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Abstract Given an Artin presentation r , we use the Fox Calculus to obtain a short,
purely algebraic computation, just in function of r , of the second homotopy group of
the associated manifold M3(r). This allows us to give a Langlands-like formulation
(not yet a proof) of the three-dimensional Borel conjecture for closed, orientable
3-manifolds, the latter being a theorem of geometrization theory and implying the
Poincaré conjecture.
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1 Introduction

Artin Presentation theory (AP theory [3,13]) is a purely discrete, group-theoretic (in
fact, pure framed braid-theoretic) theory which encodes a large class of compact,
connected, simply-connected, smooth 4-manifolds with a connected boundary. Given
an Artin presentation r , such a 4-manifold W 4(r) and its connected boundary M3(r)

are topologically constructed in unison with an open book construction in a non-
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analytic, non-infinitesimal, but smooth manner, so that r presents the fundamental
group, π(r) = π1

(
M3(r)

)
, of M3(r) and the exponent sum matrix, A(r), which is

always symmetric represents the quadratic form of W 4(r).
All symmetric integer n × n matrices appear in this manner and all connected,

closed, orientable 3-manifolds can be so represented.
In particular, all closed, orientable 3-manifolds come provided, ab initio, with such

an intimately related (‘at birth’, so to speak) smooth, compact, simply-connected
four-dimensional cobordism and its arbitrary omission, from the beginning in low-
dimensional topology, could, in our opinion, make classical M3-theory ‘incomplete’
in some sense, despite the success of the Geometrization Program.We quote Thurston
himself [12, p. 177]: “Even if a theorem about Haken manifolds can be proven using
geometric techniques, there is high value in finding purely topological techniques to
prove it.”

From Donaldson’s analytic, differential geometric Yang–Mills theory using the-
orem, one immediately obtains the following theorem, which, nevertheless, can be
completely stated in AP theory in a purely algebraic, non-analytic fashion.

Theorem 1 (Winkelnkemper [13, Thm. I, p. 240]) If A(r) is a unimodular, n ×n sym-
metric integer matrix, which by Donaldson’s theorem cannot represent the quadratic
form of a closed, smooth, simply-connected 4-manifold (e.g., a matrix such as E8),
then the group π(r) cannot be trivial. In fact, π(r) has a non-trivial representation
into SU (2).

Thus, in particular, in AP Theory, Donaldson’s Theorem singles out and isolates
SU (2) from all other compact Lie groups.

Although Theorem 1 already relates the two most important theories (geometriza-
tion and (3 + 1)-dimensional Yang–Mills theory) of low-dimensional topology, this
purely algebraic theorem still depends unnaturally for its proof on the analytic PDE
using analysis ofDonaldson’sYMTheory. This is the first of a series of papers attempt-
ing to unite Thurston andDonaldson theories in a sharper manner by aiming to provide
a purely discrete, group-theoretic proof, an AP theoretic proof, of the above theorem.
We would consider this a first important meta-mathematical step in uniting these two
most important theories. Since the matrix A (r) is the ‘Alexander matrix’ of the pre-
sentation r (see Crowell and Fox [4, p. 100]), the Fox Calculus seems to be the natural
arena for solving this problem. This problem is also relevant in a more general sense
in the theory of PDEs as described by Klainerman [8].

Our natural strategy is, given an Artin presentation r , to find purely algebraically, in
function of r only, all of the important topological invariants of W 4(r) and M3(r). This
has already been done, for example, for the Casson invariant [2,6], but in this paper
we go deeper and determine the second homotopy group π2(r) of M3(r), in particular
determining in function of r only, when M3(r) is irreducible and/or aspherical, very
important conditions in Geometrization theory (see also Remark 2 below).

In this paper, we show how the Artin equation allows the Fox Free Calculus to
completely determine π2(r) in a purely algebraic, discrete, group-theoretic manner:
assume r is an Artin presentation on n generators, x1, x2, . . . , xn . Let Zπ(r) be the
integral group ring of the group π(r). Let Nul (r) be the set of horizontal n-vectors v

in Zπ(r) such that vJac r = 0 in Zπ(r), where Jac r denotes the Jacobian of r as in
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the Fox Calculus. By simply deriving the Artin equation with respect to each xi we
obtain the following preliminary lemma.

Lemma 1 The vector

V (r) = (
x1 − 1, x1(x2 − 1), x1x2(x3 − 1), . . . , x1x2 · · · xn−1(xn − 1)

)

of Zπ(r) always lies in Nul (r).

Theorem 2 π2(r) = Nul (r) / 〈V (r)〉, where 〈V (r)〉 is generated by V (r) in Zπ(r).

Remark 1 This actually is an isomorphism of Zπ(r) modules as in [10,11].

Remark 2 This raises the question whether there exists an algebraic algorithm for
deciding whether or not Nul (r) is linear.

Thus, π2(r) = 0 if and only if Nul (r) is a ‘line’ in Zπ(r). To explain why linearity
should be related to irreducibility, we interpret the three-dimensional Borel conjecture
for closed, orientable 3-manifolds [1, p. 17] as a statement analogous to that of the
Geometric Langlands Program (see Frenkel [5]):

For Artin presentations r such that π(r) is not finite cyclic and Nul (r) is linear,
there is a bijection between the π(r) (the left algebraic side of the Langlands corre-
spondence) and the M3(r) (the right analytic, topological, automorphic side).

Thus, we have a bijection, just like in the Geometric Langlands correspondence,
involving Riemann surfaces, but instead of flat bundles over a Riemann surface, we
have linear Artin presentations, i.e., r where Nul (r) is linear; and instead of automor-
phic L-packets [5, p. 6]we have irreducible, connected, closed, orientable 3-manifolds.
This analogy with automorphy is even stronger when π(r) is infinite, but not Z, i.e.,
when the M3(r) are aspherical, because then the universal cover is homeomorphic to
R
3.
Our proof of Theorem 2 is based on a recent theorem of Lei and Wu [9, Theo-

rem 1.1]. Their theorem is algebraic and topological in nature making no essential use
of Geometrization.

We thank M. A. Gutierrez and J. A. Schafer for very helpful conversations.

2 Proofs

Theorem 2 will follow from Lei and Wu [9, Theorem 1.1] due to three fortuitous facts
from AP theory (discussed further below).

1. The simplified structure of the Heegaard homeomorphism in AP theory (see
Winkelnkemper [13, Figure 1.3]). In short, it is the identity except on the bot-
tom half of the standard genus n surface �n .

2. A very convenient new set of generators of π1 (�n), in place of the classical ones
used by Lei and Wu, as defined by Winkelnkemper [13, Figure 1.3].

3. The computation described in our preliminary Lemma 1 which permits us to state
Theorem 2 in such a succinct, conceptually simple manner with ‘linear algebra’
in the group ring. This is a consequence of the simple form assumed by the Artin
equation with respect to the Fox Calculus.
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Fix an Artin presentation r on n generators x1, x2, . . . , xn . This means that:

r = 〈x1, x2, . . . , xn | r1, r2, . . . , rn〉

is a balanced, finite presentation such that the following holds in the rank n free group
Fn :

x1x2 · · · xn = r−1
1 x1r1r−1

2 x2r2 · · · r−1
n xnrn . (1)

Equation (1) is the fundamental Artin equation. Fundamental groups of closed,
oriented 3-manifolds are exactly those groups that admit Artin presentations by
González-Acuña [6].

The following notation will be used:

AB := B−1AB,

(A, B) := A−1B−1AB,

[A, B] := AB A−1B−1 =
(

A−1, B−1
)

.

Thefirst twodefinitions are consistentwith the algebraic computation engineMAGMA
and the third agrees with Lei and Wu [9, p. 894]. In particular, the Artin equation is:

x1x2 · · · xn = xr1
1 xr2

2 · · · xrn
n .

Let �n ⊂ R
3 denote the standard closed, oriented surface of genus n that is the

boundary of the standard handlebody Hn ⊂ R
3 (see Fig. 1).

The AP theory generators forπ1 (�n)were defined byWinkelnkemper [13, p. 249].
By reflecting �n across a horizontal plane, these generators appear as in Fig. 1. We
have:

π1 (�n) = 〈
x1, x2, . . . , xn, y1, y2, . . . , yn | x1x2 · · · xn = x y1

1 x y2
2 · · · x yn

n
〉
.

Fig. 1 AP theory generators for π1 (�3)
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The explicit algebraic autonomy of Artin presentation…

Fig. 2 Classical generators for π1 (�3)

Classical generators for π1 (�n), as in Fig. 2, yield:

π1 (�n) = 〈a1, a2, . . . , an, b1, b2, . . . , bn | [a1, b1] [a2, b2] · · · [an, bn] = 1〉.

Notice that ai = xi for each 1 ≤ i ≤ n, and π1 (Hn) = 〈a1, a2, . . . , an〉 in
agreement with [9, p. 888].

The curves xi = ai , yi , and bi , 1 ≤ i ≤ n, may be simultaneously drawn on �n

such that any two of themmeet only at the common basepoint. To express the classical
generators in terms of the AP theory generators, cut �n along the xi s and the yi s. This
yields a compact 2-disk, D, whose boundary consists of segments labelled by the
symbols x±1

i and y±1
i for 1 ≤ i ≤ n. The bi s are disjoint chords in D, each of which

may be isotoped (relative to endpoints) into ∂ D in essentially two ways. Similarly,
one may express the AP theory generators in terms of the classical generators. Below
are the resulting formulae.

Consider the Artin presentation:

r = 〈a1, a2, . . . , an | r1, r2, . . . , rn〉

and a new basis C = {u1, . . . , un, v1, . . . , vn} for F2n given by:

ui = ai for 1 ≤ i ≤ n,

vi = b−1
i

1∏

k=i

[bk, ak] for 1 ≤ i ≤ n − 1, and

vn = b−1
n .

The ui and vi are as in Figure 1.3, p. 249, of [13] with ui = xi and vi = yi .
For n = 1, we have:

b1 = v−1
1 ,

v1 = b−1
1 .
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For n = 2, we have:

b1 = (u1)
−1

(
v−1
1 u1

)
= u2

(
v1uv2

2

)−1
,

b2 = (u1u2)
−1 uv1

1

(
v−1
2 u2

)
= (v2)

−1 ,

v1 = b−1
1 [b1, a1] = b−1

1 [a2, b2] ,

v2 = b−1
2 [b2, a2] [b1, a1] = b−1

2 .

For n = 3, we have:

b1 = (u1)
−1

(
v−1
1 u1

)
= u2u3

(
v1uv2

2 uv3
3

)−1
,

b2 = (u1u2)
−1 uv1

1

(
v−1
2 u2

)
= u3

(
v2uv3

3

)−1
,

b3 = (u1u2u3)
−1 uv1

1 uv2
2

(
v−1
3 u3

)
= (v3)

−1 ,

v1 = b−1
1 [b1, a1] = b−1

1 [a2, b2] [a3, b3] ,

v2 = b−1
2 [b2, a2] [b1, a1] = b−1

2 [a3, b3] ,

v3 = b−1
3 [b3, a3] [b2, a2] [b1, a1] = b−1

3 .

The obvious pattern continues for larger n.
Define φ by its action on C :

φ (ui ) = r−1
i ui ri ,

φ (vi ) = r−1
i vi . (2)

where the ri are written as words in the ui = ai and 1 ≤ i ≤ n. This is a well-defined
automorphism and the fundamental group G of the resulting manifold M is presented
by r . Next, we recall Lei and Wu’s [9, Theorem 1.1]. Suppose T is an endomorphism
of (ZG)n with matrix

∥∥D j (φ (bi ))
∥∥ in the standard basis. Further, suppose that � is

the submodule of (ZG)n generated by (a1 − 1, . . . , an − 1)t . Then, M is aspherical
if and only if the following sequence is exact:

0 → � → (ZG)n T→ (ZG)n θ→ ZG
ε→ Z → 0.

Here, θ : (γ1, . . . , γn)t �→ ∑
γ −1

i and ε is the augmentation homomorphism. We
must translate Lei and Wu’s theorem into a result using the basis C . First, I F2n is
free with basis

{
ai − 1, b j − 1

}
(or

{
ui − 1, v j − 1

}
). If I ′F2n denotes I F2n itself

but equipped with multiplication w · (a − 1) := φ−1 (w) (a − 1) where w, a ∈ F ,
then I ′F is isomorphic to I F and the mapping (a − 1) �→ (φ (a) − 1) is F-linear.

Thus, a matrix K =
∥∥
∥ ∂u,v

∂a,b

∥∥
∥ expresses the change of basis transformation from B to

C . If TB and TC are the matrices of T with bases B and C , respectively, then we have:
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TC = K TB K −1. (3)

We will study K by looking at the four obvious submatrices. The upper left corner

is
∥∥∥ ∂ui

∂a j

∥∥∥ which equals the n × n identity matrix. Similarly, the upper right corner is
∥∥∥ ∂ui

∂b j

∥∥∥ which equals the n × n zero matrix. Let X =
∥∥∥ ∂vi

∂a j

∥∥∥ and Z =
∥∥∥ ∂vi

∂b j

∥∥∥ denote the

remaining lower left and lower right corners, respectively.

Lemma 2 The image under q of X, denoted Xq , is the n × n zero matrix.

Proof We have D j ai b
−1
i a−1

i = (1− ai b
−1
i a−1

i )δi j and D j [bk, ak] = (bk − [bk, ak])
δ j k. As

∂vi
∂a j

is a linear combination of these two expressions, its image under q is zero.
��

As K is invertible, Z must be invertible. Thus, Zq is invertible aswell.Wehave Zq =∥
∥∥q

(
∂vi
∂b j

)∥
∥∥ and (Zq)−1 =

∥
∥∥q

(
∂bi
∂v j

)∥
∥∥. The four corners of K −1 are, counterclockwise

from the upper left corner, the identity,−Z−1X , Z−1, and the zeromatrix. In particular,
the four corners of (K q)−1 are the identity, the zero matrix, (Zq)−1, and the zero

matrix. In (3), we are interested only in the
∥∥∥

∂φ(a j)
∂bi

∥∥∥ corner (the lower left corner)

and it is the matrix sum of Z
∥
∥∥ ∂φ(bi )

∂a j

∥
∥∥ and several other matrices either premultiplied

by X or postmultiplied by −Z−1X (or both). Upon composing with q, we obtain the
following.

Lemma 3 The matrix TC of T with respect to the basis C is the product Z TB.

Now, define p : F2n → G to be the composition ofq and the quotientmap Fn → G.
Let S = Z p, an invertible matrix obtained from Z by killing all coefficients b j and
all words in the ai that lie in the normal closure of the ri . This is really the matrix of
the linear transformation T .

Corollary 4 The matrix of the linear transformation T is the product ST when viewed
as a matrix in the basis C.

To compute S, we use (2). Cancelling the b j and working modulo the ri , we obtain:

∂vi

b j
= −

(

δi j ai +
i−1∑

k=1

(ak − 1) δk j

)

.

Thus, we obtain the following.

Proposition 5 The matrix S is the n × n lower triangular matrix:

S = −

⎡

⎢⎢⎢⎢
⎣

a1
a1 − 1 a2
a1 − 1 a2 − 1 a3

· · · · · · · · · · · · · · · · · ·
a1 − 1 a2 − 1 a3 − 1 · · · an−1 − 1 an

⎤

⎥⎥⎥⎥
⎦

.
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The diagonal entries of S are units. We proceed to compute the inverse of S. We
use the method of reducing [S | I ] into

[
I | S−1

]
by row operations. The result of this

tedious computation is as follows. For 1 ≤ i, j ≤ n, define ω′
i j by:

ω′
i j =

⎧
⎪⎪⎨

⎪⎪⎩

0 for i < j

1 for i = j(
a−1

i − 1
)

ω′
i−1, j + ω′

i−1, j for i > j.

Define ωi j = a−1
i ω′

i j and we have the following.

Proposition 6 The matrix S−1 = − ∥∥ωi j
∥∥.

Recall that TC =
∥∥∥ ∂φ(vi )

∂u j

∥∥∥ and φ (vi ) = r−1
i vi . So, applying p we get TC =

−
∥∥∥ ∂ri

∂a j

∥∥∥ (we use the fact that ui = ai ). That is, TC = −Jac r , the Jacobian matrix of

the ri .

Theorem 3 The 3-manifold M is aspherical if and only if the following sequence is
exact:

0 → � → (ZG)n T→ (ZG)n θ→ ZG
ε→ Z → 0.

It remains to compute �S−1 and this may be done in two ways: either directly or
by taking derivatives on both sides of the Artin equation. Either approach yields the
following.

Proposition 7 The one-dimensional submodule �S−1 is generated by:

v = (a1 − 1, a1(a2 − 1), a1a2(a3 − 1), . . . , a1a2 · · · an−1(an − 1))t .

Since the left term of (2) of Lei and Wu [9, pp. 889–890] is π2 (M), our Theorem 2
follows.

3 Examples

This section presents a few examples.

1. Consider the Artin presentation r = 〈x1 | r1〉, where r1 = 1. Then, M3 (r) =
S1× S2, π (r) = Z, and Zπ (r) is the ring of Laurent polynomials in one variable,
t , and with integer coefficients. As Jac r = [0], Nul (r) equals all of Zπ (r).
As V (r) = (t − 1), Nul (r) / 〈V (r)〉 is indeed Z = π2 (r) = π2

(
S1 × S2

)
.

(Obviously, setting t = 1 in Zπ (r) gives Z.)
2. Consider the Artin presentation r = 〈x1, x2 | r1, r2〉, where

r1 = x31(x1x2)
−1,

r2 = x42 (x1x2)
−1.

Author's personal copy



The explicit algebraic autonomy of Artin presentation…

Then, M3 (r) = L(5, 2) as in Winkelnkemper [13, p. 228]. Note that π (r) = Z5,
where x1 = t , x2 = t2,

Jac r =
[

t + t2 −t
−1 1 + t2 + t4

]

and V (r) = (
t − 1, t (t2 − 1)

)
. It is straightforward to verify that the conclusion

of Lemma 1 holds in this example. Note that setting t = 1 in Jac r yields A (r) as
it always should.

3. Consider the Artin presentation r = 〈x1, x2 | r1, r2〉, where

r1 = x31(x1x2)
−2,

r2 = x52(x1x2)
−2.

Then

π (r) = I (120) =
〈
x1, x2 | x31 = x52 = (x1x2)

2
〉
.

Set s = x1 and t = x2. Then,

Jac r =
[

s + s2 − st −s − sts
−1 − st 1 − s + t + t2 + t3

]

and V (r) = (
s − 1, s(t − 1)

)
. Lemma 1 checks out. [Here, care must be taken

because I (120) is not abelian, so neither is the group ring ZI (120).]
4. Consider the Artin presentation r = 〈x1, x2, x3 | r1, r2, r3〉, where

r1 = x−2
1 x2x3r2,

r2 = x−1
2 x−1

3 x−1
2 x−1

1 ,

r3 = x23 x−1
2 .

Then, according to González-Acuña (unpublished) M3(r) = L(13, 5) and π(r) ∼=
Z13 is generated by x3 = t (note that x1 = t8 and x2 = t2). We have

Jac r =
⎡

⎣
−1 − t5 − t10 −t8 + t10 − t11 −t10 + t12

−1 −t8 − t11 −t10

0 −1 1 + t

⎤

⎦

and V (r) = (
t8 − 1, t8(t2 − 1), t10(t − 1)

)
. Again, Lemma 1 checks out.

5. Consider the Artin presentation r = 〈x1, x2 | r1, r2〉, where

r1 = x21 ,

r2 = x22 .
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Then, M3 (r) = RP3#RP3 and π (r) ∼= Z2 ∗ Z2. We have (where s = x1 and
t = x2)

Jac r =
[
1 + s 0
0 1 + t

]

and V (r) = (
s − 1, s(t − 1)

)
. Lemma 1 checks out. In this example, V (r) does

not generate Nul (r) in Zπ(r). In particular, the vectors (1 − s, 0) and (0, 1 − t)
both lie in Nul (r). Topological considerations yield the second of the following
isomorphisms:

Nul (r) / 〈V (r)〉 ∼= π2

(
RP3#RP3

) ∼= Z.

6. Consider the Artin presentation r = 〈x1, x2 | r1, r2〉 where

r1 = x31 ,

r2 = x32 .

Then, M3 (r) = L(3, 1)#L(3, 1) and π (r) ∼= Z3 ∗ Z3. We have (where s = x1
and t = x2)

Jac r =
[
1 + s + s2 0

0 1 + t + t2

]

and V (r) = (
s − 1, s(t − 1)

)
. Lemma 1 checks out. In this example, V (r) does

not generate Nul (r) in Zπ(r). Topological considerations yield the second of the
following isomorphisms:

Nul (r) / 〈V (r)〉 ∼= π2 (L(3, 1)#L(3, 1)) ∼= Z ⊕ Z ⊕ Z ⊕ · · · .

Here, Z ⊕ Z ⊕ Z ⊕ · · · is the infinite direct product of infinite cyclic groups.

4 Remarks and questions

We close with some remarks aiming to put Theorem 2 in its proper context.

1. As is well known, it is an important classical result of Hopf [7] that, given any finite
complex K , the second homotopy group, π2 (K ), appears somewhat unexpectedly
as follows. The quotient group

H2 (K ;Z) /I (π2 (K )) ,

where I : π2 (K ) → H2 (K ;Z) is the natural map, is always isomorphic to an
abelian group, G∗, obtained from the fundamental group G = π1 (K ) in a purely
algebraic manner; G∗ is what is now known as the second group homology of the
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group G. With AP theory, in the more restricted but very important class of closed,
orientable 3-manifolds, with Theorem 2, we actually obtain π2

(
M3

)
completely

in its totality, just purely algebraically, from a certain type of presentation, an
Artin presentation, of the fundamental group π1

(
M3

)
. The same remarks also

apply to Corollary 5 of [10] and Theorem A2.1 of [11]. Namely, we concentrate
only on closed, orientable 3-manifolds, instead of more general finite simplicial
complexes. However, we obtain clearer and sharper results due to the fundamental
purely group-theoretic Artin equation which, moreover, is related to the deep 4D
smooth topological Donaldson Theorem.

2. Theorem 2 substitutes for the still unresolved Wall’s Conjecture [1, p. 19] in the
sense that it characterizes, purely algebraically, the fundamental groups of closed,
orientable, irreducible 3-manifolds.

3. Theorem 1 begs the question: why should SU (2) be the only Lie group surviving
in the discreteness of AP theory?
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