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Abstract. We study orbit spaces of generalized gradient vector fields for Morse functions.
Typically, these orbit spaces are non-Hausdorff. Nevertheless, they are quite structured
topologically and are amenable to study. We show that these orbit spaces are locally
contractible. We also show that the quotient map associated to each such orbit space is
a weak homotopy equivalence and has the path lifting property.

1. Introduction
Our interest in the topology of orbit spaces of smooth flows was sparked by the opening
question in Arnol’d’s Problems on singularities and dynamical systems [Arn93]: can one
write down explicitly a polynomial or trigonometric polynomial vector field on R5 whose
orbit space is an exotic R4? As noted by Arnol’d, every exotic R4 appears in this way
for some smooth vector field on R5. A curious corollary of Arnol’d’s observation is that
there exists an uncountable collection of smooth vector fields on R5 each pair of which
are topologically equivalent but not smoothly equivalent. Motivated by Arnol’d’s problem,
one is naturally led to consider the topology of orbit spaces for general smooth vector fields
and potential implications for dynamics.

In [CGM12], the authors and J. McCarthy gave an obstruction to manifolds appearing
as orbit spaces of flows. Namely, if the orbit space is merely semilocally simply-
connected, then the induced homomorphism of fundamental groups is surjective. In a
positive direction, we gave a quadratic polynomial vector field on R2n−1 whose orbit space
is diffeomorphic to CPn−1 (naturally, this vector field comes from the complex Hopf
fibration). In a future paper, the authors will give a general construction for producing
infinitely many positive examples of smooth manifolds appearing as orbit spaces of smooth
vector fields on Rn . For instance, smooth, non-compact, simply-connected 4-manifolds
realizing all possible intersection forms arise as orbit spaces of R5.

Orbit spaces of general flows often have undesirable topological properties (e.g., non-
Hausdorff, non-metrizable). Nevertheless, they are ubiquitous in dynamics and are
significant since their topological types are invariants of their associated flows up to
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topological equivalence. The theory of R-actions obviously differs markedly from that
of actions of compact Lie groups, the latter having, for instance, closed and proper orbit
space quotient maps [Bre72, p. 38]. We find orbit spaces of R-actions to be important
and interesting in their own right, with their own problems, and aim to show that they are
amenable to topological study. The present paper arose from our desire to show that a class
of dynamically important flows (i.e., gradient flows for Morse functions) have semilocally
simply-connected orbit spaces. For these orbit spaces, we obtain much more.

Herein, we work with the class of f -gradient vector fields (defined in §2) where f is
a Morse function. These vector fields were introduced by Pajitnov and include as proper
subsets both gradient-like and Riemannian gradient vector fields for f [Paj06, pp. 52–
53]. In Theorem 3.1, we show that orbit spaces of f -gradients are locally contractible (see
Theorem 3.1 for a more detailed statement).

Let M/∼ be the orbit space of an f -gradient and let q : M→ M/∼ be the associated
quotient map. Combining Theorem 3.1 with a theorem of McCord [McCo66, Theorem 6]
(which extends work of Dold and Thom [DT58]), we obtain in Corollary 3.5 that q is a
weak homotopy equivalence (i.e., q induces isomorphisms on all corresponding homotopy
groups, and hence also on all corresponding singular (co)homology groups). As fibers of
q are contractible, this implies that q is a quasifibration (see Remarks 3.6). This raises the
question of whether q is a Serre fibration (i.e., has the homotopy lifting property for disks
Dk). In a positive direction, we prove in Theorem 3.7 that q has the path lifting property
for any specified lifts of both endpoints.

For a compact Lie group G acting topologically on a Hausdorff space X , Montgomery
and Yang showed that the associated orbit space quotient map π : X→ X/∼ has the path
lifting property [MY57, Corollary 1] (see also [Bre72, Theorem II.6.2]). Furthermore,
in case X is also path-connected and locally simply-connected, and G is connected, they
showed that π induces a surjection of fundamental groups and X/∼ is locally simply-
connected [MY57, Corollary 2] (see also [Bre72, pp. 91–92]).

Orbit spaces of certain nice actions of non-compact groups on manifolds have been
studied in, e.g., [GN85, McCa79, Nak96, Pal61, Rai09]. The gradient flows studied in
the present paper are not covered by any of these results. For example, when f has non-
empty critical set, the flow associated to an f -gradient is not proper and the orbit space
M/∼ is non-Hausdorff.

Recall that Conner [Con60] conjectured, and Oliver [Oli76] later proved, that the orbit
space of any continuous action of a compact Lie group on Rn is contractible. Clearly,
Conner’s conjecture cannot extend to general R-actions by the Hopf examples mentioned
above. The results of the present paper raise the question of whether Conner’s conjecture
holds for orbit spaces of f -gradients on Rn .

It has been suggested to us by D. Sullivan and A. Verjovsky (independently) that
manifolds of dimension three and four might be studied by looking at their f -gradient
orbit spaces, which have dimension two and three respectively. To our knowledge, this
interesting idea remains unexplored.

This paper is organized as follows. Section 2 describes our conventions. Section 3
proves our main results. Section 4 closes with a few pertinent examples and questions for
further study.
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2. Definitions and preliminaries
Throughout this paper, M is a smooth (= C∞), connected, possibly non-compact m-
manifold (m ≥ 1) without boundary, and f : M→ R is an arbitrary but fixed (smooth)
Morse function. Every such M admits a Morse function f [Mil63, §6]. Let S( f ) denote
the set of critical points of f , which is a discrete subset of M . By our convention, manifolds
are Hausdorff with a countable basis, and a map is a continuous function.

Definition 2.1. (Pajitnov [Paj03], [Paj06, p. 50]) Let v : M→ T M be a smooth vector
field. Recall that v( f ) : M→ R is the smooth function defined by v( f )(p) := d f p(v(p)).
Then, v is an f -gradient provided the following two conditions are satisfied:
(2.1) v( f ) > 0 on M − S( f );
(2.2) each p ∈ S( f ) is a non-degenerate minimum of v( f ).

Remark 2.2. If p ∈ S( f ), then d f p = 0 and v( f )(p)= 0. (If v is an f -gradient and
p ∈ S( f ), then v(p)= 0 as well [Paj06, p. 50].) So, condition (2.1) implies that
v( f ) : M→ [0,∞) and each p ∈ S( f ) is a local minimum and a critical point of v( f ).
Therefore, once (2.1) is verified, the crux of (2.2) is non-degeneracy.

Remark 2.3. Utilizing the Hartman–Grobman theorem, Pajitnov proved that in a
neighborhood of each p ∈ S( f ) the flow generated by an f -gradient is topologically (but
not necessarily diffeomorphically) flow equivalent to a standard hyperbolic flow [Paj06,
pp. 76–80] (see also Figure 1 below).

Remark 2.4. Every pair (M, f ) admits f -gradients, even when M is non-compact. For
instance, it is not difficult to extend the argument in [Mil65, pp. 20–21] to non-compact M
to show that each pair (M, f ) admits a gradient-like vector field.

Let v : M→ T M be an arbitrary smooth vector field. If p ∈ M , then we let [p] denote
the image in M of the maximal integral curve of v through p; we call [p] an orbit of v. Let
∼ denote the equivalence relation on M whose classes are the orbits of v. Let M/∼ denote
the orbit space of v and let

q : M→ M/∼

denote the associated quotient map (by definition, U ⊂ M/∼ is open if and only if
q−1(U )⊂ M is open). We say v is complete when the unique maximal flow generated
by v is defined for all p ∈ M and t ∈ R; this flow, denoted8 : R× M→ M , is then a one-
parameter group of diffeomorphisms of M (see [Mil63, §2] or [Hir76, §6.2]). When M
is compact, hence a closed manifold, every v is complete, but this is not the case for non-
compact M . For our purposes, it will be convenient to have a complete vector field. This
dilemma is easily overcome by scaling a given f -gradient by a suitable smooth function
M→ R+ as we now explain.

CLAIM 2.5. Let v be an f -gradient and let λ : M→ R+ be any smooth, positive function.
Then, the product vector field λv : M→ T M is an f -gradient. Furthermore,∼, M/∼, and
q are all unchanged upon replacing v with λv. Lastly, there exists λ : M→ R+ so that the
vector field λv is complete.
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Proof. First, we show λv is an f -gradient. Clearly condition (2.1) holds for λv since
(λv)( f )= λv( f ). To verify (2.2) for λv, let p ∈ S( f ). By Remark 2.2, p is a critical point
of (λv)( f ), which we must show is non-degenerate. By [Hir76, §6.1] or [Mil63, §2], we
may work locally and assume M is an open subset of Rm . Then, let H denote the Hessian
matrix of v( f ) at p, which is non-singular since v is an f -gradient. Straightforward
computation shows that the Hessian matrix of (λv)( f ) at p equals λ(p)H , which is
evidently non-singular. So, λv is an f -gradient.

Next, existence and uniqueness of solutions to first-order ordinary differential equations
show that the maximal integral curves of λv are reparameterizations of those of v. Hence,
∼, and therefore M/∼ and q , are identical for v and λv.

Finally, let g be a complete Riemannian metric on M [NO61]. Using a smooth partition
of unity, construct λ : M→ R+ so that λv has bounded norm on M . The vector field λv is
complete [Hir76, §6.2]. 2

Throughout §3, v denotes a fixed f -gradient which is complete. By Claim 2.5, the
results of §3 all hold true for arbitrary f -gradients. The q-saturation of any set U ⊂ M is
q−1(q(U ))=

⋃
t∈R 8t (U ). Thus, q is an open map and M/∼ is path-connected, locally

path-connected, and has a countable basis. For clarity, we state three facts concerning
topological separation properties of M/∼.
(2.3) The orbit space M/∼ is T0 (i.e., Kolmogorov).
(2.4) The orbit space M/∼ is T1 if and only if S( f )= ∅.
(2.5) The set S( f ) 6= ∅ implies M/∼ is not T2 (i.e., Hausdorff), although M/∼may fail to

be T2 even when S( f )= ∅ (see Example 4.2 in §4).
These facts are easy consequences of the proof of Theorem 3.1 in the next section.

3. Main results
THEOREM 3.1. The orbit space M/∼ is locally contractible. In fact, each point [p] ∈
M/∼ has a countable neighborhood basis N [p] of open subsets of M/∼ such that if
Z ∈N [p], then Z strong deformation retracts to [p] and q−1(Z) is homeomorphic to Rm .

Proof. There are two cases to consider, namely p ∈ M − S( f ) and p ∈ S( f ). First, let
p ∈ M − S( f ). We will show that a neighborhood of [p] in M/∼ is homeomorphic
to Rm−1. Condition (2.1) implies that f is strictly increasing along [p]. (In particular,
there are no non-constant periodic orbits.) By Sard’s theorem, there are regular values of f
arbitrarily close to f (p). So, replacing p with a nearby point in [p] if necessary, we may
assume that f (p) is a regular value of f . Thus, f −1( f (p)) is a smooth submanifold of
M containing p and transverse to v. Parameterize a neighborhood of p in f −1( f (p)) by a
smooth embedding:

h : Rm−1 ↪→ f −1( f (p))⊂ M

such that h(0)= p. Define the local diffeomorphism:

R× Rm−1 H // M

(t, x) � // 8t (h(x)).
(3.1)

Suppose H(s, x)= H(t, y). Then 8s−t (h(x))=80(h(y)) and the three properties: (i)
80 = idM ; (ii) f is constant on Im(h); and (iii) f is strictly increasing along each
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non-constant orbit, imply that s − t = 0. As h is bijective, we get x = y and H is injective.
Hence, H is a diffeomorphism onto its image denoted U (p)⊂ M . Note that U (p) is an
open, q-saturated neighborhood of [p] in M , q(U (p)) is an open neighborhood of [p] in
M/∼, and q| :U (p)→ q(U (p)) is an open map. Consider the following diagram where
pr2(t, x)= x is projection to the second factor.

R× Rm−1 H //

pr2

��

U (p)

q|
��

Rm−1
η //____ q(U (p))

(3.2)

The unique function η that makes the diagram commute is a bijection. Two applications
of the universal property of quotient maps show that η is a homeomorphism. The required
countable neighborhood basis of [p] is now obtained by restricting diagram (3.2) to open
disks in Rm−1 of radii 1/n for n ∈ N. This completes the first case.

Second, let p ∈ S( f ). Then, v(p)= 0 and [p] = {p}. Let k ∈ {0, 1, . . . , m} denote the
index of f at p. We introduce some notation. Let ω denote the vector field on Rm defined
by

ω(x)= (−x1, . . . ,−xk, xk+1, . . . , xm)

which generates the standard hyperbolic flow

�t (x)= (x1e−t , . . . , xke−t , xk+1et , . . . , xmet ). (3.3)

Clearly � is a one-parameter group of diffeomorphisms of Rm . For each R > 0, define the
closed disks of radius R,

Dk(R)= {x ∈ Rk
| x2

1 + · · · + x2
k ≤ R2

},

Dm−k(R)= {x ∈ Rm−k
| x2

k+1 + · · · + x2
m ≤ R2

}

and the open bidisk,

B(R)= Int Dk(R)× Int Dm−k(R)⊂ Rm . (3.4)

Also, let ≡R denote the equivalence relation on B(R) whose classes are the non-empty
intersections of orbits of ω with B(R) (see Figure 1).

Given a manifold N , a smooth vector field u : N → T N , and z ∈ N , we let J (z, u)⊂ R
denote the maximal open interval of definition of the maximal integral curve of u that
passes through z at time t = 0.

As v is an f -gradient and p ∈ S( f ), 8 is topologically flow equivalent to � near
p [Paj06, pp. 76–80]. More specifically, there exists an open neighborhood U of p in
M , an R > 0, and a homeomorphism ψ : B(R)→U such that:
(3.5) ψ(0)= p;
(3.6) J (x, ω|B(R))= J (ψ(x), v|U ) for each x ∈ B(R);
(3.7) 8t ◦ ψ(x)= ψ ◦�t (x) for each x ∈ B(R) and t ∈ J (x, ω|B(R)).

While ψ captures the topological structure of 8 near p, the spaces B(R)/≡R and
q(U ) need not be homeomorphic; q(U ) may have additional identifications since orbits
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FIGURE 1. Open bidisk B(R)⊂ Rm partitioned by its intersection with orbits of ω (cases 0< k < m pictured).

of v may well leave U and then re-enter U in forward time. This problem will be
overcome by reducing R > 0. Note that if r ∈ (0, R], then the restriction homeomorphism
ψ | : B(r)→ ψ(B(r)) is again a flow equivalence from ω| to v|.

CLAIM 3.2. There is r ∈ (0, R) so that for all x, y ∈ B(r): x ≡r y⇔ ψ(x)∼ ψ(y).

Proof of Claim 3.2. By (3.6) and (3.7), ‘⇒’ holds for all r ∈ (0, R], as does ‘⇐’ in case
k = 0 or k = m. So, assume 0< k < m and let R0 ∈ (0, R) be arbitrary. For ρ1 ∈ (0, R0),
consider the closed bidisk Dk(ρ1)× Dm−k(R0) (i.e., the tall rectangle in Figure 2).
By continuity, there is ρ1 ∈ (0, R0) small enough so that f ◦ ψ > f (p) on the closed
set A := Dk(ρ1)× ∂Dm−k(R0) (see Figure 2, and see [Paj06, pp. 81–83] for a proof).
Similarly, there is ρ2 ∈ (0, R0) so that f ◦ ψ < f (p) on B := ∂Dk(R0)× Dm−k(ρ2) (see
Figure 2). Let r :=min{ρ1, ρ2}. Suppose ψ(x)∼ ψ(y) and x 6≡r y for some x, y ∈ B(r).
Swapping x and y if necessary, we have ψ(y)=8t (ψ(x)) for some t > 0. Define:

J := J (x, ω|B(r))= J (ψ(x), v|ψ(B(r))).

Then t > sup J . Further, it is clear from Figure 2 and readily verified that there exist
0< t1 < t2 < t such that:

z1 := ψ
−1
◦8t1(ψ(x)) ∈ A and z2 := ψ

−1
◦8t2(ψ(x)) ∈ B.

So, f (z1) > f (p) and f (z2) < f (p). But this contradicts the fact that f is strictly
increasing along [ψ(x)] (see (2.1)) and completes the proof of the claim. 2

Let r(p) denote the r > 0 given by Claim 3.2. For each 0< r ′ ≤ r(p), let B(p, r ′)
denote the open bidisk B(r ′)⊂ B(r(p)) (see (3.4)) and note that Claim 3.2 holds true with
r replaced by r ′ (this notation will be reused in the proof of Theorem 3.7 below). For
the remainder of the present proof, let B denote B(p, r ′) and let ≡ denote ≡r ′ for some
arbitrary 0< r ′ ≤ r(p). Consider the following diagram.

B
ψ | //

π

��

ψ(B)

q|
��

B/≡
η //___ q(ψ(B))
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FIGURE 2. Closed subsets A and B of B(R) on which f ◦ ψ > f (p) and f ◦ ψ < f (p) respectively. The open
bidisk B(r) is hatched.

Here, π is the quotient map associated to ≡, ψ | is the restriction homeomorphism, and q|
denotes the restriction map ψ(B)→ q(ψ(B)), which is an open map since q is open and
ψ(B) is open in M . In particular, q(ψ(B)) is an open neighborhood of [p] in M/∼. The
unique function η that makes the diagram commute is clearly surjective, and by Claim 3.2
it is injective. Bicontinuity of η follows by the universal property of quotient maps and
since q| is open. Thus, η is a homeomorphism.

We now show B/≡ strong deformation retracts to π(0). Clearly 0 is a strong
deformation retract of B by the homotopy

B × I
G // B

(x, s) � // sx .
(3.8)

By (3.3), each Gs sends each class of≡ into a class of≡. Consider the following diagram.

B × I
G //

π×id
��

B

π

��
(B/≡)× I

µ //___ B/≡

As I is locally compact and Hausdorff, and π is a quotient map, we see that π × id is a
quotient map. The universal property of quotient maps implies that µ is continuous, which
is our desired homotopy.

The last two paragraphs show that q(ψ(B)) is an open neighborhood of [p] in M/∼
that strong deformation retracts to [p]. Recall that the q-saturation of ψ(B)⊂ M is

q−1(q(ψ(B)))=
⋃
t∈R

8t (ψ(B)).

CLAIM 3.3. The space
⋃

t∈R �t (B) is diffeomorphic to Rm and is homeomorphic to the
q-saturation of ψ(B).

Proof of Claim 3.3. The first conclusion is left as an exercise. Next, define⋃
t∈R

�t (B) 9 //
⋃
t∈R

8t (ψ(B))

y � // 8t (ψ(x))

(3.9)
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where y =�t (x) for some (non-unique) t ∈ R and x ∈ B. Well-definition and injectivity
of 9 are pleasant exercises using (3.7) and Claim 3.2 respectively. Surjectivity of 9 is
immediate. Another pleasant exercise shows that:
(3.10) 8s ◦9(y)=9 ◦�s(y) for each y ∈

⋃
t∈R �t (B) and s ∈ R.

Note that9|B = ψ and so (3.10) extends (3.7). Asψ is a homeomorphism, property (3.10)
implies that 9 is a local homeomorphism. As 9 is a bijection, we get that 9 is a
homeomorphism (in fact, a flow equivalence by (3.10)). 2

The required countable neighborhood basis of [p] is now obtained by taking
B(p, r(p)/n) for n ∈ N. This completes the second case and the proof of Theorem 3.1.

Recall that a weak homotopy equivalence is a map h : X→ Y of topological spaces that
induces isomorphisms

h] : πi (X, x)→ πi (Y, h(x))

for all x ∈ X and all i ≥ 0 (when i = 0, isomorphism means bijection). The following
theorem of McCord, which extends work of Dold and Thom [DT58, Satz 2.2], says that
weak homotopy equivalence may be checked locally.

THEOREM 3.4. (McCord [McCo66, Theorem 6]) Let h : X→ Y be a map of topological
spaces. Suppose U is an open cover of Y satisfying:
(a) if U and V lie in U and y ∈U ∩ V , then there exists W ∈ U such that y ∈W ⊂

U ∩ V ;
(b) if U ∈ U , then the restriction h|h−1(U ) : h−1(U )→U is a weak homotopy

equivalence.
Then, h itself is a weak homotopy equivalence.

The statements of Theorems 3.1 and 3.4 immediately yield the following.

COROLLARY 3.5. The orbit space quotient map q : M→ M/∼ is a weak homotopy
equivalence.

Remarks 3.6. (1) As a consequence of Whitehead’s theorem, each weak homotopy
equivalence h : X→ Y also induces isomorphisms

h∗ : Hi (X; G)→ Hi (Y ; G) and h∗ : H i (Y ; G)→ H i (X; G)

for all i ≥ 0 and all coefficient groups G [Hat02, p. 356].
(2) Surjectivity of q] : π1(M, p)→ π1(M/∼, [p]) may be deduced in several

alternative ways, all utilizing Theorem 3.1. Namely, by [CGM12, Theorem 1.1],
Armstrong’s [Arm82, Proposition 3(e)], or by Theorem 3.7 below.

(3) In an earlier version of this paper, injectivity of q] : π1(M, p)→ π1(M/∼, [p])was
deduced by constructing the universal cover of M/∼ [CG11] (recall that classical covering
space theory does not require any Hausdorff hypothesis [Hat02, §1.3]). We briefly recall
this construction since it may be of independent interest. Let c : M̃→ M be the (smooth)
universal covering of M . Direct calculation shows that f ◦ c : M̃→ R is a Morse function.
The vector field v pulls back to ṽ : M̃→ T M̃ and ṽ is an ( f ◦ c)-gradient. Thus, the flow
8 lifts (smoothly) to M̃ . The quotient M̃/≈ of this lifted flow turns out to be the universal
cover of M/∼ which quickly shows that q] is injective on fundamental groups.
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(4) As fibers of q are contractible, Corollary 3.5 implies that q is a
quasifibration [Hat02, p. 479] (see also [DT58, McCo66]).

The last remark raises the question of whether q : M→ M/∼ is a Serre fibration (i.e.,
has the homotopy lifting property for disks Dk) [Hat02, p. 376]. The following theorem is
a partial positive answer, where we may further specify arbitrary lifts of both endpoints.

THEOREM 3.7. The map q : M→ M/∼ has path lifting. More specifically, let α :
[0, 1] → M/∼ be continuous, e0 ∈ q−1(α(0)), and e1 ∈ q−1(α(1)). Then, there exists a
continuous function α̃ : [0, 1] → M such that q ◦ α̃ = α, α̃(0)= e0, and α̃(1)= e1.

Proof. We begin with some preliminary observations. Recall that

M = S( f ) t (M − S( f ))

where S( f )⊂ M is closed, discrete, and q-saturated, and M − S( f )⊂ M is open and
q-saturated. Define 6 := q(S( f )), so

M/∼=6 t q(M − S( f )).

Recall that q is an open map, so q(M − S( f )) is open in M/∼ and 6 is closed in M/∼.
If p ∈ S( f ), then [p] = {p}, [p] is closed in M/∼, and [p] is open (and closed) in 6.
In particular, 6 is discrete in M/∼. As [0, 1] is compact, Im(α) ∩6 is finite (possibly
empty). Also, α−1(6)⊂ [0, 1] is closed and compact.

Let L denote the set of limit points of α−1(6) in [0, 1]. Then, L ⊂ α−1(6) and
L is closed in [0, 1]. We prove Theorem 3.7 in three successively more subtle cases:
α−1(6)= ∅, α−1(6) 6= ∅ and L = ∅, and L 6= ∅.

In any case, observe that α̃ is rigidly prescribed on the closed set α−1(6)⊂ [0, 1].
Namely, q| : S( f )→6 is a homeomorphism (q| is open since 6 is discrete in M/∼). So,
we must define

α−1(6)
α̃ // S( f )⊂ M

s � // q|−1
◦ α(s)

(3.11)

which is continuous. It remains to lift α appropriately on the complement

[0, 1] − α−1(6)= α−1((M/∼)−6).

This complement is the disjoint union of at most countably many open, connected subsets
of [0, 1].

The next claim will be our workhorse for constructing lifts. Recall from the proof of
Theorem 3.1 above that if y ∈ M − S( f ) and f (y) is a regular value of f , then associated
to y are maps h, H , and η.

CLAIM 3.8. Let β : [a, b] → M/∼ be continuous such that Im(β)⊂ q(U (y)) for some
y ∈ M − S( f ) where f (y) is a regular value of f . Let τ : [a, b] → R be any continuous
function. Define the continuous function

[a, b]
β̃ // U (y)⊂ M

s � // H(τ (s), η−1
◦ β(s)).

(3.12)

Then, β̃ is a lift of β (i.e., q ◦ β̃ = β).
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Proof of Claim 3.8. Immediate by the diagram (3.2). 2

Remark 3.9. Every continuous lift of β to M arises as in Claim 3.8 for some continuous
τ . If g is a continuous lift of β, then consider the map τ = pr1 ◦ H−1

◦ g where pr1 :

R× Rm−1
→ R is projection to the first factor.

The simplest τ , namely linear functions, provide just enough control over lifts to prove
the first main case of Theorem 3.7 as we now show.

CLAIM 3.10. Let β : [a, b] → M/∼ be continuous such that Im(β)⊂ q(U (y)) for some
y ∈ M − S( f ) where f (y) is a regular value of f . Suppose we are given ea ∈ q−1(β(a)),
eb ∈ q−1(β(b)), or both. Then, there exists β̃ a continuous lift of β such that β̃(a)= ea ,
β̃(b)= eb, or both (respectively).

Proof of Claim 3.10. Let (ta, xa) := H−1(ea) and (tb, xb) := H−1(eb). If both endpoints
are specified, then define τ : [a, b] → R to be linear such that τ(a)= ta and τ(b)= tb;
now, apply Claim 3.8. If only one endpoint is specified, then reason similarly with τ
constant. 2

Case 1. Theorem 3.7 holds when α−1(6)= ∅.

Proof of Case 1. Choose a finite subdivision 0= s0 < s1 < · · ·< sN = 1 so that for each
0≤ i ≤ N − 1 there exists yi ∈ M − S( f ) where f (yi ) is a regular value of f and

α([si , si+1])⊂ q(U (yi )).

Lift α|[s0, s1] using Claim 3.10 with q−1(α(s0))= e0 (the left endpoint) specified. Next,
lift α|[s1, s2] using Claim 3.10 with the left endpoint specified to agree with the right
endpoint of the previous lift. Repeat this process until the last subinterval [sN−1, sN ]

where we further specify the right endpoint q−1(α(sN ))= e1. This completes the proof
of Case 1 of Theorem 3.7. 2

In Case 1, very little control of the lifts was required; we just had to match up endpoints.
When α−1(6) 6= ∅, more control is necessary. The next claim provides controlled lifts.
We use the notation specified in the proof of Theorem 3.1 above immediately following
the proof of Claim 3.2.

CLAIM 3.11. Let β : [a, b] → M/∼ be continuous such that

Im(β)⊂ q(U (y)) ∩ q(ψ(B(p, r ′))) (3.13)

for some y ∈ M − S( f ) where f (y) is a regular value of f , some p ∈ S( f ), and some
0< r ′ ≤ r(p). Then, there exists β̃ a continuous lift of β such that Im(β̃)⊂ ψ(B(p, r ′)).
Further, given ea ∈ q−1(β(a)) ∩ ψ(B(p, r ′)), eb ∈ q−1(β(b)) ∩ ψ(B(p, r ′)), or both, we
may choose β̃ so that additionally β̃(a)= ea , β̃(b)= eb, or both.

Proof of Claim 3.11. Let P(R) denote the power set of R. We define the carrier φ :
[a, b] → P(R) by

φ(s) := {t ∈ R | H(t, η−1
◦ β(s)) ∈ ψ(B(p, r ′))}.
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Recall that H(t, x)=8t (h(x)). So, φ(s) equals the set of times for which the integral
curve of v beginning at h(η−1

◦ β(s)) lies in the open set ψ(B(p, r ′)). By (3.13) and since
ψ is a flow equivalence (see the proof of Theorem 3.1), φ(s) is a non-empty, connected
open interval (possibly infinite on one side) for each s ∈ [a, b]. We assert that φ is lower
semi-continuous (see [Mic56, p. 365] for a definition). But, this is immediate by continuity
of 8, openness of η, and continuity of β. Thus, Michael’s selection theorem [Mic56,
Theorem 3.1′′′] implies that φ admits a selection. That is, there exists a continuous function
τ : [a, b] → R such that τ(s) ∈ φ(s) for every s ∈ [a, b]. Now, apply Claim 3.8 using this
τ . The resulting lift β̃ behaves as desired. If ea is specified, then alter φ by defining
φ(a) := {ta} where ea = H(ta, η−1(β(a))). It is easy to check that this modified φ is
lower semi-continuous. Argue similarly in case eb is specified. 2

Remark 3.12. The previous claim used only the relatively simple implication (a)⇒ (b) of
Michael’s Theorem 3.1′′′ (see [Mic56, §5]).

Repeated applications of Claims 3.10 and 3.11 yield the following.

CLAIM 3.13. Let β : [a, b] → M/∼ be continuous such that β−1(6)= {b}. Then, there
exists β̃ a continuous lift of β. Further, given ea ∈ q−1(β(a)), we may choose β̃ so that
additionally β̃(a)= ea . Also, the analogous results hold in case β−1(6)= {a}.

Proof of Claim 3.13. It suffices to prove the first two conclusions. For the first conclusion,
we assume, without loss of generality, that a = 0 and b = 1. Choose a countable
subdivision

0= s0 < s1 < s2 < s3 < · · ·< 1

such that si → 1 and, for each i , β([si , si+1])⊂ q(U (yi )) for some yi ∈ M − S( f ) where
f (yi ) is a regular value of f . As β(1) ∈6, there is a unique p ∈ S( f ) such that
β(1)= [p]. Define β̃(1) := p (we have no choice here).

Recursively define N1 < N2 < N3 < · · · an increasing sequence of positive integers
as follows. The set q(ψ(B(p, r(p)))) is an open neighborhood of [p] in M/∼.
As β is continuous, there exists N1 ∈ Z+ such that β([sN1 , 1])⊂ q(ψ(B(p, r(p)))).
Having constructed N1 < · · ·< Nk , choose Nk+1 > Nk such that β([sNk+1 , 1])⊂
q(ψ(B(p, r(p)/(k + 1)))).

Now, we define β̃ on [0, 1) by successively lifting β|[si , si+1] for i = 0, 1, 2, . . . as
follows. For each i > 0, we tacitly assume that the lift of β|[si , si+1] will agree with
that of β|[si−1, si ] at the common endpoint si . For i = 0, . . . , N1 − 1, lift β|[si , si+1]

using Claim 3.10 with yi ∈ M − S( f ); for i = N1 − 1, we further specify that the lift
send sN1 into ψ(B(p, r(p))). For i = N1, . . . , N2 − 1, lift β|[si , si+1] using Claim 3.11
with y = yi and r ′ = r(p)/1; for i = N2 − 1, we further specify that the lift send sN2 into
ψ(B(p, r(p)/2)). Assume that β|[0, sNk ] has been so lifted. For i = Nk, . . . , Nk+1 − 1,
lift β|[si , si+1] using Claim 3.11 with y = yi and r ′ = r(p)/k; for i = Nk+1 − 1, we
further specify that the lift send sNk+1 into ψ(B(p, r(p)/(k + 1))). This completes our
definition of β̃.

It is clear by construction that β̃ is a lift of β and is continuous on [0, 1). For
continuity at 1, let W be any neighborhood of p = β̃(1) in M . There is k ∈ Z+ such
that ψ(B(p, r(p)/k))⊂W . Then, β̃ sends (sNk , 1] into W as desired.
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For the second conclusion, we simply specify in the very first lift (i = 0) that s0 is sent
to e0. 2

CLAIM 3.14. Let β : [a, b] → M/∼ be continuous such that β−1(6)= {a, b}. Then,
there exists β̃ a continuous lift of β.

Proof of Claim 3.14. Without loss of generality, a = 0 and b = 1. Apply Claim 3.13 to
each half [0, 1/2] and [1/2, 1] taking care to match up the lifts at 1/2. 2

We now prove the second main case of Theorem 3.7.

Case 2. Theorem 3.7 holds when α−1(6) 6= ∅ and L = ∅.

Proof of Case 2. In this case, α−1(6) 6= ∅ is a finite set of points in [0, 1]. Let σ1 <

σ2 < · · ·< σn be the points in α−1(6). If σ1 6= 0, then lift α|[0, σ1] using Claim 3.13
with e0 specified. Successively lift α|[σi , σi+1] using Claim 3.14 (adjacent endpoints are
automatically matched up). If σn 6= 1, then lift α|[σn, 1] using Claim 3.13 with e1 specified.
This completes the proof of Case 2 of Theorem 3.7. 2

The third main case of Theorem 3.7 will use a sharpened version of Claim 3.14. First,
we sharpen Claim 3.13.

CLAIM 3.15. (Addendum to Claim 3.13) Assume further that Im(β)⊂ q(ψ(B(p, r ′)))
for some (unique) p ∈ S( f ) and some 0< r ′ ≤ r(p). Then, in all three conclusions of
Claim 3.13, we may choose β̃ so that Im(β̃)⊂ ψ(B(p, r ′)).

Remark 3.16. Uniqueness of p ∈ S( f ) is a consequence of two facts: (i) for each z ∈ S( f ),
q(ψ(B(z, r(z)))) intersects 6 = q(S( f )) in exactly the single point [z]; and (ii) β−1(6)

equals {b} or {a}. In particular, p = q−1(β(b)) or p = q−1(β(a)).

Proof of Claim 3.15. The proof is very similar to the proof of Claim 3.13, except now
we choose a sequence 0= N1 < N2 < N3 < · · · of integers such that β([sNk , 1])⊂
q(ψ(B(p, r ′/k))). And, every individual lift is provided by Claim 3.11. Details are left to
the reader. 2

CLAIM 3.17. (Addendum to Claim 3.14) Assume further that Im(β)⊂ q(ψ(B(p, r ′)))
for some (unique) p ∈ S( f ) and some 0< r ′ ≤ r(p). Then, we may choose β̃ so that
Im(β̃)⊂ ψ(B(p, r ′)).

Proof of Claim 3.17. Identical to that of Claim 3.14, except using Claim 3.15. 2

We now prove the third and final main case of Theorem 3.7.

Case 3. Theorem 3.7 holds when L 6= ∅.

Proof of Case 3. Recall that α̃ is already (rigidly) prescribed on α−1(6). Notice that it
suffices to lift α on

K := [inf α−1(6), sup α−1(6)] ⊂ [0, 1].

Indeed, given a continuous lift of α|K , suppose 0 6∈ α−1(6). Lift α|[0, inf α−1(6)]

using Claim 3.13 with e0 specified. These two lifts agree at their common endpoint,
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namely inf α−1(6), so they yield a continuous lift on [0, sup α−1(6)]. Argue similarly
if 1 6∈ α−1(6). So, it remains to lift α|K . Without loss of generality, K = [0, 1].

Consider an arbitrary subinterval

V := [σ−, σ+] ⊂ [0, 1] (3.14)

where σ− < σ+ and [σ−, σ+] ∩ α−1(6)= {σ−, σ+}. We lift α|V according to three
mutually exclusive cases.
(a) For every p ∈ S( f ), α(V ) 6⊂ q(ψ(B(p, r(p)))).
(b) For some (unique) p ∈ S( f ) and (unique) k ∈ Z+, α(V )⊂ q(ψ(B(p, r(p)/k))) and

α(V ) 6⊂ q(ψ(B(p, r(p)/(k + 1)))).
(c) For some (unique) p ∈ S( f ) and every k ∈ Z+, α(V )⊂ q(ψ(B(p, r(p)/k))).
In cases (b) and (c), uniqueness of p ∈ S( f ) follows as in Remark 3.16. In particular,
α(σ−)= [p] and α(σ+)= [p].

In case (a), lift α|V using Claim 3.14. In case (b), lift α|V using Claim 3.17 with
r ′ = r(p)/k. In case (c), define the continuous function

[0, 1] δ // [0, 1]
s � // dist(s, L).

Let l(V ) := σ+ − σ− denote the length of V . Recall that L 6= ∅ and notice that

0<
l(V )

2
≤ sup(δ|V )≤ 1.

Lift α|V using Claim 3.17 with r ′ := (sup(δ|V )) · r(p). This completes our definition of
α̃.

There exist at most countably many such subintervals V , and any two of them are either
identical, disjoint, or they intersect at a single shared endpoint (which necessarily lies in
α−1(6)). Also, every s ∈ [0, 1] lies in either α−1(6) or in the interior of a unique such V .
It follows that α̃ is a well-defined lift of α. It remains to verify that α̃ is continuous.

Evidently, continuity of α̃ is only in question at points of L . So, let s0 ∈ L . We verify
continuity of α̃ at s0 from the left; continuity from the right is similar. If α−1(6) does not
accumulate on s0 from the left, then there is nothing to show. So, assume otherwise. Let
p ∈ S( f ) be the unique point such that α(s0)= [p]. By construction, α̃(s0)= p. The open
sets ψ(B(p, r(p)/k)), k ∈ Z+, form a countable basis at p in M . Thus, for each fixed
k ∈ Z+ it suffices to produce ε > 0 such that α̃((s0 − ε, s0])⊂ ψ(B(p, r(p)/k)). So, fix
k ∈ Z+. As q is open and α is continuous, the set

W := α−1(q(ψ(B(p, r(p)/k))))⊂ [0, 1] (3.15)

is an open neighborhood of s0 in [0, 1]. By (3.15), there exists ε0 > 0 such that

(s0 − ε0, s0] ⊂W and ε0 < 1/k. (3.16)

As α−1(6) accumulates on s0 from the left, there exists

σ ∈ α−1(6) ∩ (s0 − ε0, s0). (3.17)
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FIGURE 3. Longitudinal flow on Sn and its orbit space.

Define ε := s0 − σ > 0. We verify that this ε works. Any point in α−1(6) ∩ (s0 − ε, s0]

lies in W and, hence, maps by α̃ to p itself. Next, let s ∈ (s0 − ε, s0] − α
−1(6). Then, s

lies in the interior of a unique closed interval V as in (3.14). By (3.17) and (3.16)

V ⊂ [s0 − ε, s0] ⊂ (s0 − ε0, s0] ⊂W. (3.18)

In case (b), the lift provided by Claim 3.17 sends V into ψ(B(p, r(p)/k)), so we are done.
In case (c), (3.18) implies that

0< sup(δ|V )≤ ε < ε0 < 1/k.

So, again the lift provided by Claim 3.17 sends V into ψ(B(p, r(p)/k)). This completes
the proof of Case 3 of Theorem 3.7. 2

The proof of Theorem 3.7 is complete.

Remark 3.18. Claim 3.11 has a (more precise) closed analogue. Here, the hypothesis
Im(β)⊂ q(ψ(B(p, r ′))) is replaced with the hypothesis Im(β)⊂ q(ψ(B(p, r ′))), where
0< r ′ < r(p) and B(p, r ′) is the closure of B(p, r ′) in B(p, r(p)). The conclusion
becomes Im(β̃)⊂ ψ(B(p, r ′)). The proof of this fact requires a bit more work, again
employing Michael’s selection theorem [Mic56]. We suppress this result since the open
version of Claim 3.11 is sufficient for our purposes. With some tinkering, one may even
avoid the use of Michael’s selection theorem completely, but at present we see no advantage
to such an approach.

4. Examples and questions
Example 4.1. Consider the standard longitudinal flow on Sn as in Figure 3. Corollary 3.5
implies that q is a weak homotopy equivalence. The orbit space q(Sn) is the non-Hausdorff
suspension of Sn−1 [McCo66, p. 472]. A natural inductive argument yields a topological
space Xn containing 2n + 2 points and a weak homotopy equivalence Sn

→ Xn ; this result
was first observed by McCord [McCo66, §8] (cf. [Bar11, p. 38]). Clearly there is no weak
homotopy equivalence Xn→ Sn .

Example 4.2. We give an instance of the general situation studied in §3 and where S( f )=
∅, but M/∼ is non-Hausdorff. Let M = R2

− {(0, 0)}, let f : M→ R be f (x, y)= y,
and let v : M→ T M be the constant (0, 1) vector field. Note that f is a Morse function,
S( f )= ∅, and v is an f -gradient (v is not complete, but this is immaterial in view of
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FIGURE 4. Integral curves for a spiral vector field on a closed annulus A ⊂ R2.

Claim 2.5). The orbit space M/∼ is readily seen to be homeomorphic (diffeomorphic,
in fact) to L, the line with two origins [Hir76, p. 15]. Recall that L is the quotient of
R× {1, 2} by the equivalence relation generated by (x, 1)≡ (x, 2) for each x 6= 0; L is
a smooth, non-Hausdorff 1-manifold. By Corollary 3.5, q : M→ L is a weak homotopy
equivalence. Any map from L to a Hausdorff space factors through R, so there is no weak
homotopy equivalence L→ M .

Remark 4.3. It is instructive to compare and contrast Examples 4.1 and 4.2 with the orbit
spaces of the standard hyperbolic flows on R1 and R2 of various indexes (see (3.3)), all of
which are contractible. In particular, the index 1 flow on R2, with the origin removed, is
the double cover of M from Example 4.2.

Example 4.4. For non-gradient vector fields, q] is not necessarily injective on fundamental
groups: consider the obvious circle action on any product M = N × S1. Or, if v : M→
T M has a dense orbit [p], then M/∼ strong deformation retracts to [p] (the homotopy is
the identity when t = 0 and sends all points to [p] for all t ∈ (0, 1]). Is q] a surjection on
fundamental groups for arbitrary smooth vector fields (cf. [Arm82, CGM12])?

CONJECTURE 4.5. The orbit space associated to an arbitrary smooth vector field on a
Hausdorff manifold M, having a countable basis and empty boundary, is semilocally
simply-connected.

An affirmative answer to Conjecture 4.5 would imply an affirmative answer to the
question in Example 4.4 by [CGM12, Theorem 1.1].

Example 4.6. For general maps, path lifting, as in Theorem 3.7 above, is a relatively rare
but special property. For non-gradient vector fields, the associated quotient maps need
not have the path lifting property. Consider the closed annulus A ⊂ R2 with orbits as in
Figure 4. Let q : A→ A/∼ be the associated quotient map. Let X and Y denote the
inner and outer boundary components of A respectively. Define x := q(X) and y := q(Y ).
Fix some point z ∈ (A/∼)− {x, y}. The continuous path α : [0, 1] → A/∼ defined by:
α(0)= x , α(1)= y, and α(t)= z for 0< t < 1, has no continuous lift to A. Similar
examples on closed manifolds may be obtained either by doubling A or, more generally,
by embedding A in a closed surface and then extending the smooth vector field on A
arbitrarily. Still, the reader may verify that α is homotopic (relative to endpoints) to a path
which does admit a continuous lift to A. Indeed, the map q : A→ A/∼ has path lifting up
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to homotopy (relative to endpoints). Does every quotient map q : M→ M/∼ induced by a
smooth, not necessarily gradient, vector field have path lifting up to homotopy (relative to
endpoints)?

Question 4.7. The present paper focused on the topology of orbit spaces of f -gradients.
As a next step to understanding the topology of orbit spaces of arbitrary smooth vector
fields, we ask: what are the analogues of our results for circle-valued Morse functions, in
particular for cellular gradients [Paj06, Ch. 12]?
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