Ideal Pendulum Handout \#2
 Math 427K
 Jack Calcut

This handout explores examples following the previous handout. Some solutions in this handout are numerical; you are required to understand the results.

The ODE governing the motion of the ideal pendulum is:

$$
\begin{equation*}
\theta^{\prime \prime}=-\frac{g}{L} \sin \theta \tag{1}
\end{equation*}
$$

We assume $\theta^{\prime}(0)=0$ and $-\pi<\theta(0) \leq \pi$. The two equilibrium solutions to (1) are:

$$
\begin{aligned}
& \theta_{0}(t)=0 \text { (hang straight down; stable), and } \\
& \theta_{\pi}(t)=\pi \text { (point straight up; unstable). }
\end{aligned}
$$

Throughout we fix $L=1 \mathrm{~m}$ and $g=+9.8 \mathrm{~m} / \mathrm{s}^{2}$. This corresponds roughly to a grandfather clock sized pendulum on the surface of the earth.

The linearization of our main ODE (1) is:

	Linearization	Solution
$\theta=0$	$\theta^{\prime \prime}=-\frac{g}{L} \theta$	$\theta(t)=\theta(0) \cos (t \sqrt{g / L})$
$\theta=\pi$	$\theta^{\prime \prime}=-\frac{g}{L}(-\theta+\pi)$	$\theta(t)=[\theta(0)-\pi] \cosh (t \sqrt{g / L})+\pi$

Recall that the hyperbolic cosine is:

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}
$$

Most often in basic physics one studies the linearized ODE at $\theta=0$ with solution $\theta(t)=$ $\theta(0) \cos (t \sqrt{g / L})$ where $\theta(0)$ is the amplitude and $2 \pi \sqrt{L / g}$ is the period. Note: in this case the period is independent of m (mass of pendulum) and $\theta(0)$ (the initial displacement); if $\theta(0)=0$ we say the pendulum has any period (this is common convention).

Linearization at $\theta=0$ vs. Main ODE

Solutions $\theta(t)$ to linearization at $\theta=0$ for $\theta(0)=\pi / 6$ (thin), $\theta(0)=2 \pi / 6$ (medium), and $\theta(0)=3 \pi / 6$ (thick).

Solutions $\theta(t)$ to main $\operatorname{ODE}(1)$ for $\theta(0)=\pi / 6$ (thin), $\theta(0)=2 \pi / 6$ (medium), and $\theta(0)=3 \pi / 6$ (thick).

Exercise 1 Compare and contrast the two plots above. What are the main features to note? Recall the discussion of Galileo at the end of the previous handout.

Bounds for Actual Period using Linearization

The second plot above shows that the actual period seems to increase as $\theta(0)$ increases in magnitude. Let us explore this further, first numerically:

Solutions $\theta(t)$ to main ODE (1) for $\theta(0)=3 \pi / 6$ (thin), $\theta(0)=4 \pi / 6$ (medium), $\theta(0)=5 \pi / 6$ (thick), $\theta(0)=11 \pi / 12$ (thindot), and $\theta(0)=23 \pi / 24$ (mediumdot).

The actual period continues to increase as $\theta(0)$ increases to π.
Our goal is to obtain bounds for the actual period when $\theta(0)$ is close to π.
Instead, let us bound the time it takes for the pendulum to fall from $\pi / 2<\theta(0)<\pi$ to $\pi / 2 \mathrm{rad}$.

Lower Bound via Linearization at $\theta=\pi$

This linearization:

$$
\theta^{\prime \prime}=-\frac{g}{L}(-\theta+\pi)
$$

was obtained by replacing $\sin \theta$ with $-\theta+\pi$ in our $\operatorname{ODE}(1)$:

$$
\theta^{\prime \prime}=-\frac{g}{L} \sin \theta
$$

Note that $|\sin \theta| \leq|-\theta+\pi|$ for ALL θ, with equality only for $\theta=\pi$. Thus, by linearizing we have INCREASED the magnitude of acceleration of our pendulum. This means we have only DECREASED the time it takes to fall to $\pi / 2$ (so we obtain a lower bound on the time).

The solution to our linearized ODE is:

$$
\theta(t)=[\theta(0)-\pi] \cosh (t \sqrt{g / L})+\pi .
$$

Thus, we solve $\theta(t)=\pi / 2$ for t (as a function of $\theta(0)$):

$$
\begin{aligned}
\pi / 2 & =\theta(t)=[\theta(0)-\pi] \cosh (t \sqrt{g / L})+\pi \\
-\pi / 2 & =[\theta(0)-\pi] \cosh (t \sqrt{g / L}) \\
\frac{\pi}{2[\pi-\theta(0)]} & =\cosh (t \sqrt{g / L}) \\
t \sqrt{g / L} & =\cosh ^{-1}\left(\frac{\pi}{2[\pi-\theta(0)]}\right) \\
t & =\sqrt{L / g} \cosh ^{-1}\left(\frac{\pi}{2[\pi-\theta(0)]}\right)
\end{aligned}
$$

Recall that:

$$
\cosh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right) \text { for } x \geq 1
$$

Exercise 2 Verify that the use of $\cosh ^{-1}$ above is in the valid domain.
In this handout $L=1$ and $g=9.8$. So we obtain:

$$
t=1 / \sqrt{9.8} \cosh ^{-1}\left(\frac{\pi}{2[\pi-\theta(0)]}\right)
$$

as a lower bound for the time it takes the pendulum to fall from $\theta(0)$ to $\pi / 2$. We plot t as a function of $\theta(0)$:

Exercise 3 Show that this lower bound for t approaches ∞ as $\theta(0) \rightarrow \pi^{-}$.
Exercise 4 What does the previous exercise imply?

Let us compare this lower bound for time to fall from $\theta(0)$ to $\pi / 2$ with the actual time (in s):

$\theta(0)$	Lower Bound	Actual Time
$3 \pi / 6$	0.000	0.000
$4 \pi / 6$	0.307	0.344
$5 \pi / 6$	0.563	0.590
$11 \pi / 12$	0.792	0.811
$23 \pi / 24$	1.015	1.033

Upper Bound

Exercise 5 Obtain a useful upper bound for the time to fall from θ (0) to $\pi / 2$.
Hint: replace $\sin \theta$ in (1) with a linear function of θ that DECREASES the magnitude of acceleration.

