
ACYCLICITY IN THREE-MANIFOLDS 

BY D. R. MCMILLAN, JR.1 

ABSTRACT. An acyclic compactum in an orientable, open 3-man-
ifold has arbitrarily close, polyhedral neighborhoods whose com
ponents are compact 3-manifolds with a special structure. Fre
quently, these 3-manifolds have free fundamental groups. These 
observations and some results from combinatorial group theory 
are exploited to deduce facts about the homomorphism of fun
damental groups induced by an acyclic mapping. The techniques 
are applied to relate local homotopy properties of quotient spaces 
of acyclic upper semicontinuous decompositions, to "UV" (or 
"shape") properties of the elements in the decomposition. It is 
shown that a "O-dimensional" monotone decomposition of Eu
clidean &-space is acyclic if the quotient space is an open ^-man
ifold. (For &=3, such a decomposition is shown to be cellular.) 
Some conditions are given under which acyclic decompositions are 
cellular. 

1. Introduction. Let G be an upper semicontinuous decomposition 
of Euclidean 3-space E3, into compact, connected sets such that for 
some prime p, each g £ G is strongly 1-acyclic over Zp (the integers 
modulo p). Our purpose is to show that some useful information of a 
homotopy-theoretic nature about the decomposition space £ 3 /G and 
the projection mapping PG, can be deduced from an examination of 
the nondegenerate elements of G (whose union is denoted HQ). For 
example, we prove that a necessary condition that Ez/G should be 
locally simply connected at P<?(g), is that g should have property 
1-UV. (These and other terms are defined later.) 

In particular, if X is a continuum in E3 which is strongly 1-acyclic 
over Zp , then E3 "modulo" X is locally simply connected if and only 
if X has property 1-UV. This agrees with R. H. Bing's announcement 
[7] that E3 modulo a solenoid is not simply connected and hence not 
locally simply connected. In light of the 1-dimensional continuum of 
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J. H. Case and R. E. Chamberlin in §5 of [lO], our result also elimi
nates the possibility that the more stringent hypothesis on X of strong 
1-acyclicity over Z (the integers) would yield a different answer. (The 
example of [lO] is acyclic over every coefficient group, and hence we 
have answered the questions raised by K. Borsuk in [8, Problem 3.3, 
p. 214], and by D. M. Hyman in [14, p. 67].) In the case of the 
specific example M of [lO], S. Armentrout has shown independently 
that Ez modulo M is not simply connected. 

Our other main result concerns the case in which G is a compact 
decomposition of E3, each of whose elements is strongly acyclic. We 
prove that for each open, connected set UQE*/G, the projection 
mapping from PQ1(U) onto U induces a monomorphism on funda
mental groups. When this fact is combined with the result above, we 
obtain several necessary conditions for the existence of a homeomor-
phism h:E*/G->Ez/F such that h(PGHG) =PFHF (where F is also a 
compact decomposition of E3). Namely, if an element g(EG "corre
sponds" under h to an element / E E , then: ƒ has property UV00 if and 
only if g has property UV00; and ƒ is cellular if and only if g is cellular. 
Further, it has been conjectured that E3 modulo a compact set X with 
property UV00 yields E 4 when multiplied by E1. It follows from our 
results that "property UV00" is necessary for this conclusion, and that 
it suffices to prove the conjecture when X is a treelike continuum. 

A knowledge of the main results and terminology of [26] will be 
helpful. We now mention several conventions and definitions for later 
use. The symbol Zp (p always denotes 0 or a prime) is to be read 
consistently in a given discussion, with Zo = Z the infinite cyclic 
group. If n is an integer, n^ 1, then a compact set XQM is strongly 
n-acyclic over Zp (or "has property n-\xv(Zp)") if each open set UQM 
containing X contains an open set V such that XQV and such that 
each n-cycle in V is homologous to zero in U (singular homology, Zp 

coefficients). For example, the usual dyadic solenoid is strongly 
1-acyclic over Z2, but not over Z, even though its integral Cech 
homology is zero. If w^O and we replace, at each occurrence in our 
definition, "n-cycle" by "singular n-sphere" and "homologous to 
zero" by "homotopic to a constant," then we obtain the definition of 
property n-UV. The statement UXQM has properly UVn" means that 
X has property i-UV for O^i^n. Thus, "strongly w-acyclic" is the 
homology analogue of property w-UV (see [6] and [26]). A compact 
set XQM is strongly acyclic over Zp (or "has property uv°°(Zp)") if it is 
connected and is strongly n-acyclic over Zp for each n ^ 1 (cf. the 
remarks in [26, §3]). The corresponding homotopy property is called 
property UV«>. Clearly, a compact subset X of a manifold has 
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property 0-UV if and only if X is connected. We let Ew, Sn, and An de
note, respectively, Euclidean w-space, the ^-sphere, and the w-
simplex. T* is the i-skeleton of a given triangulation T. As usual, 
manifolds are connected. 

Many of our results are more general than stated above, and apply 
to 3-manifolds other than E3. In general, we have stated our main 
results in terms of compact, monotone mappings, and our corollaries 
in the language of decompositions. See [6, §6] for the connection. 
Many different authors have obtained results on UV properties and 
related topics (see [2], [3], [ó], [9], [14], [15], [16], [18], [19], [27], 
and [30]), and we have made no at tempt to cite all the possible refer
ences for a given fact. 

2. Some geometric-algebraic background. Recall that a mapping 
is said to be compact if the pre-image of each compact set is compact. 
A mapping is called monotone if each point-inverse is compact and 
connected. A mapping is a UVn mapping if each of its point-inverses 
has property U V \ 

In the context of the next theorem, the statement that a singular 
w-sphere in X represents an element of N means that the set of elements 
in Tn(X) generated by the singular ^-sphere under the action of 
TTI(X) (see [31, p. 384]), is contained in N. Since N is assumed to be 
invariant under the action of 7Ti(X), this requirement is unambiguous. 
Note that if » = 1, then we are just requiring that N be normal in 
TTl(Z). 

THEOREM 1. Suppose that X and Y are pathwise-connected metric 
spaces y that P is a compact UV*1-1 mapping from X onto Y (n^ 1), and 
that N is a subgroup of G = 7rw(X, X0) , with N invariant under the action 
of 7Ti(X). Suppose further that the following holds f or each y G F : there 
is an open set WVQX with compact closure, such that P~1(y)CWy and 
such that each singular n-sphere in WVy when considered in Xy represents 
an element of N. Then the kernel of the homomorphism 

P*lTn(X, X0) -~>7TW(F, P(x0)) 

is contained in N. 

PROOF. Let L = dAn+1. Suppose that g:An+1->Y and f:L-*X are 
maps with g\ L~Pf. We wish to show that ƒ represents an element of 
N. Let € be a positive number so small that if A is a subset of Y of 
diameter less than € and if Ar\g(An+1) ?*0, then P~l(A) is contained 
in some Wy. Let T be a subdivision of Aw+1 such that for each i-simplex 
(T^Gr, i^n+lf g(<r*) has diameter less than e/3. Denote Tn, the 
n-skeleton of T, by K. 
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According to [6, Lemma 3.2], there is an extension F of ƒ sending 
K into X such that D(g\ K, PF) <e /3 , where D denotes the metric on 
F. Clearly, for each <rn + 1Gr, PF(dan+l) has diameter less than €. 
Hence, P~~lPF(d<rn+1) is contained in some Wy. Thus, for each 
an+1 G T, F\ dvn+l represents an element of N. I t follows that F\ 3An+1 

=ƒ represents an element of N. 
Following J. Stallings in [32], if Q is a subgroup of the group G and 

p is zero or a prime, then we define G#Q to be the subgroup of G 
generated by all elements 

gug"1w1vp
9 where g G G, u, v G @. 

The (descending) central series of G corresponding to p is defined 
inductively by putting Go = G, GWi = G#G«, and Gp = C\a<0 G«, if j8 is a 
limit ordinal. Note that for p = 0, this definition gives the lower cen
tral series of G, whose term G\ is the commutator subgroup of G. Each 
Ga is fully invariant in G (see [21, p. 74]), hence normal. Stallings has 
shown in [32, Theorem 6.3] that if G is a free group, then for the first 
infinite ordinal co, Gw = 1. If G is a finitely-generated abelian group and 
p?£0t then Ga consists of all elements whose orders are finite and 
relatively prime to p. 

Now suppose that I C M is a compact set which has property 
UV71""*1, n}£l, and is strongly w-acyclic over Zp. I t follows that X 
satisfies the usual "UV" statement with U and V connected and the 
image Hn(V; Z)—^Hn(U; Z) contained in the subgroup p-Hn(U; Z). 
Hence, if n = l, we find that the image 7rn(F)~->7rn(Z7) is contained in 
the term Gi of the ^-central series for G = 7rn(î7). For n > l , we can 
prove the same "UV" statement by the methods of [19, Theorem 
4.2]. Hence: 

COROLLARY 1.1. Suppose Mk is a k-manifold, possibly with boundary, 
and that P is a compact, UV71"1 mapping (n ^ 1) of Mk onto a Hausdorff 
space F. Suppose that for each yÇ: F, P"x(y) is contained in a compact 
set AvCMk, such that Ay is strongly n-acyclic over Zp. Then the kernel 
of the homomorphism 

P*:irn(M\ Xo) ->Tn(Y, P(x0)) 

is contained in the term Gw of the central series of G = 7rw(-M*, XQ) corre
sponding to p. 

We remark that our corollary adds nothing new when £ = 0, w > l , 
and each Ay — P~l{y). For, R. C. Lacher shows in [19] in this case, 
that P is a UVn mapping and hence induces ^„-isomorphisms. If p = 0 
and w = l, then a stronger result than claimed can actually be de-
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duced. Namely, that kernel P * is contained in each of the successive 
derived subgroups of G (see [21, p. 293]). 

In the proof of Theorem 1 for n = 1, we can replace A2 by an appro
priate mapping cylinder of a map from 3A2 to a wedge of circles, and 
obtain the following generalization. Details are left to the interested 
reader (see [21, p. 74] for our notation and for a discussion of verbal 
subgroups). 

THEOREM 1'. Assume the hypotheses of Theorem 1 with n — \. Let 
W„(X\) be a set of words in the symbols X\ (/x, X = l, 2, • • • ). Let 
G = TTI(X, xQ), H = TTI(Y, P(xo))y and «GG. If P*(a) belongs to the 
Wp-verbal subgroup H{Wll, • • • ), then a£iV-G(W^, • • • ). Hence, if 
N<ZG(Wnt • • • ), then P induces a monomorphism 

G/G(W„---)-*H/H{W»*-*). 

REMARK. In the context of Corollary 1.1, one can obtain from 
Theorem 1', obvious "monomorphism" corollaries about the induced 
mappings between the quotient groups of G=7Ti(ikfn) and H = 7Ti(Y) 
by the corresponding terms in their central series corresponding to p. 

We shall need later the following sharpened form of Theorem 2 of 
[26]. The proof of Theorem 2 relies on the Finiteness Theorem of 
W. Haken [12, p. 48]. However, it suffices for our purpose to know 
his result in the case where all the incompressible surfaces being con
sidered are closed (i.e., compact and without boundary). Moreover, 
we need only a finite upper bound on the number of disjoint, incom
pressible, polyhedral surfaces which can exist in the compact 3-mani-
fold Mz with no two of them being parallel. Tha t is, Haken's specific 
estimate of 61a does not matter to us. 

Haken's argument simplifies considerably (and certain difficulties 
do not arise) when M3 is irreducible and the surfaces are closed. The 
general result (for collections of closed surfaces) follows from the 
irreducible one and from the fact that Mz can be cut along a collection 
of polyhedral 2-spheres, and 3-cells attached to the boundary of the 
resulting 3-manifold, so as to obtain an irreducible 3-manifold (see 
[12, p. 42]). This program is not hard to carry out, and is recorded in 
[35]. I have learned that Harry Row has independently obtained a 
proof along these lines. 

THEOREM 2. Let X be a compact, proper subset of Int Mz, where M3 

is an orientable piecewise-linear 3-manifold. Let p denote 0 or a prime, 
and suppose that X has the following property relative to Mz and p : For 
each open set UCMZ with XQU, there is an open set V, XQVQU, 
such that under inclusion, 
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£Ti(F-X;Z, ) ->J ï i ( t f ;Z , ) 

is zero. Then, X — V\^i Hi, where Hi is a compact polyhedron in Mz, 
each component of Hi is an orientable 3-manifold with nonempty bound
ary, i ^ + i C I n t Hi, and each component of Hi has the following structure: 
it is obtained from a compact 3-manifold Qz whose boundary consists 
entirely of 2-spheres, by adding to dQz a finite number of {solid) 1-
handles. 

PROOF. We emphasize that the manifold Qz is permitted to vary 
with the choice of i and with the component of Hi being considered. 
The designation Qz is only for convenience in later references. Our 
special hypothesis on X is hereditary with respect to subsets of X 
which are both open and closed in X. Hence, it suffices to show that 
X has a neighborhood of the required type in Mz. 

The proof is the same as the proof of [26, Theorem 2], except for 
the modifications which we indicate here. We retain the notation of 
[26], with Zp replacing Z*. Note that we have had to assume orienta-
bility of Mz, whereas in [26] the hypotheses guaranteed an orientable 
neighborhood of X in Mz. Also because of our weakened hypotheses, 
we are able to assume, as in [26], neither that dMz is connected nor 
that Mz is separated by each polyhedral surface in Mz. Thus, 2-
spheres in Mz not only may fail to bound homology cells, they may 
even fail to separate Mz. As before, we may assume that Mz is com
pact, and the integer H is selected in the same manner. Again, we 
consider nested, ordered iJ-tuples 2 of Z / s but require that they 
possess a characteristic property weaker than the one used in [26]. 
Namely, we insist only that each 1-cycle in dZi should "boundn in 
Int Z»_i. 

The rest of the proof is essentially unchanged. That is, we detect 
Z* in 2 * such that ÔZ* consists entirely of 2-spheres. We make no 
at tempt to put Z^ in a Z^-homology 3-cell Hi, but instead let Hi ( = Qz) 
be obtained by joining efficiently the components of Zm by tubes, and 
then taking a regular neighborhood of the result. The proof is com
pleted as before by invoking [26, Theorem 1 ] to provide the required 
neighborhood of X in Mz. 

COROLLARY 2.1. Let X be a compact, proper subset of Int Mz, where 
Mz is a piecewise-linear 3-manifold and each component of X is strongly 
1-acyclic over Zp (p = 0 or a prime). If p>2, assume also that Mz is 
orientable. Then, X = f]^i Hi, where Hi is a compact polyhedron in Mz, 
each component of Hi is an orientable 3-manifold with nonempty bound
ary, i ï i+ iCIn t Hi, and each component of Hi has the following structure: 
it is obtained from a 3-manifold Qz with Hi(Qz; Zp) = 0, by adding to 
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dQ* a finite number of {solid, orientable) 1-handles, none of which joins 
different components of dQz. If, in addition, each component of X is 
strongly acyclic over Zp, then each component of Hi can be chosen to have 
connected boundary. If each component of X also has property 2-UV, 
then each component of Hi can be chosen to be a homotopy cube-with-
handles. 

PROOF. We note the word of caution about Qz given at the start of 
the proof of Theorem 2. Again, it suffices to find a neighborhood of X 
in Mz of the required type. There is a 3-dimensional, orientable sub-
manifold MQ of Mz with the inclusion Hi(Ml; Zp)->Hi(Mz; Zp) zero, 
so that (as is easily shown) each 2-sided polyhedral surface in Ml 
separates Ml. 

Clearly the hypotheses of Theorem 2 are met. Let Hi, Ht, • • • be 
the polyhedra provided by Theorem 2, with H i C I n t MQ. The 
1-handles added to each dQz (in the conclusion of Theorem 2) do not 
join up different components of dQP, because each (necessarily 
2-sided) 2-sphere in Ml separates M%. To insure that each Hi(Qz\ Zp) 
= 0, select (and relabel) a subsequence of Hi, H2, • • • , with each 
inclusion Hi+i—^Hi inducing the zero homomorphism on 1-dimen-
sional Zp-homology. The desired result then follows, since dQz consists 
entirely of 2-spheres and hence (from a Mayer-Vietoris sequence) the 
inclusion Qz—*Hi-i induces a monomorphism on 1-dimensional 
Zp-homology. 

In case each component of X is strongly acyclic over Zp, we argue 
that the above sequence can be chosen so that each polyhedral 2-
sphere in Hi+i bounds a Zp-homology 3-cell in Hi. This fact is then 
used to replace Hi+i by an i ï ^ x C I n t Hi, where dH*+1 is connected. 
Details are left to the reader. For the last assertion, see the proof of 
Theorem 3 of [26]. 

REMARK 1. If Nz is a compact 3-manifold whose boundary contains 
exactly n 2-spheres, n^l, then we can remove (w — 1) "tunnels" from 
Nz so as to obtain a 3-manifold with the same fundamental group, but 
having boundary which contains exactly one 2-sphere. Hence, the Qz 

of Theorem 2 and Corollary 2.1 can be expressed as Ql plus a finite 
number of disjoint 2-handles, where ôQo is a 2-sphere and 7Ti(Ço) is 
isomorphic to iri(Qz)- Thus, 

ffi(GÎ; Zp) « #i(Q8 ; Zp). 

REMARK 2. Some pleasing geometric observations result from 
Corollary 2.1. Let X and Af8 be as given there. Then, in order to show 
that each component of X is strongly acyclic over Zp, it suffices to 
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check the "UV" definition of strong 2-acyclicity with respect to 2-
cycles which can be represented by polyhedrally embedded 2-spheres 
in V. Further, we need only show that such 2-cycles bound with Zp-
coefficients, even when proving that each component of X is strongly 
acyclic over Z. Thus we can, for example, always replace "strongly 
acyclic over Zp and has property 2-UV" by "strongly 1-acyclic over 
Zp and has property 2-UV" when considering a compact, connected 
set in an orientable, nonclosed 3-manifold. See Theorems 3 and 4 of 
[26] and their corollaries as cases in point. 

For future reference, we collect in the following lemma some useful 
facts about strong acyclicity. The proofs are left to the reader. Part 
(i) is an easy compactness argument. Part (ii) uses the definition 
and symmetry of linking for two oriented "bounding" simple closed 
curves in an oriented Mz. The last two parts depend on Corollary 2.1 
and its Remark 2. All parts assume it known that a compact, proper 
subset of the interior of Mz has arbitrarily close, compact, polyhedral 
neighborhoods each of whose components is a compact 3-manifold 
with nonempty boundary. 

LEMMA 1. Let X be a compact, proper subset of the interior of an 
orientable, piecewise-linear 3-manifold M*. Let p denote 0 or a prime. 
Then the following propositions hold. 

(i) If n is a positive integer, G is an abelian group, and R is one of 
the properties "w-UV" or <{'strongly n-acyclic over G" then X has property 
R if and only if each component of X has property R. 

(ii) X is strongly 1-acyclic over Zp if and only if some open neighbor
hood U of X in Mz has these properties: each polyhedral simple closed 
curve in U (considered as a 1-cycle over Zp) is Zp-homologous to zero in 
Mz\ and in the same sense, each polyhedral simple closed curve in 
U—X is Zp-homologous to zero in Af3 —X. (In particular, this condition 
is met if Mz is Ez or S3, and if HX(MZ-X\ Zp) = 0.) 

(iii) Suppose that X is connected and strongly 1-acyclic over Zp . 
Then X is strongly acyclic over Zv if and only if some connected, open 
neighborhood U of X in Mz has these properties: each polyhedral 2-
sphere in U separates U; and for each p, # £ U—X there is an open set 
V, XC VC U, such that no polyhedral 2-sphere in V separates p from 
q in U. 

(iv) Suppose that X is connected and strongly 1-acyclic over Zp 

and that some neighborhood of X in M* contains no Zp-homology 3-cells 
which fail to be simply connected. Then X is strongly acyclic over Zp if 
and only if X has property 2-UV. 

Although the following result and its corollary will not be needed 
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for the later proofs, we think they have interest for their own sake. 
They may be regarded as extensions of the theorem of Case and 
Chamberlin [10, Theorem l ] to the effect that a 1-dimensional 
continuum X is treelike if and only if X admits no essential mapping 
into a finite, connected graph. It is not hard to show that a compact 
set X(ZEn has property UV00 if and only if X admits an essential 
map into no finite polyhedron of dimension S (n — 1). 

PROPOSITION. Let X be a compact set which embeds in Ez. Then X 
has property 1-UV if and only if X admits no essential mapping into a 
wedge W of two 1-spheres. 

PROOF. We may assume that X is a subset of E3. Any mapping of 
X into W extends to an open set in E3 containing X, and hence cannot 
be essential if X has property 1-UV (recall that W is aspherical, 
i.e., TTiiW) = 0 for i ^ 2 , and hence a mapping of a finite polyhedron 
into W is inessential if and only if it induces the trivial homo-
morphism on fundamental groups). 

Now suppose that X admits no essential mapping into W. Then 
no component of X admits such a mapping, and it suffices to estab
lish our result with the added hypothesis that X is a continuum in 
JE3. Since S1 is a retract of W, there is no essential mapping of X into 
S1. We shall use this last fact to show that X is strongly 1-acyclic 
over Z. By Lemma 1, part (ii), we have only to show that each poly
hedral simple closed curve J in Ez—Xy when considered as a 1-cycle 
over Z, is homologous to zero in Ez — X. 

Note that the "abelianizer" homomorphism of TTI(EZ — J) onto Z 
sends each loop in Ez — J to its integral linking number with / . 
Using the asphericity of 51 , we can construct a mapping R : E3 •— J—^S1 

which induces this abelianizer homomorphism on fundamental groups. 
(In fact, we could use the technique of [13, Theorem 5] to construct 
an appropriate retraction.) The composition of the inclusion X—>£3 

— / with the mapping R is by hypothesis an inessential mapping of 
X into S1. Hence there is a neighborhood N of X in E3 — J such that 
each simple closed curve in N has integral linking number zero with 
J. By repeating the type of argument required for the "only if" 
claim of Lemma 1, part (ii), we find that J is homologous to zero in 
£ 3 - X . 

I t follows from the above that X is strongly 1-acyclic over Z. 
Thus our Corollary 2.1 applies. Let Hu H2, • • • be the 3-manifolds 
given by that corollary^ conclusion, with X = C\?LiHi. Each Qz men
tioned in Corollary 2.1 is bounded by 2-spheres, and hence in this 
case is simply connected. Fix a value of i. Then Hi is a regular 
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neighborhood of a finite wedge Ai of 1-spheres and 2-spheres (the 
number of j-spheres in Ai may be zero, j = l, 2). But given such a 
wedge A^ some mapping of Ai into W induces a monomorphism on 
fundamental groups (first retract the 2-spheres to the wedge point, 
then apply problem 2 of [21, p. 112] to complete the construction). 
Thus, some mapping RilHi—^W induces a monomorphism on funda
mental groups. 

Since Ri\ X is an inessential map of X into W, there is a neighbor
hood N of X in Hi such that Ri\ X extends to an inessential map Fi 
of N into W. If now N is further restricted, say to N0 (XCNoCN), 
we may then assume that Fi\ No and R{\ No are homotopic mappings 
into W. Hence Ri\ N0 is inessential. By our "monomorphism" prop
erty of Riy the inclusion No-^Hi induces the trivial homomorphism 
on fundamental groups. The result follows. 

REMARK. Similar methods show that a compact set XCEZ is 
strongly acyclic over Z if and only if X admits no essential mapping 
into Sn (n = 0y 1, 2). Finally, there is a combined formulation of these 
results which seems especially appealing. 

COROLLARY. Let X be a compact set which embeds in Ez. Then X 
has property UV00 if and only if X admits no essential mapping into 
the following finite 2-complex: the disjoint union of S2 and a wedge 
of two 1-spheres. 

3. Detecting 1-UV elements in acyclic decompositions. The next 
theorem and its corollaries are among our most useful results. In its 
proof and later, let us agree to call a set SC.Mk saturated (with respect 
to the mapping P:Mk->Y)f if P-1P(S)=S. The reader should note 
that the "UV" type requirement for P~l{yo) in Theorem 3, is met 
whenever Y is locally simply connected at y0. This means that each 
neighborhood N of y o in Y contains a neighborhood W of yo such that 
each loop in W is contractible in N. 

Let a be an ordinal, and let p denote 0 or a prime. A compact, 
connected set XCMk has an (a, p)-trivial Tn-shape (n^l) if for each 
open, connected set UCMk such that XQU, there is an open set 
V9 XC.VC.Uy such that each singular ^-sphere in V represents an 
element belonging to the term Fa of the ^-central series of the group 
F = wn(U). As expected, this is a topological property of X with re
spect to embeddings in manifolds. 

The "local connection" terminology of Corollary 3.1 is due to 
George Kozlowski [16]. A special case of Corollary 3.1 has been 
proven by Alden Wright in [35]. 

THEOREM 3. Let Mk be a k-manifoldy possibly with boundary, and 

XC.VC.Uy
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let P be a compact, monotone mapping of Mk onto a nondegenerate 
Hausdorff space F. Suppose that for each j G F , P~~l(y) is strongly 
l-acyclic over Zp (p = 0 or a prime). Suppose that the following property 
holds f or some y0 G Y: For each open set UCMk such that P~1(yo) C U, 
there is an open set V, P~l(yo)CVC U, such that each loop in V pro
jects under P to a contractible loop in P(U). Then P"l(y0) has an 
(co, p)-trivial Ti-shape. Hence, if P~l(y<y) embeds in an orientable, non-
closed 3-manifold (e.g., Ez) containing no Zp-homology 3-cells which 
fail to be simply connected, then P~1(yo) has property 1-UV. 

PROOF. Note that X = P~^(yo) is a proper, compact connected 
subset of Mk. Let an open, connected set UdMk be given, XC.U. 
Since P is a closed mapping, P(U) contains a neighborhood of y0& Y, 
and so there are saturated, open, connected sets V, V0, with 

I C F C F o C P-'PÇVo) C U, 

and such that each loop in V projects under P to a loop which is 
contractible to a point in P(VQ). 

Let G be the monotone decomposition of U consisting of the sets 
P~xP(z) for all zÇzVo, together with the individual points of U 
—•P~1P(Fo). G is upper semicontinuous because P~1P(VQ) is a 
saturated, closed set in Mk and because 

{P-l(y)'-ye Y) 
is an upper semicontinuous decomposition of Mk. Further, each loop 
in V projects to a contractible loop in the decomposition space U/G. 
Hence, applying Corollary 1.1 (with n = 1) to the projection mapping 
U-^U/G, we find that each loop in V represents an element belong
ing to the term F^ of the ^-central series of the group F = wi(U). The 
result follows. 

For our last conclusion, suppose that X*QMZ is a homeomorph of 
X, where MB is an orientable, nonclosed piecewise-linear 3-manifold 
which contains no Zp-homology 3-cells which fail to be simply con
nected. We may assume t h a t X * C I n t Mz, and it suffices to show that 
X* has property 1-UV. 

If U is a given neighborhood of X* in Mz, some polyhedral neigh
borhood Hz of X* in U has the structure described in Corollary 2.1. 
Moreover, we may demand in this case that the 3-manifold Qz in 
that corollary^ conclusion be simply connected (see Remark 1 
following Corollary 2.1.) In particular, TTI(HZ) is a free group. Let 
F be a neighborhood of X* in Hz such that each loop in V represents 
an element belonging to the term Fw of the ^-central series of the 
free group F = iri(Hz). (Such exists by the first part of our proof.) 
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But Fu = 1 by Theorem 6.3 of [32 ]. This completes our proof. 

COROLLARY 3.1. Let Mz be a piecewise-linear Z-manifold, possibly 
with boundaryy and let P be a compact mapping of Mz onto a nonde-
generate Hausdorff space Y. Suppose that f or each ^ £ 7 , P~~l(y) is 
strongly 1-acyclic over Zp and has an orientable neighborhood in Mz 

(if p>2). Suppose that P is a local connection in dimension 1. Then y 
for all but a discrete set D of points 3>£ F, P~l(y) has property 1-UV. 
In fact y f or each compact 3-manifold Nz (possibly with Nz — Mz9é0), 
there exist only a finite number of y ÇHD for which P~l (y) dNz. 

PROOF. The requirement that P be a local connection in dimension 
1 yields two facts: P is monotone, and the hypothesis of Theorem 3 
holds for each 3/0G Y. We need only the additional information that 
a compact 3-manifold Nz contains but a boundedly-finite number of 
disjoint Zp-homology 3-cells which fail to be simply connected. For 
more details on this last matter, see [35]. An application of Theorem 
3 then completes the proof. 

Recall that a compact decomposition of Mz is one whose elements 
consist of the components of some compact set K(ZMZy plus the 
individual points of Mz—K. We adopt the convention that a com
pact decomposition of Mz must yield a nondegenerate decomposition 
space. Thus, for each compact, proper subset of Mz

y we may speak 
of the compact decomposition of Mz associated with K. If K is also 
connected, then its associated decomposition space is usually called 
Mz modulo K. 

If G is an upper semicontinuous decomposition of Mz
f let HG 

denote the union of the nondegenerate elements of G, and let PQ 
denote the projection mapping of Mz onto the decomposition space 
Mz/G. In particular, a compact decomposition G of Mz is the com
pact decomposition of Mz associated with HGt and PC(HQ) is com
pact and O-dimensional. If F and G are compact decompositions of 
Mzy then, following [5], we say that F is equivalent to G if some 
homeomorphism h of Mz/F onto Mz/G carries PF(HF) onto PGÇRQ). 

We call h an equivalence from F to G. A compact decomposition G of 
Mz is strongly acyclic over Zp if each component of Ho is strongly 
acyclic over Zp. 

We now draw several conclusions about equivalent compact 
decompositions. For simplicity of statement, we restrict ourselves 
to the consideration of Ez. 

COROLLARY 3.2. Let F and G be compact decompositions of Ez. 
Suppose that F is strongly acyclic over Zp, and that h is an equivalence 
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from F to G. Then G is strongly acyclic over Zp. Further, if h(Pp(f)) 
= Po(g) for somefÇ-F and g £ G , then f has property UV00 if and only 
if g has property UV°°. 

PROOF. The strong acyclicity of G follows from Lemma 1, parts 
(ii) and (iii). Now suppose that ƒ has property UV00. We claim that 
PQ is a "local connection in dimension 1, at gn in the sense that the 
last part of the hypothesis of Theorem 3 holds (with g = Pö1(3;o)). 
Theorem 3 then will reveal that g has property 1-UV, and hence 
property UV00. 

To prove our claim, let a connected, open set UQEZ, gCU, be 
given. Since G is strongly acyclic over Zp, Corollary 2.1 provides a 
polyhedral cube-with-handles VZQU, g C I n t F 3 , such that ^oC\dVz 

= 0 . Further, by the UV00 property of ƒ, we may suppose further 
that Pflh~lP0(V

z) is contractible to a point in P^h^PaiU). Now a 
given loop in Vz is freely homotopic in Vz to a loop h in d F3. But the 
loop to = Pp1h-1PG

ii contracts in PfAh~lPG(U). Thus hPFh = PGk 
contracts in PG(U). This establishes our claim. Previous remarks and 
symmetry complete the proof. 

REMARK. I t follows from Corollary 3.2 that if the complement of 
a compact set XCEZ is homeomorphic to the complement of some 
compact set with property UV00, then X also has property UV00. 
Further, by our next corollary, Ez—X is homeomorphic to the 
complement in Ez of a treelike continuum. 

COROLLARY 3.3. Let the compact decomposition F of Ez be strongly 
acyclic over Zp. Then there is a compact decomposition G of Ez, with H o 
one-dimensionaly and an equivalence h from F to G. Further, G is 
strongly acyclic over Zp, and if h(Pp(J)) =Po(g), for some f Çz F with 
property UV00 and f or some gÇzG, then g also has property UV00 (and 
hence is treelike). 

PROOF. This is immediate from our Corollary 2.1, [5, Theorem 8], 
and the previous corollary. For the parenthetical remark, see [10, 
Theorem l ] , or see [33, Theorem 2], and recall that a compact set in 
En with property UV00, is cellular in £ n + 1 (cf. the second paragraph 
of the introduction to [24] and [24, Corollary to Theorem 8]). 

COROLLARY 3.4. Let G be a compact decomposition of Ez. Suppose 
that (Ez/G)XEk is topologically Ez+k for some integer k. Then each 
component of H o has property UV00. 

PROOF. Note that Ez/G, as a retract of Ez+k, is locally contractible. 
Hence, the result will follow from Theorem 3, once it is shown that 
TIQ is strongly 1-acyclic over Z2 and has property 2-UV. 
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Let G* be the upper semicontinuous decomposition of Ez+k whose 
nondegenerate elements are precisely the nondegenerate sets of the 
form gX {t}, where g £ G and tÇzEk. Then there is a compact map
ping P of Ez+k onto Ez+k whose induced decomposition into point-
inverse sets is precisely G*. 

Let P:Sz+k—>Sz+k be the obvious extension of P to the one-point 
compactifications Sz+k = Ez+k\J {pw}. Let S=(H0XEk)KJp00, and 
note that P|S3+A: — 5 is a homeomorphism onto Sz+k — P(S). But 
S*+k-S is topologically (Ez-H0)XEk, and hence EZ-"EQ has the 
homotopy type of Sz+k minus the compact, fe-dimensional set P(S). 
Since P(S) is strongly (fe + l)-acyclic over Z2 and does not separate 
Sz+k, it follows that H1(E

Z-HG;Z2)=0, and that EZ-HQ is con
nected. According to Lemma 1, H o is strongly 1-acyclic over Z2 

and has property 2-UV. This completes the proof. 
Our next corollary is known in the case that k = 3 and PG(HQ) is 

compact and O-dimensional. Independent proofs of this case were 
given by the author in [26, Addendum 2 to Theorem 5], and by 
H. W. Lambert in [20]. 

COROLLARY 3.5. Let G be an tipper semicontinuous decomposition of 
Eh into compact, connected sets such that the decomposition space Ek/G 
is an open k-manifold. Suppose that PQ{HQ) is O-dimensional. If 
&5^4, then Ek/G is topologically Ek. If an element go£G admits an 
embedding in Ez, then go has property UV00. In particular, if each g £ G 
embeds in Ez and k F^4 {for example, suppose k = 3), then G is a cellular 
decomposition of Ek. 

PROOF. If &^2, then the hypotheses of the first sentence of our 
corollary imply that G is cellular and that Yk~Ek/G is topologically 
Ek. Hence, assume fee3. 

By Lemma 5 below, each g £ G is strongly acyclic over Z, and 
hence H{(Y

k; Z ) = 0 for i>0. Further, P0:E
k->Yk is monotone, so 

that Yk is simply connected (see [16], e.g.). Thus, Yk is contractible. 
Again using the fact that PQ is monotone (and the resulting UTCX~ 
surjection" property), it follows that Yk is 1-LC at infinity, in the 
sense of [28]. Hence, for &>4, Yk is topologically Ek by [28, Theorem 
1.1 ]. For k — 3, F3 is topologically Ez because of [6, Theorem 3] and 
the fact that G is a cellular decomposition, as will be indicated. 

If some goGG embeds in Ez, then go has property UV00 by our 
Theorem 3 and [19]. If each gGG embeds in Ez, then each g £ G has 
property UV00 and if &^4, G is cellular by, e.g. [l, Theorems 5.5 and 
5.6]. (See also [27], [22], [25], [ l5], and [ » ] . ) 

We now present a sequence of lemmas leading to a proof of the 
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acyclicity claim needed above. The first lemma is an exercise in 
excision, and its proof is omitted. 

LEMMA 2. Let ZCWCMk, where Z is compact, and W is an open, 
connected subset of the open k-manifold Mk. If a {finite, singular) inte
gral i-cycle in W is homologous to zero in Mk then it is homologous in 
W to an i-cycle in W—Z. 

Suppose 01 is a collection of subsets of the topological space F, 
and BQ F. The star of B with respect to 01, or st(jB, cll), is the union 
of all elements of 01 which intersect B. The union of all the sets in 01 
is denoted by 01*. If °IL and V are collections of open sets in F, then 
(as in [ó]) "ü star n-homotopy refines 01 if for each V&V there exists 
£/£0l such that s t (F , V)CU, and for O^k^n, each singular k-
sphere in s t (F , V) is contractible in U. 

CONVENTION. For Lemmas 3 and 4, assume the following notation. 
X is an L O " 1 ( » è l ) , locally compact metric space. G is an upper 
semicontinuous decomposition of X into compact, connected sets. 
(The decomposition space Y = X/G is necessarily metrizable.) 

LEMMA 3. For each collection 01 of open sets in F, there is a collection 
V of open sets in Y such thai PQ1(V) star (n — l)-homotopy refines 
P G ^ O I ) , and cU*-<0*CPQ(HG). 

PROOF. The proof is a variation of that of [6, Lemma 3.1]. Sup
pose 01 is given. Let 0L* = £ C F and PQ\B) = A CX. Let Kly K2) • • • 
be a locally finite (with respect to A) collection of compact sets in A 
whose interiors cover A. There is an €»•>() such that if a set SQX 
has diameter less than €»• and if Sr\Ki9

£0, then S C P , an open set 
in A such that for QSk^n — 1, each singular fe-sphere in R is con
tractible to a point in an element of P ^ O l ) . Let Mi be the union of 
all g £ G such that g intersects Ki and g has diameter at least e*. By 
[34, Corollory 2.61 ], each set PQ1Po{Ki) is compact, and so Mi, 
M*2, • • • is a locally finite collection of compact sets in A. Thus, 
M=\JZ.iMt is closed in A. 

Define C = PG{M), a relatively closed set in B. Clearly, if yGB — C, 
then there is a saturated open set WyQA — M such that PQ l(y) C Wy, 
and such that for O ^ H w - 1 , each singular fe-sphere in Wy is con
tractible to a point in some element of P© 1(CH). Thus, 

%v = {PG(Wv):yeB-C} 

is an open covering of B — C. We take 13 to be any open star refine
ment of W covering B — C. The proof is complete. 

LEMMA 4. For each open covering 01 of F, there is a closed set 
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C(ZPG{HG) (C depends only upon °U and n) such that the following 
holds : Suppose g is a map from a finite simplicial complex K of di
mension n or less y into Y— C, and f is a map from a subcomplex L of K 
into X—PQ1(C), such that g\L—Pof- Then f extends to a map F 
sending K into X such that f or each zÇzK, there exists an element of ^ 
containing both g(z) and PQF{Z). 

PROOF. The proof is similar to that of [6, Lemma 3.2 ]. Suppose that 
^ and n are specified. Let ILn be an open covering of Y which star 
refines cll. By Lemma 3, there are collections "Un-i, ^ - 2 , • • • , 'Ho 
of open sets in Y such that (for O^i^n — 1): PG~1(c[li) star (» —1)-
homotopy refines P ë ^ i + i ) , and 

a i î + i - ^ Î C P G C H O ) . 

Define C = F-Ol* . Clearly, CCPG(HG) is closed. 
Now suppose that maps ƒ and g are given as described above. 

Assume that dim K = n. We construct an extension F of ƒ to K, 
essentially as in [6, Lemma 3.2]. (We begin with the second para
graph of their proof, noting that their ' ll/s cover X rather than F.) 

Briefly, find a subdivision T of K so that for each vÇ:T, g(a) lies 
in some element of "Ho. We construct inductively a sequence of maps 

F^r'-^PöW*), 0 ûi un, 
(r* = i-skeleton of T) such that 

(1) if ; > 0 , ^ e x t e n d s F^h 

(2) Fi agrees with ƒ on | Z,| P \ | r*'|, and 
(3) if <rl'G T, then Fi(a*) Csome element of PS 1(eU<). We leave to the 

reader the minor changes necessary in the construction of [6]. 
In place of the last paragraph of their proof, we have only to note 

that for each zGif, g(z) and PGF(Z) lie in intersecting elements of 
'Un, and hence some element of Tl contains them both. In fact, if <r 
is a simplex of T containing z, then PaF(cr) lies in some element of 
%>, and g(<r) lies in some element of 'U». These two elements meet 
in the point g(v) = PGF(v), where v is a vertex of cr. 

The reader may wish to compare our next result with those of 
[29]. The homology and cohomology groups below are understood 
to have Z coefficients. In [19], Lacher has shown that a compact, 
connected set gQMk is strongly acyclic over Z if and only if it is 
cohomologically trivial over Z. More precisely, properties (fe — 1)-
uv(Z) and fc-uv(Z) together imply Hk = 0. Conversely, if Ék = Hk+1 

= 0 for g, then g has property fe-uv(Z). 

LEMMA 5. Let G be an upper semicontinuous decomposition of an 
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open k-manifold Mk into compact, connected sets such that the decompo
sition space Yk = Mk/G is also an open k-manifold, k^3. Suppose that 
PG(HG) is ^-dimensional. Suppose also that the following holds (as 
it does, e.g., if Mk = Ek): For each g £ G , there is an open set Ug, 
gd U0CMk, such that under inclusion, 

Hi(Ug)-*Hi(Mk) 

is zero for i = l, • • - , n= [k/2]. Then each g (EG is strongly acyclic 
over Z. 

PROOF. Note that since n ^ l , each Ug is orientable. We will show 
that each g £ G has property i-uv(Z), i — 1, • • - , n, and hence is 
cohomologically trivial (over Z) in dimensions 1, • • • , n. By the 
proof given for [17, Theorem 4] (the statement in [17] is incorrect), 
it will then follow that H*(g) = 0, for each gÇzG, and hence that each 
gEG has uv°°(Z). 

Our goal, then, is to prove that if Bk is an open fe-cell in Yk such 
that W = Pql(Bk) has compact closure and is contained in some Ugt 

then Hi(W) = 0 for 1 ^i^n. Note that W is connected, because G is 
monotone. 

By Lemma 4, there is a closed (in Bk) 0-dimensional set 
CxQPG(HG) corresponding to the one-element covering of Bk, and 
to the integer (& — 1). Let *ü be an open covering of Bk — C\ with this 
property: I f / i , / 2 are mappings of any space Z into Bk — C\ and if for 
each zÇzZ there exists some element of *U containing both fi(z) and 
/2(z), then fi and f2 are nomotopic as mappings of Z into Bk — C\. 
Finally, apply Lemma 4 (with Y — Bk — G) to obtain a closed (in 
Bk — Ci) set C2<ZPG(HG), corresponding to V and to the integer k. 
Put C2 = CxUCr

2, a relatively closed set in Bk. Let Cf denote PQ1(CJ), 

j = l, 2. 
Consider portions of the two exact homology sequences of pairs 

below, and the vertical homomorphisms between them induced by 
Pa: 

• Hi(W - C2*) °^Hi(W) -> • • • 

I I 
• • • -* Hi(B* - C2) -+Hi(Bk) -» • • • 

An easy argument using [34, Corollary 2.61] and our Lemma 2, re
veals that ai is an epimorphism for i^n. We claim also that ai 
is zero for i^n. The proof of this assertion will complete our argu
ment. 
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Suppose, then, that xÇzHi(W—C2), where i^n is fixed. Construct 
an oriented, homogeneously i-dimensional, finite polyhedron Q 
whose combinatorial boundary (over Z) is zero, together with a map 
A:Q—>W— C* whose induced homomorphism A* takes the orienta
tion class CQ of <2, to x. Since Hi{Bk — C^) = 0 (because i'èk — 2)f there 
is a finite, ^-dimensional polyhedron K<Z.Bh — Ci such that if 7r = Pqh, 
then 7r(Q)Ci£ and T*(CQ) = 0£ iJ i ( i£ ) . Consider the consistent dia
gram 

& w zo 
Q -+W - C?-*W - d*-+W 

IT J , .J' >l 

x As* - cws* - Ci 

in which the horizontal maps, other than h, are inclusions, and the 
vertical maps, other than 7r, are restrictions of ?<?. 

By our choice of C2 and V, there is a map S:i£—>PF— Cf such that 
PGS and ZJS are homotopic maps of K into Bk — C\. Hence, P GUU 
and PGST are homotopic maps of Q into Bk — Ci. By our choice of 
Ci, wwft and wSir are homotopic maps of Q into W. Thus, 

(«»•)*(#) = w*u*h*(co) = w*5*7r*(co) == 0 G ^ ( T ^ ) . 

This is the desired result. 
EXAMPLE. There is a continuous, onto mapping P : S4—*S4 such that 

each P_1(3/) is strongly acyclic over Z, yet some point-inverses fail 
to have property 1-UV. For as M azur shows in [23], S4 can be ex
pressed as the "double" of a certain compact, contractible 4-manifold 
whose boundary Mz has the homology (over Z) of S3, but Mz fails to 
be simply connected. There is a piecewise-linear homeomorphism h 
of MSX [ - 1 , 1] onto a neighborhood N of Mz in S4. Let K be M3 

minus the interior of a 3-simplex, so that TI(K)^TTI(MZ). Then the 
nondegenerate point-inverses of P are theseteA(2TX{*}) ,*e(-- l , 1), 
plus the closures of the two components of 5 4 — N. Similar examples 
of maps Sn—»5n are possible for each n ^ 4. 

4. A monomorphism theorem and some applications. If f:X—>Y 
is a map, let S/QX be the singular set of/. That is, 

5/= {* ex:/-y(*) ?**}. 

I t seems of interest to note here that P* in Theorem 4 below may 
fail to be an isomorphism. In fact, R. H. Bing has announced in [7] 
that £ 8 modulo a solenoid is not simply connected. 
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THEOREM 4. Let Mz be a piecewise-linear 3-manifold, possibly with 
boundary, and let P be a compact, monotone mapping of Mz onto a 
Hausdorff space Y. Suppose that there is a compact set A C Mz such 
that SpCA and such that each component of A is strongly l-acyclic over 
ZPf where £ = 0 or a prime. If some compact, polyhedral 3-manifold H 
has TTI(H) free and if A CH(ZMZ, then the kernel of the homomorphism 

P*:Tn(M\ *o) ~ > 7 T I ( F , P(x0)) 

is trivial. 

PROOF. There is a compact, monotone mapping PQ of Mz onto a 
Hausdorff space Fo such that the nondegenerate point-inverses of 
Po are precisely the nondegenerate components of A, and such that 
P o P - 1 is a well-defined mapping of F onto Fo. Further, if Po induces 
a monomorphism on fundamental groups, so also does P . Hence, 
we assume without loss of generality that the nondegenerate point-
inverses of P are precisely the nondegenerate components of A. 
(We shall later need the fact that P(A) is compact and 0-dimensional.) 

Let L = öA2. Suppose that g:A2—>F and f:L-*Mz are maps with 
g\L~Pf. We wish to show that ƒ is homo topic in Ms to a constant 
map. Since i îUP _ 1g(Â 2 ) is compact, we may assume, by the existence 
of regular neighborhoods, that Mz is compact. By attaching a collar 
to dMz and redefining F, if necessary, we may also suppose that 
^ C l n t i J a n d P - ^ A ^ C I n t i l f 3 . 

Let T be a triangulation of Mz in which H appears as a full sub-
complex. There is a finite, polyhedral graph T in Mz — H such that 
the complement of a close, open regular neighborhood of T is a regu
lar neighborhood of H^JT1. For example, take T to be that sub-
complex of the first-derived T' which is maximal with respect to not 
intersecting HKJT1. In particular, TTI(MZ— V) is a free group. By 
performing a homotopy, if necessary, we may assume that f(L) 
misses T, and we may further adjust g so that g^PÇT) is a finite set. 

Let ax, • - - , au be a finite, disjoint collection (possibly empty) of 
polyhedral arcs in A2—g~lP{A) such that each cet- intersects each of 
dA2, g~lP(T) precisely in one of its endpoints, and such that no arc in 
A2-g~1P(A) joins a point of g^PÇT) — Uf-iO, to dA2. After removing 
close, disjoint regular neighborhoods of the a / s in A2 — ^ P ^ ) and 
redefining g, f, etc., we can assume that no component of A2—g~lP(A) 
intersects both g^PÇT) and dA2. 

We now claim that Pf is homotopic to a constant map in Y—P(T). 
If this can be shown, our proof will be complete. For an application 
of Corollary 1.1 (with n = 1) to the 3-manifold Mz—T then will reveal 



1970] ACYCLICITY IN THREE-MANIFOLDS 961 

that the element of ^(ikT3— T) represented by ƒ belongs to the coth 
term of the ^-central series of that free group, and hence represents 
its identity element (see [32, Theorem 6.3]). 

If g _ 1 P(r ) = 0, then the claim of the previous paragraph is obvi
ous. Suppose U is a component of A2— g~lP{A) with Ur^g^PQO) 
7*0 (so that i7CIntA2) . Let DQU be a polyhedral disk whose 
interior contains Ur^g^PQF). To establish our claim, it suffices to 
show that for each such U and D, the loop g\dD is contractible in 
Y-PÇT). 

To see this, consider the 2-manifold Uo = U— Int D, with d Uo = dD. 
I t is not hard to see that if we decompose Uo into the single points 
of Uo and the components of Uo — Uo, then the resulting decomposi
tion space Z is a disk. But each component of U0 — Uo is a connected 
subset of g~lP(A), and hence is mapped to a point by g. Thus, g\ Z70 

can be expressed as the composition of the quotient map Uo—>Z, 
and a map Z—+Y—P(T). Hence, g|dü7o = g|dD is an inessential map 
into F - P ( r ) . The result follows. 

REMARK. The requirement in Theorem 4 that some polyhedral 
3-manifold H with free fundamental group should contain A, can 
be suppressed if we demand that Mz be orientable (when p>2) 
and that Mz contain no Z^-homology 3-cells which fail to be simply-
connected. This follows from Corollary 2.1. 

Recall our earlier convention and notation about compact de
compositions. 

COROLLARY 4.1. Let JSP be a piecewise-linear 3-manifold, possibly 
with boundary, and let G be a compact decomposition of Mz. Suppose 
that each element of G is strongly 1-acyclic over Zp and has property 2-
UV. If p>2, assume also that Mz is orientable. Then f or each open, 
connected set UCMZ/G, 

PG\P?(U):P?(U)-+U 

induces a monomorphism on fundamental groups. 

PROOF. Suppose g:A2-»Z7 and /:ôA2—•Pê1 (U) are maps with 
g\dA2 = PGf> Let F be the compact decomposition of PQ1(U) asso
ciated with the compact set 7ÎOC\PQX g (A2). An application to PF of 
Theorem 4 (and its remark) then yields the result. 

Question. Does the conclusion of Corollary 4.1 follow if we retain 
the hypothesis that the elements of G be strongly acyclic over Zp 

and have property 2-UV but, relax the requirement that the closure 
of PQ(HG) in Mz/G be compact and O-dimensional? 

Our next result is an improved version of [5, Lemma l ] . 
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COROLLARY 4.2. Let F and G be compact decompositions of E3. Sup
pose that F is strongly acyclic over Zv and that h is an equivalence from 
F to G. Let da metrize Ez/G. Then for each positive e, there is a homeo-
morphism R of E3 onto E3 such that R agrees with PâlhPF off the e-
neighborhood of HF, and 

dG(PoR(x), hPF(x)) < e, for each x G EK 

In particular, if hPF(J) —Paig) for some f(£F and g £ G , then ƒ is 
cellular if and only if g is cellular. 

PROOF. Since F is strongly acyclic over Zp, 37*» is definable by 
cubes-with-handles by Corollary 2.1. Thus, the €-neighborhood of 
H F contains a compact polyhedron Lz each of whose components is a 
cube-with-handles (SVCIn t L3), and such that hPp{K) has diameter 
less than € for each component K of L3. I t suffices to show that for 
each component K of L3, some homeomorphism of K into the com
pact 3-manifold Kx^PQlhPF(K) extends PalhPF\dK. 

The proof of J. Hempel's [13, Theorem 4] yields the fact that this 
extension is possible if and only if: For each polyhedral disk D(ZKt 

with dD = Dr\dK, it follows that Pç<1hPF\dD represents a con-
tractible loop in K\. But this condition is met because of Corollary 
4.1. The demonstration of our last claim about cellularity is routine, 
and is left to the reader. 

Following M. L. Curtis in [ l l ] , w e say that a separable metric n-
dimensional space F is a homotopy n-manifold if each y £ F has 
arbitrarily small pairs of connected, open neighborhoods VQ U such 
that V(Z U, V— V is connected, and the image of Wk(V—y) in ir* 
(U—y) under the inclusion-induced homomorphism is isomorphic to 
TTkiS71-1) for each k. Curtis obtained the next result in the case when 
G has only finitely many nondegenerate elements. In his situation, 
it is unnecessary to assume that G is strongly 1-acyclic. 

COROLLARY 4.3. Let G be a compact decomposition of E3. Suppose that 
each element of G is strongly 1-acyclic over Zp. If Y = EZ/G is a homo
topy manifold, then each element of G is cellular in E3. 

PROOF. Since the proof is straightforward, we give only an outline. 
First of all, we use the existence, at each point of F, of small neigh
borhoods with connected boundaries to show that each element of 
G has property 2-UV (see Lemma 1, parts (iii) and (iv) and recall 
that the pre-image under P(? of a compact and connected set is 
compact and connected). 

Hence our Corollary 4.1 applies. I t and the defining property (for 
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k = 1) of a homotopy 3-manifold can be used to verify the "cellularity 
criterion" hypothesis of [26, Corollary 3.2], which then gives our 
desired conclusion. Of course, the corollary quoted must be strength
ened, using our present results, to cover the case p>2. 
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