Annals of Mathematics

Some Characterizations of Interior Maps Author(s): E. E. Floyd Source: *The Annals of Mathematics*, Second Series, Vol. 51, No. 3 (May, 1950), pp. 571-575 Published by: <u>Annals of Mathematics</u> Stable URL: <u>http://www.jstor.org/stable/1969369</u> Accessed: 11/01/2011 13:27

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=annals.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematics.

SOME CHARACTERIZATIONS OF INTERIOR MAPS

BY E. E. FLOYD

(Received March 9, 1949)

The purpose of this note is to characterize light interior maps in several ways. Each of the characterizations emphasizes the one-dimensional nature of these maps. In the first section we characterize by means of null-homotopic maps into the unit circle and also by one-dimensional cohomology groups the quasi-monotone maps introduced by Wallace [4]. Since light interior maps coincide with light quasi-monotone maps, we also obtain characterizations of the former. In the last section we generalize a theorem of Whyburn [5, p. 186] to prove that a light map f of X onto Y is interior if and only if every map h of the unit interval I into Y can be factored as fg with $g: I \to X$, where g(0) is an arbitrary point of $f^{-1}h(0)$.

1. Homotopy and homology characterizations

In this section we use the method of null-homotopic maps into the unit circle in a fashion similar to that used by Eilenberg [2, pp. 174–175] to obtain two characterizations. According to Wallace [4], a map f of X onto Y, X and Ylocally connected compacta, is quasi-monotone if and only if V a region in Yand U a component of $f^{-1}(V)$ implies that f(U) = V. We recall that if f is light (i.e., each $f^{-1}(y)$, $y \in Y$, is 0-dimensional), then f is quasi-monotone if and only if it is interior.

Let X, Y be topological spaces and A, B closed subsets of X, Y respectively. As usual, we say that a mapping f of X into Y maps the pair (X, A) into the pair (Y, B) if $f(A) \subset B$. Moreover two maps $f, g: (X, A) \to (Y, B)$ are said to be homotopic if and only if there exists a homotopy h(x, t) connecting f and g such that $h(A, t) \subset B$ for each t. If (X, A) is a pair with X compact, then $H^1(X, A)$ will denote the one-dimensional Čech cohomology group of X relative to A with integer coefficients.

We indicate first a slight variation of Bruschlinsky's Theorem as given by Dowker [1, p. 226].

LEMMA 1. Let X be a compact Hausdorff space and A a closed subset of X. Consider the family Φ of maps $g:(X, A) \to (S_1, x)$, where S_1 is the unit circle and $x \in S_1$. Let u be a generator of $H^1(S_1, x)$. Then the correspondence between $g \in \Phi$ and g^*u induces a 1-1 correspondence between $H^1(X, A)$ and the homotopy classes of Φ .

PROOF. Define X' to be the space obtained from the decomposition of X which has as elements the points of X - A together with the element A. Denote by A' the point generated by A and denote by $f:(X, A) \to (X', A')$ the map associated with the decomposition. Then $f^*: H^1(X', A') \to H^1(X, A)$ is an isomorphism onto, as is well-known. Moreover, the inclusion map $i: X' \to (X', A')$ generates an isomorphism onto, $i^*: H^1(X', A') \to H^1(X')$, since A' is a single point. It is known that there is a 1-1 correspondence between homotopy classes of maps $g:(X', A') \to (S_1, x)$ and homotopy classes of maps $g:X' \to S_1$. Let v be a generator of $H^1(S_1)$. It follows from Dowker's theorem that the homotopy classes of maps $g:X' \to S_1$ are in 1-1 correspondence with the elements $g^*v \in$ $H^1(X')$. The lemma follows readily from the consideration of the isomorphisms f^* and i^* , together with the natural isomorphism of $H^1(S_1, x)$ onto $H^1(S_1)$. We note that the lemma would also follow for spaces other than compact spaces if it were known that f^* is an isomorphism onto.

THEOREM 1. Let X and Y be locally connected, connected compacta, and let f be a map of X onto Y. Then the following are equivalent:

(1) f is quasi-monotone;

(2) If V is a region (an open connected set) in Y and U a component of $f^{-1}(V)$, and $g:(\bar{V}, \bar{V} - V) \rightarrow (S_1, x)$, where S_1 is the unit circle and $x \in S_1$, then $g:(\bar{V}, \bar{V} - V) \rightarrow (S_1, x)$ is null-homotopic if and only if $gf:(\bar{U}, \bar{U} - U) \rightarrow (S_1, x)$ is null-homotopic;

(3) If V is a region in Y and U a component of $f^{-1}(V)$, then $f^*:H^1(\bar{V}, \bar{V} - V) \rightarrow H^1(\bar{U}, \bar{U} - U)$ is an isomorphism into, where f^* indicates the homomorphism induced by f.

PROOF. We prove (1) and (2) equivalent, and (2) and (3) equivalent. We suppose first that f is quasi-monotone and let V be a region in Y and U a component of $f^{-1}(V)$. Consider a map $g:(\bar{V}, \bar{V} - V) \to (S_1, x)$ such that $gf:(\bar{U}, \bar{U} - U) \to (S_1, x)$ is homotopic to the constant map into x. We suppose that x = 1. Since gf is null-homotopic, there exists [2, p. 162] a map ϕ of \bar{U} into the reals such that $\theta\phi = gf \mid \bar{U}$, where θ denotes the map defined by $\theta(x) = e^{2\pi i x}$, and such that $\phi(\bar{U} - U)$ is a single integer n. Define a map ψ of \bar{V} into the reals by $\psi(x) = \inf \phi(f^{-1}(x) \cap \bar{U})$. It follows that $\theta\psi = g$ and that $\psi(\bar{V} - V)$ is the integer n. To show that g is null-homotopic we have only to show that ψ is continuous. Since $\phi(f^{-1}(x) \cap \bar{U}), x \in \bar{V} - V$, consists of a single point, it follows that ψ is continuous, since f and ϕ are continuous. Hence we have only to show that ψ is upper semi-continuous at each point of V.

Let $y \in V$ and let W be a neighborhood of $\psi(y)$ small enough so that $\theta \mid \overline{W}$ is a homeomorphism. Since $f^{-1}(y) \cap \overline{U}$ is compact, there exists an $x \in \overline{U}$ such that $\phi(x) = \psi(y)$. Since $f^{-1}(y) \cap \overline{U} = f^{-1}(y) \cap U$, we have that $x \in U$. Let P be a region in V containing y and such that $g(P) \subset \theta(W)$. Denote by Q the component of $f^{-1}(P)$ which contains x, and note that since $f(\overline{U} - U) \subset \overline{V} - V$ we have $Q \subset U$. We then have that gf(Q) = g(P) is contained in the interior of $\theta(W)$. But $\phi(Q)$ is contained in W for otherwise we would not have $g(P) \subset \theta(W)$. We have that Q contains points of each $f^{-1}(p)$, $p \in P$, by the quasi-monotone property of f. Then $\psi(p)$, $p \in P$, is a number $\leq \max(t \mid t \in W)$. Hence ψ is upper semi-continuous at y, and is then continuous. The factorization $g = \theta \psi$ implies that g is null-homotopic and (1) implies (2). We now show that (2) implies (1). Suppose that f is not quasi-monotone. There is then a region V' in Y and a component U of $f^{-1}(V')$ such that $f(U) \neq V'$. It is clear that $U \neq X$, since otherwise f would not map X onto Y. Then, since X is connected, we have that $\overline{U} - U \neq 0$. Let $x \in V' - f(U)$. Since f(U) is closed in V', we may select a neighborhood W of x such that $\overline{W} \subset V'$ and $\overline{W} \sqcap$ f(U) = 0. Consider the component V of $V' - \overline{W}$ which contains f(U). It is clear that V exists since f(U) is connected. We have that $\overline{V} - V \subset (\overline{V}' - V') \cup$ $(\overline{W} - W)$. Moreover $C = (\overline{V} - V) \sqcap (\overline{V}' - V')$ contains $f(\overline{U} - U)$ and is then not empty. Also $D = (\overline{V} - V) \sqcap (\overline{W} - W) \neq 0$ since if $y \in V$ then y may be joined to x by an arc in U. The first point of this arc in the order y, x on \overline{W} will be a point of D. We note also that U is a component of $f^{-1}(V)$.

Define a map g' of \bar{V} onto the unit interval as follows: $g':\bar{V} \to [0, 1], g'^{-1}(0) = C, g'^{-1}(1) = D$. The existence of g' follows from Urysohn's Lemma. The map g' defines a map $g = \theta g'$ from $(\bar{V}, \bar{V} - V)$ into $(S_1, 1)$. We note that $gf(\bar{U})$ is a proper subset of S_1 , since $g'f(\bar{U})$ does not contain 1 and is contained in [0, 1]. It follows that $gf:(\bar{U}, \bar{U} - U) \to (S_1, 1)$ is null-homotopic. We show that g is not homotopic to a constant, which will show that (2) implies (1). Suppose g is homotopic to a constant. There exists, then, a factorization $g = \theta \psi$ where ψ maps \bar{V} into the reals with $\psi(\bar{V} - V)$ a single integer n, and $\theta(x) = e^{2\pi i x}$. Since $g^{-1}(1) = \bar{V} - V$ it follows that $\psi(\bar{V})$ contains but a single integer. Moreover, $\psi(\bar{V})$ is compact and connected, and $\psi(V)$ is connected and contains no integer. Then $\psi(\bar{V})$ is a proper subset of some half-open interval from an integer k to k + 1. Hence $\theta\psi(\bar{V})$ is a proper subset of S_1 . This is absurd, since $g'(\bar{V}) = [0, 1]$. Then g is not null-homotopic, and (2) implies (1).

That (2) is equivalent to (3) follows easily from Lemma 1. We prove that (2) implies (3), the other part being quite similar. Consider the homomorphism $f^*: H^1(\bar{V}, \bar{V} - V) \to H^1(\bar{U}, \bar{U} - U)$. Suppose $u \in H^1(\bar{V}, \bar{V} - V)$ is such that $f^*u = 0$. By Lemma 1, there exists $g: (\bar{V}, \bar{V} - V) \to (S_1, x)$ such that if v denotes the generator of $H^1(S_1, x)$, then $g^*v = u$. Consider $(gf)^*: H^1(S_1, x) \to H^1(\bar{U}, \bar{U} - U)$. We have $(gf)^*v = f^*g^*v = 0$. Hence gf is null-homotopic. But by the hypotheses of (2), g is then null-homotopic. Hence u = 0, and f^* is an isomorphism into.

COROLLARY. Let X and Y be locally connected, connected compacta, and let f be a light map of X onto Y. Then the following conditions are equivalent:

(1) f is interior;

(2) condition (2) of Theorem 1;

(3) condition (3) of Theorem 1.

PROOF. The proof is an immediate consequence of Theorem 1 and the fact that a light map is quasi-monotone if and only if it is interior.

2. A factorization theorem

The following theorem is a generalization of theorems of Stoïlow [3, p. 109] and Whyburn [5, pp. 186–187].

THEOREM 2. Let X and Y be compacta and let f be a light interior map of A onto Y. Consider a map $h: I \to Y$ where I is the unit interval. Then for each $x \in f^{-1}h(0)$ there exists a map $g: I \to X$ such that h = fg and g(0) = x.

PROOF. Let $[e_i]$ be a sequence of positive numbers tending to 0. We define for each *n* a barycentric subdivision Σ_n of *I* such that for each *l*-simplex $\sigma^n \in \Sigma_n$ there corresponds a set C^n in *X* with the following properties:

1) C^n is a component of $f^{-1}h(\sigma^n)$ of diameter $\langle e_n \rangle$;

2) $\sigma_1^n \cap \sigma_2^n \neq 0$ implies $C_1^n \cap C_2^n \neq 0$;

- 3) Σ_{n+1} is a repeated barycentric subdivision of Σ_n ;
- 4) if $0 \epsilon \sigma^n$ then $x \epsilon C^n$.

We define Σ_n , $[C^n]$ inductively as follows. Suppose Σ_{k-1} , $[C^{k-1}]$ have been defined. There exists a $\delta > 0$ such that if M is a continuum in Y of diameter $<\delta$, then each component of $f^{-1}(M)$ is of diameter $<e_k$ and maps onto M [5, p. 131, p. 148]. We take for Σ_k a repeated barycentric subdivision of Σ_{k-1} such that if $\sigma^k \in \Sigma_k$, then diameter $h(\sigma^k) < \delta$. Order the 1-simplexes of Σ_k linearly from 0 to 1 as σ_1^k , \cdots , σ_r^k . Pick for C_1^k the component of $f^{-1}h(\sigma_1^k)$ which contains x. If C_{n-1}^k has been defined, pick for C_n^k any component of $f^{-1}h(\sigma_{n-1}^k)$, in particular C_{n-1}^k , maps onto $h(\sigma_{n-1}^k)$. Then Σ_k , $[C^k]$ clearly satisfy the conditions. Moreover, it is clear that the first stage in the induction is carried out in a similar fashion.

Suppose σ^n is a fixed 1-simplex of Σ_n . For $m \ge n$, define $C^{n,m}$ to be the union of all sets C^m such that $\sigma^m \subset \sigma^n$ and $\sigma^m \in \Sigma_m$. It is important to note that $C^{n,m}$ is connected and that $f(C^{n,m}) = h(\sigma^n)$. We may use the diagonal process to pick a subsequence of $\Sigma_1, \Sigma_2, \cdots$, which we suppose the same as the original, with the following property: if $\sigma^n \in \Sigma_n$, then there exists $\lim_{m \to \infty} C^{n,m}$. Define $D^n =$ $\lim_{m \to \infty} C^{n,m}$. Since each D^n is a continuum of X with diameter $D^n = \lim$ diameter $C^{n,m}$, it follows that diameter $D^n \le e_n$ since each $C^{n,m}$ has the same property. Also if $\sigma_1^n \cap \sigma_2^n \neq 0$ then $D_1^n \cap D_2^n \neq 0$, since for $m \ge n$ we have $C_1^{n,m} \cap C_2^{n,m} \neq 0$.

Let $p \in I$, and for each $n \text{ let } \sigma_1^n$, σ_2^n be the 1-simplexes of Σ_n which contain p(we allow $\sigma_1^n = \sigma_2^n$). Then $[D_1^n \cup D_2^n]$ is a decreasing sequence of sets in X whose diameters tend to 0. Define $g(p) = \bigcap_n (D_1^n \cup D_2^n)$. Then g is clearly single-valued and moreover fg = h. Let q be an interior point of $\sigma_1^n \cup \sigma_2^n$. Then clearly $g(q) \subset D_1^n \cup D_2^n$, which is of diameter $\leq 2e_n$. This proves the continuity of g.

THEOREM 3. Let X and Y be locally connected compacta and let $f: X \to Y$ be a light mapping of X onto Y. Then a necessary and sufficient condition that f be interior is that for each map $h: I \to Y$ and each $x \in f^{-1}h(0)$ there exists a map $g: I \to X$ with fg = h and g(0) = x.

PROOF. The necessity follows from Theorem 2. Suppose that f is not interior. There is, then, a point $y \in Y$ and a point $x \in f^{-1}(y)$ such that if U is any sufficiently small neighborhood of x, then x is not an interior point of f(U). Since f is light, for a fixed $\varepsilon > 0$ there is a $\delta > 0$ such that if C is any continuum in Y of diameter $<\delta$, then each component of $f^{-1}(C)$ is of diameter $<\varepsilon$ [5, p. 161]. There is, since Y is locally connected, a $\sigma > 0$ such that if $z \in N_{\sigma}(y)$ (i.e., the spherical σ -neighborhood about y), then z can be joined to y by an arc I_z of diameter $<\delta$. Let $z \in N_{\sigma}(y)$ be such that $z \notin f(N_{\varepsilon}(x))$. Let $h: I \to I_{z}$ map I topologically onto I_{z} with h(0) = y. Let $g: I \to X$ be such that fg = h and g(0) = x. Then g(I) is contained in a component of $f^{-1}h(I)$ and hence is of diameter $<\varepsilon$. Then $g(I) \subset N_{\varepsilon}(x)$. This, however, is a contradiction since $g(1) \in N_{\varepsilon}(x)$ is such that fg(1) = h(1) = z. It follows that f is interior.

PRINCETON UNIVERSITY

BIBLIOGRAPHY

- 1. C. H. DOWKER, Mapping theorems for non-compact spaces, Amer. J. Math., vol. 69 (1947), pp. 200-242.
- S. EILENBERG, Sur les transformations d'espaces métriques en circonférence, Fund. Math., vol. 24 (1935), pp. 160–176.
- 3. S. STOÏLOW, Lecons sur les Principes Topologiques de la Théorie des Fonctions Analytiques, Paris, 1938.
- 4. A. D. WALLACE, Quasi-monotone maps, Duke Math. J., vol. 7 (1940), pp. 136-145.
- 5. G. T. WHYBURN, Analytic Topology, New York, 1942.
- 6. G. T. WHYBURN, The mapping of Betti groups under interior transformations, Duke Math. J., vol. 4 (1938), pp. 1–8.