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SOME CHARACTERIZATIONS OF INTERIOR MAPS 

By E. E. FLOYD 

(Received March 9, 1949) 

The purpose of this note is to characterize light interior maps in several ways. 
Each of the characterizations emphasizes the one-dimensional nature of these 
maps. In the first section we characterize by means of null-homotopic maps into 
the unit circle and also by one-dimensional cohomology groups the quasi-mono- 
tone maps introduced by Wallace [4]. Since light interior maps coincide with 
light quasi-monotone maps, we also obtain characterizations of the former. 
In the last section we generalize a theorem of Whyburn [5, p. 186] to prove that 
a light map f of X onto Y is interior if and only if every map h of the unit in- 
terval I into Y can be factored as fg with g:I -+ X, where g(0) is an arbitrary 
point of frh(O). 

1. Homotopy and homology characterizations 

In this section we use the method of null-homotopic maps into the unit circle 
in a fashion similar to that used by Eilenberg [2, pp. 174-175] to obtain two 
characterizations. According to Wallace [4], a map f of X onto Y, X and Y 
locally connected compacta, is quasi-monotone if and only if V a region in Y 
and U a component of f'(V) implies that f(U) = V. We recall that if f is light 
(i.e., each f1(y), y e Y, is 0-dimensional), then f is quasi-monotone if and only 
if it is interior. 

Let X, Y be topological spaces and A, B closed subsets of X, Y respectively. 
As usual, we say that a mapping f of X into Y maps the pair (X, A) into the 
pair (Y, B) if f(A) C B. Moreover two mapsf, g: (X, A) -+ (Y, B) are said to be 
homotopic if and only if there exists a homotopy h(x, t) connecting f and g such 
that h(A, t) C B for each t. If (X, A) is a pair with X compact, then H'(X, A) 
will denote the one-dimensional Cech cohomology group of X relative to A 
with integer coefficients. 

We indicate first a slight variation of Bruschlinsky's Theorem as given by 
Dowker [1, p. 226]. 

LEMMA 1. Let X be a compact Hausdorff space and A a closed subset of X. Con- 
sider the family 41 of maps g: (X, A) -> (S1, x), where Si is the unit circle and 
x e S . Let u be a generator of H'(S1, x). Then the correspondence between g E b 
and g*u induces a 1-1 correspondence between H1(X, A) and the homotopy classes 
of (. 

PROOF. Define X' to be the space obtained from the decomposition of X which 
has as elements the points of X - A together with the element A. Denote by 
A' the point generated by A and denote by f: (X, A) (X', A') the map asso- 
ciated with the decomposition. Then f*:H'(X', A') - H'(X, A) is an isomor- 
phism onto, as is well-known. Moreover, the inclusion map i: X' -* (X', A') 
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generates an isomorphism onto, i*: H'(X', A') -> H'(X'), since A' is a single 
point. It is known that there is a 1-1 correspondence between homotopy classes 
of maps g: (X', A') -> (Si, x) and homotopy classes of maps g:X' -* S1. Let 
v be a generator of H1(S1). It follows from Dowker's theorem that the homotopy 
classes of maps g: X' -* 51 are in 1-1 correspondence with the elements g*v e 
H'(X'). The lemma follows readily from the consideration of the isomorphisms 
f* and i*, together with the natural isomorphism of H1(Si, x) onto H1(S1). 
We note that the lemma would also follow for spaces other than compact spaces 
if it were known that f* is an isomorphism onto. 

THEOREM 1. Let X and Y be locally connected, connected compacta, and let f 
be a map of X onto Y. Then the following are equivalent: 

(1) f is quasi-monotone; 
(2) If V is a region (an open connected set) in Y and U a component of f-'(V), 

and g:(V, V - V) -> (Si, x), where Si is the unit circle and x e S1, then 
g: (V, V7 - V) -- (Si, x) is null-homotopic if and only if gf: (U, U - U) 
(S1 , x) is null-homotopic; 

(3) If V is a region in Y and U a component of f '(V), then 
f *:H1(V, V - V) -* H1(U, U - U) is an isomorphism into, where f * indicates 
the homomorphism induced by f. 

PROOF. We prove (1) and (2) equivalent, and (2) and (3) equivalent. We sup- 
pose first that f is quasi-monotone and let V be a region in Y and U a component 
off-'(V). Consider a map g: (V, V - V) -- (Si, x) such that gf: (U, U - U) -* 

(Si, x) is homotopic to the constant map into x. We suppose that x = 1. Since 
gf is null-homotopic, there exists [2, p. 162] a map 4 of U into the reals such that 
60 = gf I U, where 0 denotes the map defined by 8(x) = e2tx", and such that 
q(U- U) is a single integer n. Define a map 4' of V into the reals by 4A(x) = 
inf 4(f '(x) n U). It follows that 4 = g and that 4{(V - V) is the integer n. 
To show that g is null-homotopic we have only to show that 41 is continuous. 
Since o(f-'(x) n U), x e V - V, consists of a single point, it follows that 4' is 
continuous at each point of v - V. It also follows that 4' is lower semi-con- 
tinuous, since f and 4) are continuous. Hence we have only to show that 4' is 
upper semi-continuous at each point of V. 

Let y e V and let W be a neighborhood of 4A(y) small enough so that 0 W is a 
homeomorphism. Since f 1(y) n U is compact, there exists an x e U such that 
+(x) = -A(y). Since f7l(y) n U f-1(y) n U, we have that x e U. Let P be a 
region in V containing y and such that g(P) C 0(W). Denote by Q the component 
of f-'(P) which contains x, and note that since f(U - U) C V - V we have 
Q C U. We then have that gf(Q) = g(P) is contained in the interior of 0(W). 
But ?(Q) is contained in W for otherwise we would not have g(P) C 0(W). 
We have that Q contains points of each f '(p), p e P, by the quasi-monotone 
property of f. Then 4A(p), p e P, is a number ? max (t I t e W). Hence 4' is upper 
semi-continuous at y, and is then continuous. The factorization g = 0 implies 
that g is null-homotopic and (1) implies (2). 
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We now show that (2) implies (1). Suppose that f is not quasi-monotone. 
There is then a region V' in Y and a component U of f-'(V') such that f(U) 0 V'. 
It is clear that U $ X, since otherwise f would not map X onto Y. Then, since 
X is connected, we have that U - U $ 0. Let x e - f(U). Since f(U) is 
closed in V', we may select a neighborhood W of x such that W C V' and W n 
f(U) = 0. Consider the component V of V' - W which contains f(U). It is 
clear that V exists since f(U) is connected. We have that V~ - V C (' - ') u 
(W - W). Moreover C = (- V) n ('P - V') contains f(U - U) and is then 
not empty. Also D = (V - V) n (W - W) # 0 since if y e V then y may be 
joined to x by an arc in U. The first point of this arc in the order y, x on W 
will be a point of D. We note also that U is a component of f-'(V). 

Define a map g' of V onto the unit interval as follows: g': V -> [0, 1], g''(O) = 

C, 9''-(1) = D. The existence of g' follows from Urysohn's Lemma. The map 
g' defines a map g = Og' from (IV, V - V) into (Si, 1). We note that gf(U) is 
a proper subset of Si, since g'f(U) does not contain 1 and is contained in [0, 1]. 
It follows that gf: (U, U - U) -- (Si, 1) is null-homotopic. We show that g 
is not homotopic to a constant, which will show that (2) implies (1). Suppose g 
is homotopic to a constant. There exists, then, a factorization g = Ot where 
4' maps V into the reals with t6(V - V) a single integer n, and 0(x) = e2rix. 

Since g-'(1) = V-V it follows that A(V) contains but a single integer. More- 
over, AT(V) is compact and connected, and A(V) is connected and contains no 
integer. Then A(V) is a proper subset of some half-open interval from an integer 
k to k + 1. Hence @J(V) is a proper subset of SI . This is absurd, since g'(V) = 

[0, 1]. Then g is not null-homotopic, and (2) implies (1). 
That (2) is equivalent to (3) follows easily from Lemma 1. We prove that (2) 

implies (3), the other part being quite similar. Consider the homomorphism 
f*:Hl(V, V - V) -* H1(U, U - U). Suppose u e H1(V, V - V) is such that 
f*u = 0. By Lemma 1, there exists g: (V, V - V) -* (S1 , x) such that if v denotes 
the generator of H'(S1, x), then g*v = u. Consider (gf)*:H1(Si, x) -> 

H1(U, U - U). We have (gf)*v = f*g*v = 0. Hence gf is null-homotopic. But 
by the hypotheses of (2), g is then null-homotopic. Hence u = 0, and f* is an 
isomorphism into. 

COROLLARY. Let X and Y be locally connected, connected compacta, and let f 
be a light map of X onto Y. Then the following conditions are equivalent: 

(1) f is interior; 
(2) condition (2) of Theorem 1; 
(3) condition (3) of Theorem 1. 
PROOF. The proof is an immediate consequence of Theorem 1 and the fact 

that a light map is quasi-monotone if and only if it is interior. 

2. A factorization theorem 

The following theorem is a generalization of theorems of Stoilow [3, p. 109] 
and Whyburn [5, pp. 186-187]. 
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THEOREM 2. Let X and Y be compacta and let f be a light interior map of A onto 
Y. Consider a map h :1 -- Y where I is the unit interval. Then for each x e f 'h(0) 
there exists a map g:I-- X such that h = fg and g(0) = x. 

PROOF. Let [e,] be a sequence of positive numbers tending to 0. We define 
for each n a barycentric subdivision In of I such that for each 1-simplex a' E En 
there corresponds a set Cn in X with the following properties: 

1) Cn is a component of f'1h(on) of diameter <en; 
2) a' n ac r 0 implies C' n C' 5 0; 
3) 2nl is a repeated barycentric subdivision of In 
4) if 0 e an then x e Cn. 
We define In, [Cn] inductively as follows. Suppose 2k-1 , [Ck-l] have been 

defined. There exists a a > 0 such that if M is a continuum in Y of diameter 
<8, then each component of f['(M) is of diameter <ek and maps onto M [5, 
p. 131, p. 1481. We take for 24 a repeated barycentric subdivision of zk-1 such 
that if ok E 2k, then diameter h(o7k) < S. Order the 1-simplexes of Ok linearly 
from 0 to 1 as a, ,r . Pick for C1 the component of flh(a4) which contains 
x. If C-1 has been defined, pick for C', any component of f' h(af' ) which inter- 
sects C ._1 This is possible since each component of f 'h(ol), in particular 

C_1, maps onto h(on_). Then 24, [Ck] clearly satisfy the conditions. Moreover, 
it is clear that the first stage in the induction is carried out in a similar fashion. 

Suppose an is a fixed 1-simplex of In. For m > n, define C"'m to be the union 
of all sets Cm such that am C an and Em E 2m . It is important to note that Cn m 
is connected and that f(Cn'm) = h(cn). We may use the diagonal process to pick 
a subsequence of 11, 12, ... , which we suppose the same as the original, with 
the following property: if a- E In,, then there exists lim(m) Cn'm. Define D' = 
lim(m)Cn'm. Since each D" is a continuum of X with diameter D" = lim diameter 
Cnm, it follows that diameter Dn < en since each Cn"" has the same property. 
Also if a' n a' 7 0 then D' n D' - 0, since for m > n we have C m n Cn"m 7? 0. 

Let p e I, and for each n let n, a? be the 1-simplexes of In which contain p 
(we allow a' = a?). Then [D n u D2 ] is a decreasing sequence of sets in X whose 
diameters tend to 0. Define g(p) = nf(D' u Dr). Then g is clearly single-valued 
and moreover fg = h. Let q be an interior point of a- u an . Then clearly g(q) C 
D u D , which is of diameter <2er, . This proves the continuity of g. 

THEOREM 3. Let X and Y be locally connected compacta and let f: X -. Y be a 
light mapping of X onto Y. Then a necessary and suficient condition that f be 
interior is that for each map h:I -- Y and each x e f1h(0) there exists a map 
g:I - X with fg = h and g(O) = x. 

PROOF. The necessity follows from Theorem 2. Suppose that f is not interior. 
There is, then, a point y e Y and a point x e f1(y) such that if U is any suf- 
ficiently small neighborhood of x, then x is not an interior point of f(U). Since 
f is light, for a fixed c > 0 there is a 8 > 0 such that if C is any continuum in Y 
of diameter <8, then each component of f-'(C) is of diameter < - [5, p. 1611. 
There is, since Y is locally connected, a a- > 0 such that if z e Nq(y) (i.e., the 
spherical a-neighborhood about y), then z can be joined t0 y by an arc IT of 



SOME CHARACTERIZATIONS OF INTERIOR MAPS 575 

diameter <6. Let z e N.(y) be such that z 4 f(N,(x)). Let h:I-- I, map I topo- 
logically onto 1. with h(O) = y. Let g:I-- X be such that fq =h and g(O) = x. 
Then g(I) is contained in a component of f-'h(I) and hence is of diameter <E. 
Then g(I) C N,(x). This, however, is a contradiction since g(1) e N,(x) is such 
that fg(1) = h(1) = z. It follows that f is interior. 
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