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1. Introduction

An Artin presentation is, by definition, a finite presentation:

r = 〈x1, . . . , xn | r1, . . . , rn〉
satisfying the following equation in Fn (the free group on x1, . . . , xn):

(r−1
1 x1r1)(r−1

2 x2r2) · · · (r−1
n xnrn) ≈ x1x2 · · ·xn.

Interesting group presentations often have roots in geometry or topology and
Artin presentations are no exception. They were first studied by Emil Artin in 1925
in relation to his theory of braids [1, pp. 416–441]. González-Acuña, in 1975, coined
the name Artin presentation and showed that they characterize the fundamental
groups of closed, orientable 3-manifolds [8]. Their connection to 4-manifolds and
knot theory was later revealed by Winkelnkemper [13].

These connections are deep, and will be discussed below to some extent. The
main thesis of this paper is that Artin presentations are interesting objects in their
own right. Their properties should be, whenever possible, determined and proven in
a purely algebraic manner. For example, the Casson invariant in Artin presentation
theory can be so obtained [4]. This is not an idle exercise, since pure algebraization
is necessary in order to prepare applications of Artin presentation theory to, say,
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quantum computation, which in the guise of anyons also uses braid theory in a
fundamental manner (see [6, 12]).

Let Rn denote the set of Artin presentations on n generators x1, . . . , xn. It
is always assumed that the individual words ri are freely reduced in an Artin
presentation.

Associated to an Artin presentation r ∈ Rn are

π(r) = the group presented by r, and

A(r) = the exponent sum matrix of r.

That is, A(r) is the n × n integer matrix whose ijth entry is the exponent sum of
xi in rj .

Theorem 1. If r is an Artin presentation, then A(r) is symmetric.

Remark 1. Every symmetric integer matrix appears as A(r) for some Artin pre-
sentation r (see [13, p. 248]).

Of course one defines the exponent sum matrix for any finite presentation, but in
general, it need not be square and certainly not symmetric. This property of Artin
presentations was first observed by Winkelnkemper [13] and was originally proved
using the symplectic property of closed surface homeomorphisms. The new proof
below proceeds directly from the definition of an Artin presentation and is entirely
combinatorial group theoretic. The main ingredients in this proof are a techni-
cal result (j-reduction, see Sec. 3) and a combinatorial characterization of Artin
presentations on two generators (making no mention of braids or automorphisms
of Fn).

Theorem 2. Artin presentations r = 〈x1, x2 | r1, r2〉 in R2 are characterized by

r1 = xa
1(x1x2)c, and

r2 = xb
2(x1x2)c, for some a, b, c ∈ Z.

Artin presentations occupy an interesting crossroad of discrete combinatorial
group theory, pure braid theory, and low-dimensional manifold theory. For exam-
ple, two of the deepest theorems in topology (and at opposite ends) percolate
down to Artin presentations: the Jordan curve theorem and Donaldson’s theorem.
The former puts strong constraints on words that can appear as relations in Artin
presentations.

Theorem 3. If r = 〈x1, . . . , xn | r1, . . . , rn〉 is an Artin presentation, then ri =
xki

i wi for some integer ki and freely reduced word wi in Fn satisfying: wi does not
begin with a nonzero power of xi, adjacent generators in wi are distinct and all
generators appear to the power of ±1.

While these conditions are restrictive, they are not sufficient (see Sec. 7).
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At the other end of the spectrum, [13, Theorem I] states that if r is an Artin
presentation and A(r) is definite but not congruent to ±I over Z then π(r) is
nontrivial. The statement of this theorem is purely group theoretic, although the
proof relies heavily on differential geometric methods. This result reveals a close
connection between Artin presentations and deeper properties of quadratic forms,
a connection that simply does not exist with presentations in general (see Sec. 8).

This paper is organized as follows. Section 2 contains basic facts about free
groups. Section 3 proves a technical result on j-reduction. Section 4 proves Theo-
rem 2 characterizing Artin presentations on two generators. Section 5 proves that
the exponent sum matrix of an Artin presentation is symmetric. Section 6 reviews
some of the connections between Artin presentations and topology. Section 7 proves
Theorem 3 on necessary conditions for words to appear as relations in an Artin pre-
sentation. Section 8 closes with some comments and open problems.

2. Preliminaries

This section recalls some basic facts about free groups and fixes some notation.
The free group Fn = 〈x1, . . . , xn〉 is defined combinatorially in [9, Secs. 1.2 and

1.4]. It is common practice to abuse notation and write w to mean both a word in the
generators x1, . . . , xn and the equivalence class it represents in Fn = 〈x1, . . . , xn〉.
The context should make clear which is actually meant.

The solution of the word problem in Fn is well known: perform simple free
reductions on a given word w in any order and as long as possible. A simple free
reduction is the removal of x±1

i x∓1
i in w. A word is freely reduced if no simple free

reduction is possible. Two words w and v represent the same element in Fn if and
only if they have identical free reductions. A purely combinatorial proof (using no
topology) of this result is in [9, pp. 34–35]. Magnus, Karrass and Solitar give a
concrete process, denoted ρ, for producing the unique free reduction ρ(w) of a word
w in Fn. From here on ρ denotes this process.

Given u, v ∈ Fn, write u = v in case the words are identically equal when
written out as products of x±1

i , 1 ≤ i ≤ n, without performing any free reductions.
A simple free insertion on a word w in Fn is the inverse process of a simple free
reduction. Two words u, v in Fn are freely equal, written u ≈ v, provided one can
be obtained from the other by free reductions and insertions. Thus, the following
are equivalent: u and v determine the same element in Fn, u ≈ v, and ρ(u) = ρ(v).

The definition of an Artin presentation can be rephrased using the notation
above. Let ri, 1 ≤ i ≤ n, be freely reduced words in Fn. Then the presentation

r = 〈x1, . . . , xn | r1, . . . , rn〉
is an Artin presentation if and only if

ρ((r−1
1 x1r1)(r−1

2 x2r2) · · · (r−1
n xnrn)) = x1x2 · · ·xn. (AC)

This condition is referred to as (AC), the Artin condition.
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Remark 2. Given n words ri ∈ Fn, 1 ≤ i ≤ n, one easily checks if the Artin
condition (AC) is satisfied simply by freely reducing. With large words, a computer
algebra system such as MAGMA (where free reduction is automatic) is useful.

Substitutions on words in Fn are performed as follows. Let w be a word in Fn.
Write w = w(xµ) to emphasize that w is a word in the letters xµ, 1 ≤ µ ≤ n. Let
yµ, 1 ≤ µ ≤ n, be any expression. Then, let w(yµ) denote the result of substituting
yµ for xµ in w(xµ). It is implicit that y−1

µ is substituted for x−1
µ . Notice that no

free reduction takes place in this definition, although removing appearances of 1 in
a nontrivial expression is allowed.

The following basic properties will be used below.

(P1) Let ui, 1 ≤ i ≤ k, be any word in Fn. Then, ρ
(∏k

i=1ui

)
= ρ

(∏k
i=1ρ(ui)

)
.

(P2) Let u be a freely reduced word in Fn and suppose u−1xiu ≈ xi for some
1 ≤ i ≤ n, then u = xk

i for some integer k.
(P3) Let w be a freely reduced word in Fn and suppose that w−1(x1x2 · · ·xn)w ≈

x1x2 · · ·xn, then w = (x1x2 · · ·xn)k for some integer k.

Proofs of these properties follow for completeness. To prove (P1), note that
ui ≈ ρ(ui) for 1 ≤ i ≤ k and so

∏k
i=1ui ≈ ∏k

i=1ρ(ui). The result follows by
applying ρ to this last equation. To prove (P2), note that the hypothesis implies
u = xk

i v for some integer k and some freely reduced word v in Fn where v does
not begin with a nonzero power of xi, since this is the only way free reductions
can take place in u−1xiu. Therefore xi ≈ u−1xiu = v−1x−k

i xix
k
i v ≈ v−1xiv where

v−1xiv is freely reduced, and so xi = v−1xiv. This implies v = 1 and the result
follows. Finally, to prove (P3), note that commuting elements in Fn are powers of
the same word [9, p. 42], and so w ≈ ui and x1x2 · · ·xn ≈ uj for some word u in
Fn and integers i and j. Without loss, assume j > 0 and u is freely reduced. Write
u = v−1Uv for the longest possible initial segment v−1 of u (U must be nontrivial,
but v may be trivial). Then x1x2 · · ·xn ≈ uj = (v−1Uv)j ≈ v−1U jv where this last
word is freely reduced (u = v−1Uv is freely reduced and v−1 is the longest possible
initial segment of u). Hence, v = 1, j = 1 and u = x1x2 · · ·xn. The result follows.

Property (P3) implies that if r = 〈x1, . . . , xn | r1, . . . , rn〉 is an Artin presen-
tation with all ri equal (i.e. ri = w for all i), then w = (x1x2 · · ·xn)k for some
integer k.

Let w be a word in Fn. The length of w, denoted L(w), is the sum of the absolute
values of the exponents of the generators appearing in w. The length of the trivial
word L(1) is zero. If r is an Artin presentation, then L(r) denotes the sum of the
lengths of the words ri defining r.

3. j-Reduction

Given an Artin presentation r = 〈x1, . . . , xn | r1, . . . , rn〉 in Rn, j-reduction yields
an Artin presentation on n − 1 generators. The idea is that by deleting rj , setting



April 16, 2007 19:47 WSPC/171-JAA 00229

Artin Presentations from an Algebraic Viewpoint 359

xj = 1 in the other ri, freely reducing the individual resulting words and renumber-
ing, one obtains an Artin presentation in Rn−1. It was noted in [13, p. 251], that
the result is in fact an Artin presentation by topological considerations. Below is a
purely group theoretic proof of this fact. The renumbering step is omitted simply
for notational reasons.

Fix r = 〈x1, . . . , xn | r1, . . . , rn〉 as an Artin presentation and j, an integer
1 ≤ j ≤n. Define

yµ = xµ for 1 ≤ µ ≤ n and µ �= j,

yj = 1,

ui = ri(yµ) for 1 ≤ i ≤ n and i �= j,

uj = 1, and

si = ρ(ui) for 1 ≤ i ≤ n.

Lemma 1. With r, yµ, ui, and si as directly above,

(s−1
1 x1s1) · · · (s−1

j−1xj−1sj−1)(s−1
j+1xj+1sj+1) · · · (s−1

n xnsn) ≈ x1 · · ·xj−1xj+1 · · ·xn.

Notice that the free reductions required in the above equation occur in Fn−1 =
〈x1, . . . , xj−1, xj+1, . . . , xn〉 since no xj appear anywhere.

Proof. First, notice that if w = w(xµ) is any word in Fn then

ρ(w(yµ)) = ρ([ρ(w(xµ))](yµ)). (�)

Intuitively, this means that setting xj = 1 in w and then freely reducing produces
exactly the same freely reduced word as freely reducing w, then setting all xj = 1
and freely reducing again. To see this, let Fn−1 = 〈x1, . . . , xj−1, xj+1, . . . , xn〉 and
define the homomorphism ψ: Fn → Fn−1 by xi �→ xi, i �= j, and xj �→ 1. Since
w(xµ) ≈ ρ(w(xµ)), the well definition of ψ implies that ψ(w(xµ)) ≈ ψ(ρ(w(xµ))).
It follows that

w(yµ) = ψ(w(xµ))

≈ ψ(ρ(w(xµ)))

= [ρ(w(xµ))](yµ).

Applying ρ proves Eq. (�).
Now, let w(xµ) = (r−1

1 x1r1)(r−1
2 x2r2) · · · (r−1

n xnrn). The Artin condition (AC)
implies ρ(w(xµ)) = x1x2 · · ·xn. Thus

x1 · · ·xj−1xj+1 · · ·xn = ρ([x1x2 · · ·xn] (yµ))

= ρ([ρ(w(xµ))] (yµ))

= ρ(w(yµ)),
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where the last equality follows from Eq. (�). Furthermore

w(yµ) =
n∏

i=1

([r−1
i xiri](yµ))

=

[
j−1∏
i=1

u−1
i xiui

]
[u−1

j 1uj]

[
n∏

i=j+1

u−1
i xiui

]

≈
n∏

i=1, i�=j

u−1
i xiui.

Applying ρ and (P1) gives

ρ(w(yµ)) = ρ

(
n∏

i=1, i�=j

ρ(u−1
i )xiρ(ui)

)

= ρ

(
n∏

i=1, i�=j

s−1
i xisi

)
,

and the result follows.

4. Characterization of R2

This section shows that Artin presentations r = 〈x1, x2 | r1, r2〉 in R2 are charac-
terized by

r1 = xa
1(x1x2)c, and

r2 = xb
2(x1x2)c, for some a, b, c ∈ Z.

An easy computation shows that these presentations satisfy the Artin condi-
tion (AC). To prove the converse, let r = 〈x1, x2 | r1, r2〉 be an Artin presentation
in R2. The proof is by informal induction on L(r) = L(r1) + L(r2). By definition,
r1 and r2 are freely reduced. The cases L(r) ≤ 1 are trivial, as are the cases where
either ri = 1 (r1 = 1 ⇒ x1r

−1
2 x2r2 ≈ x1x2 ⇒ r−1

2 x2r2 ≈ x2 ⇒ r2 = xm
2 by (P2)).

So, assume each ri �= 1, in particular L(r) ≥ 2.
Without loss of generality, each ri does not begin with a nonzero power of xi.

Otherwise, removing such a letter gives a shorter Artin presentation of the desired
form by induction.

Write r1 = xm
2 w1 and r2 = xn

1 w2 for |m| and |n| positive integers as large
as possible. Note the wi are freely reduced. Let A = r−1

1 x1r1 and B = r−1
2 x2r2,

which are freely reduced. The Artin condition (AC) implies AB ≈ x1x2. A simple
induction shows that L(A) = L(B) or L(A) = L(B) ± 2. Hence, L(r1) = L(r2) or
L(r1) = L(r2) ± 1. If L(r1) = L(r2), then AB ≈ x1x2 implies r1r

−1
2 ≈ 1, which

implies r1 ≈ r2, a contradiction since the ri are freely reduced and begin with
different letters. Without loss of generality, L(r1) = L(r2) + 1 (if L(r1) = L(r2)− 1
then take the inverse of both sides of (AC) and reindex, reducing to the “+” case).
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Note that m, n = −1. As AB ≈ x1x2, the last L(r2) letters in A must cancel
with B. This implies r1 = x±1

2 r2 (so |m| = 1) and x1x2 ≈ (r−1
1 x1x

±1
2 )x2r2. The

sign must be “−” and x1x2 ≈ (r−1
1 x1)r2 = (r−1

2 x2x1)r2 = (w−1
2 x−n

1 x2x1)xn
1 w2.

This implies n = −1 as well.
Hence, x1x2 ≈ w−1

2 x1x2w2 and (P3) implies w2 = (x1x2)k for some integer
k. The case k = 0 satisfies (AC). Otherwise, k < 0 as |n| was chosen as large as
possible. In these cases, r1 = x−1

2 x−1
1 (x1x2)k and r2 = x−1

1 (x1x2)k satisfying (AC)
as desired. This completes the proof of Theorem 2.

Remark 3. As pointed out by the referee, Theorem 2 has the following topological
application. An Artin presentation r ∈ Rn determines a unique closed, orientable
3-manifold M3(r) as described in Sec. 6 ahead. An Artin presentation r is also
a presentation corresponding to a spine of M3(r); one may see this directly from
the open book construction using the 2-cells si × [0, 1] and a little reflection, or
one may use the special Heegaard decomposition of M3(r) determined by r as
described in [13, pp. 248–249]. Theorem 2 and [11, Theorems 2.1 and 3.1 (with a
simple transformed presentation in 3.1)], immediately imply that if r ∈ R2, then
M3(r) is either the connected sum of two lens spaces or is a Seifert fiber space over
S2 with at most three exceptional fibers. We remind the reader that in general, a
3-manifold is not uniquely determined by a spine. However, a closed, orientable 3-
manifold is uniquely determined by an Artin presentation of its fundamental group.
Moreover, the same data, namely an Artin presentation, also uniquely determines
a smooth null cobordism of the 3-manifold, thus naturally tapping into 4D gauge
theory.

5. Symmetry of A(r)

Let r = 〈x1, . . . , xn | r1, . . . , rn〉 be an Artin presentation. The symmetry of A(r)
will follow by induction on n. If n = 1 there is nothing to show and if n = 2 the
result holds by the characterization in Theorem 2. So, assume n ≥ 3. The idea
is that j-reduction shows A(r) is symmetric of the jth row and the jth column.
Applying this three times with different values of j gives the result. This is where
the symmetry for n = 2 was needed as a base case.

Fix j = n and define yµ, ui, and si as before Lemma 1 on j-reduction. Lemma 1
implies that s = 〈x1, . . . , xn−1 | s1, . . . , sn−1〉 is an Artin presentation in Rn−1 and
so A(s) is symmetric by induction. The key observation is that [A(r)]i,k = [A(s)]i,k
for 1 ≤ i, k ≤ n− 1. To see this, recall that [A(r)]i,k equals the exponent sum of xi

in rk. This sum also equals the exponent sum of xi in uk since uk is obtained from
rk by setting xn = 1. Further, sk = ρ(uk) and each simple free reduction in passing
from uk to sk preserves the exponent sum of each generator xµ. This shows that
the upper left (n− 1)× (n− 1) block of A(r) is symmetric. Repeating this process
with j = n − 1 and j = n − 2 shows that A(r) is symmetric, as desired.
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6. Topology and Artin Presentations

The connections between Artin presentations and topology are well documented
[3–5, 8, 13]. The interested reader is referred to these papers for detailed proofs of
statements made below.

Artin presentations arise geometrically as follows. Let Ωn denote the compact
2-disk with n holes as in Fig. 1. The fundamental group π1(Ωn, p0) is isomorphic
to Fn = 〈x1, . . . , xn〉 where xi is geometrically realized by a simple closed loop
representing the class of si∂is

−1
i . The generator x2 is depicted in Fig. 2. Let h

be any self homeomorphism of Ωn that is the identity on the boundary. Let ri =
ρ(sih(s−1

i )). Then r = 〈x1, . . . , xn | r1, . . . , rn〉 is an Artin presentation (see [3] for
a detailed proof).

The converse is more interesting and was implicitly known to Artin [1]. Namely,
if r = 〈x1, . . . , xn | r1, . . . , rn〉 is an Artin presentation, then there corresponds a
unique (up to isotopy rel ∂Ωn) self homeomorphism h(r) of Ωn that is the identity
on ∂Ωn (see [2, pp. 30–34; 3]). The group of such homeomorphisms is isomorphic to
Pn×Zn, where Pn denotes the n strand pure braid group. The Zn central extension
results from twisting the individual boundary components ∂i, 1 ≤ i ≤ n, by whole
integer amounts. In this way, one sees that the set Rn of Artin presentations on
n generators is a group canonically isomorphic to Pn × Zn. Note that the group
composition law in Rn can be defined purely group theoretically with no mention
of braids [13, p. 227].

sn

pn

s1

s2
p1

p2

p0

Ωn

Fig. 1. Ωn the compact 2-disk with n holes, oriented boundary components ∂0, . . . , ∂n with
basepoints p0, . . . , pn, and oriented segments si from p0 to pi.

g1
g2

gn

x2

p0

p1
p2 pn

Fig. 2. Arcs gi and a generator x2 of the fundamental group of Ωn.
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Let h be any homeomorphism of Ωn that is the identity on the boundary. This
map is completely determined up to isotopy (rel ∂) by the images h(si) of the
segments si depicted in Fig. 1. Moreover, h admits a unique smoothing up to isotopy
(rel ∂) (see [3]). So, assume h is smooth and the curves h(s−1

i ) intersect the segments
gj transversely (see Fig. 2). A key observation is that the word ri = ρ(sih(s−1

i )) can
be read off as follows: move along the oriented segment h(s−1

i ) beginning at pi and
record xj (x−1

j ) each time the segment gj is crossed from left to right (respectively
right to left). The reader should note that this gives a good reason to assume that
the words ri in an Artin presentation are freely reduced. Namely, any appearance of
x±1

j x∓1
j corresponds to the embedded segment h(s−1

i ) crossing gj and then, without
crossing any other gk, coming back and crossing gj in the opposite direction. These
two crossings of h(s−1

i ) and gj bound segments in both h(s−1
i ) and gj, and together

they form a null homotopic simple closed curve. The 2D Schoenflies theorem implies
that there is an isotopy of h (rel ∂) that removes both of these crossings while fixing
the rest of h(s−1

i ) and all of the other segments h(s−1
k ). Call a homeomorphism as

above tight provided all such unnecessary crossings have been removed.
An Artin presentation r determines a unique closed, orientable 3-manifold

M3(r) by Winkelnkemper’s open book construction [13, p. 246], as follows. Begin-
ning with r, one obtains the homeomorphism h(r) of Ωn described above. Let Ω(h)
denote the mapping torus of h, which is the quotient space Ωn × [0, 1] /∼ where
(x, 0) ∼ (h(x), 1) for all x ∈ Ωn. The boundary of Ω(h) is naturally identified with
∂Ωn×S1 (recall that h is the identity on ∂Ωn) consisting of n+1 disjoint tori. Glue
∂Ωn × D2 onto Ω(h) by the identity on ∂Ωn × S1 and the result is M3(r). Note
that Ωn is called the page and ∂Ωn is called the binding. Thus, r also determines a
canonical (n + 1)-component link in M3(r) given by the binding. An unpublished
result of González-Acuña (see [3] or [4] for a proof) states that: if L is a link in a
closed, orientable 3-manifold M3, then (M3, L) is homeomorphic to (M3(r), K) for
some Artin presentation r, where K is the sublink k1, . . . , km of the binding. An
Artin presentation r also determines a unique smooth, compact, simply-connected
4-manifold W 4(r) with boundary M3(r) by a sort of relative open book construc-
tion [13, p. 250]. There are many interesting and open questions concerning these
manifolds. The interested reader should see the references mentioned at the begin-
ning of this section. We close this section with a few examples of Artin presentations
that are interesting topologically.

Example 1. Let r ∈ R3 be given by

r1 = (x−1
3 , x1x

−1
2 x−1

1 )

r2 = x2(x1,x3)

r3 = x1x
−1
2 x−1

1 (x3, x1)r2

where (x, y) = x−1y−1xy. Then, M3(r) is the Heisenberg 3-manifold used by Gold-
man in [7] to show that not every 3-manifold has a conformally flat structure, thus
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providing a counterexample to a conjecture of Kuiper. The fundamental group π(r)
is isomorphic to the Heisenberg group presented by〈

a, b, c | (a−1, b−1) = c, (a, c) = 1, (b, c) = 1
〉
.

Example 2. Let r ∈ R8 be given by

r1 = x2
1x

−1
3 x2x3

r2 = x2x3x1x
−1
3 x2x3

r3 = x3x2x3x
−1
5 x4x5

r4 = x4x5(x3, x2)x3x
−1
5 x4x5

r5 = x5x4x5x6x7x8x
−1
7 (x6, x7)

r6 = (x6x7)2(x4x5x6x7x8)−1r5

r7 = x7x6x7

r8 = x8(x4x5x6x7)−1x5x4x5x6x7x8.

Then, M3(r) is the Poincaré homology 3-sphere with fundamental group π(r) =
I(120), the binary icosahedral group, and A(r) = E8 (see Sec. 8), the matrix used
by Milnor to construct his exotic 7-sphere [10, p. 174].

Example 3. In [5], Artin presentations r ∈ R22 are constructed with M3(r) = S3

and W 4(r) ∪∂ D4 the Kummer (or K3-) surface. Recall that the K3-surface is a
quartic hypersurface in CP 3. The shortest known Artin presentation for the K3-
surface has total relator length 4398 [5, p. 83]. These presentations yield many
interesting examples in 3- and 4-manifold topology (see [5, Sec. 3]).

7. The Words ri

This section proves Theorem 3 on necessary conditions the defining words in an
Artin presentation must satisfy. Namely, let r = 〈x1, . . . , xn | r1, . . . , rn〉 be an
Artin presentation. The goal is to show that ri = xki

i wi for some integer ki and
freely reduced word wi in Fn such that: wi does not begin with a nonzero power of
xi, adjacent generators in wi are distinct and all generators appear to the power of
±1. Recall that each ri is freely reduced by definition.

Let h be a smooth homeomorphism of Ωn (fixed pointwise on ∂Ωn) correspond-
ing to r so that the curve h(s−1

i ) intersects the segment gj transversely. By dis-
cussions in the previous section, the map h is assumed to be tight. The word ri

is given by the segment h(s−1
i ) crossing the segment gj (see Figs. 1 and 2). Note

that the embedded and oriented segment h(s−1
i ) starts at pi and ends at p0. It is

easy to see that ri can begin with an arbitrary power of xi. Write ri = xki

i wi for
|ki| as large as possible. The word ri is freely reduced and so wi is as well. Suppose
x+1

j appears in wi. This implies that h(s−1
i ) crosses gj from the left to the right.

Now, if x+1
j appears next in wi, then h(s−1

i ) would have to look like one of the
two possibilities in Fig. 3. The former does not occur since, by the Jordan curve
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g
j

g
j

Fig. 3. Segment h(s−1
i ) wrapping around ∂j in two ways.

theorem, h(s−1
i ) cannot get out to end at p0. The latter also gives a contradiction.

By the Jordan curve theorem, h(s−1
i ) would have crossed gj from the right to the

left (to get inside) giving x−1
j xj in ri. A similar argument applies to appearances

of x−1
j . This completes the proof of Theorem 3.
Notice that these necessary conditions are not sufficient. A simple counterexam-

ple is 〈x1, x2 | 1, x1〉 which plainly does not satisfy (AC). Nevertheless, the above
restrictions on the defining relations in Artin presentations are strong.

Remark 4. In the spirit of this paper, one desires a combinatorial group theoretic
proof of Theorem 3. Such a proof may be given using the relationship between
Artin presentations and braid group automorphisms of Fn [2, pp. 25, 30], along
with a technical analysis of such automorphisms. Details will appear in a subsequent
paper containing a study of the structure of words appearing as relations in Artin
presentations.

8. Conclusion

As Magnus, Karrass and Solitar state [9, p. 8], “Presentation theory attempts to
derive information about a group from a presentation of it.” This is a goal of the
Artin presentation theory, where one further hopes to obtain information about the
3- and 4-manifolds determined by r.

The first basic observation is that A(r) is a presentation matrix of the abelian-
ization π�[π, π] of π(r). Namely, A(r) is a linear map Zn → Zn and π�[π, π] is
isomorphic to Zn�Im A. Thus, detA(r) �= ±1 is an abelian condition preventing
π(r) from being trivial. This condition applies equally well to all group presenta-
tions. However, Winkelnkemper’s Theorem I [13, p. 240], described in the introduc-
tion above is a deeper abelian condition and is specific to Artin presentations. For
example, let

s1 = x2
1x2 s5 = x4x

2
5x6x8

s2 = x1x
2
2x3 s6 = x1x5x6x7x

−1
1 x6

s3 = x2x
2
3x4 s7 = x6x

2
7

s4 = x3x
2
4x5 s8 = x5x

2
8.
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The (non-Artin) presentation s = 〈x1, . . . , x8 | s1, . . . , s8〉 has exponent sum matrix
equal to

E8 =




2 1
1 2 1

1 2 1
1 2 1

1 2 1 1
1 2 1

1 2
1 2




.

The matrix E8 is well known: it is unimodular, even, positive definite, has signature
8, and is not congruent to I over Z. The group π(s) presented by s is the trivial
group as MAGMA shows immediately (alternatively one may tinker with Tietze
moves).

In stark contrast, let r be any Artin presentation with A(r) = E8 (e.g. r from
Example 2 in Sec. 6 above). Then, π(r) cannot be trivial by Winkelnkemper’s
theorem [13, p. 240]. In fact, using the 3-manifold M3(r), one sees that the smallest
π(r) can be in this case is I(120), the binary icosahedral group. Hence, with Artin
presentations the deeper number theory of quadratic forms plays a real role in
the groups so presented, unlike in the general case with arbitrary presentations of
groups.

Does Winkelnkemper’s theorem (or at least special cases of it) admit a purely
group theoretic proof? What other abelian conditions exist preventing π(r) from
being trivial?

The word problem for groups admitting Artin presentations is another natural
problem. Of course, González-Acuña’s result that Artin presentations characterize
the fundamental groups of closed, orientable 3-manifolds shows the relevance of this
problem. The planarity of the page in the open book construction and its covering
theory should be useful tools in studying this problem.

The restrictions placed on defining relations of Artin presentations by the Jor-
dan curve theorem in the previous sections are substantial, yet not sufficient. What
are natural (combinatorial group theoretic) sufficient conditions? The answer to
this question may be relevant to the study of the faithfulness of the Gassner repre-
sentation of the pure braid group (see [2, p. 133; 13, p. 266]).
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