
x2 − 1

´
for x ≥ 1.

Exercise 2 Verify that the use of cosh−1 above is in the valid domain.

In this handout L = 1 and g = 9.8. So we obtain:

t = 1/
√
9.8 cosh−1

µ
π

2 [π − θ (0)]

¶
as a lower bound for the time it takes the pendulum to fall from θ (0) to π/2. We plot t as
a function of θ (0):
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Exercise 3 Show that this lower bound for t approaches ∞ as θ (0)→ π−.

Exercise 4 What does the previous exercise imply?
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Let us compare this lower bound for time to fall from θ (0) to π/2 with the actual time
(in s):

θ (0) Lower Bound Actual Time
3π/6 0.000 0.000
4π/6 0.307 0.344
5π/6 0.563 0.590
11π/12 0.792 0.811
23π/24 1.015 1.033

Upper Bound

Exercise 5 Obtain a useful upper bound for the time to fall from θ (0) to π/2.

Hint: replace sin θ in (1) with a linear function of θ that DECREASES the magnitude of
acceleration.
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