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Abstract.

1. Introduction

Since the early days of topology, it has been useful to combine spaces
by simple gluing operations. The connected sum operation for closed
manifolds has roots in nineteenth century surface theory. Its cousin, the
boundary sum of compact manifolds with boundary, is also a classical
operation. Both of these operations are well understood. In the setting
of oriented manifolds, for example, the connected sum of two connected
manifolds is unique, as is the boundary sum of two manifolds with
connected boundary.
The analogue for open manifolds of the boundary sum is called the

end sum. While this operation has been used for manifolds of various
dimension since the 1980s, it is less well known and understood. In con-
trast with boundary sums, end sums of one-ended oriented manifolds
need not be uniquely determined, even up to proper homotopy [CH14].
In fact, the uniqueness issue is quite subtle, and is the primary topic
of this paper. We present examples in various categories (homotopy,
top, pl, and diff) where uniqueness fails, but the failure cannot be
detected in weaker categories.
In counterpoint, we show that under reasonable hypotheses the oper-

ation is unique in all categories and apply this result to exotic smooth-
ings of open 4-manifolds. We put our results into a broader context.
Just as boundary summing is a special case of attaching a 1-handle,
end-summing is a case of attaching a 1-handle at infinity. We obtain
general results about uniqueness of attaching collections of 0- and 1-
handles at infinity. We conclude that end sums, and more generally,
collections of handles at infinity with index at most one, can be con-
trolled in broad circumstances, although deep questions remain.
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End summing is the natural analogue of boundary summing. For the
latter, we choose codimension-0 embeddings of a disk into the bound-
aries of the two summands, then use these to attach a 1-handle. For an
end sum of open manifolds, we attach a 1-handle at infinity, guided by
a properly embedded ray in each summand. Informally, we can think
of the 1-handle at infinity as a piece of tape joining the two manifolds.
This is made precise in Definition 2.1 below. In particular, boundary-
summing two compact manifolds has the effect of end-summing their
interiors.
While the end sum notion seems obvious, the authors have been

unable to find explicit appearences of it before the second author’s 1983
paper [G83]. The germ of the idea is present in Mazur’s 1959 paper
[M59] and Stallings’ 1965 paper [St65]. In [G83], the operation was
used to construct a new (unoriented) diffeomorphism type of exotic R4,
shortly following the emergence of the first exotic R4 when theorems of
Donaldson and Freedman completed a seminal construction of Casson.
Subsequently, [G85] constructed infinitely many exotic R4’s and gave
a more systematic treatment of the end-sum operation on the space R
of oriented diffeomeorphism types homeomorphic to R4. In particular,
infinite end-sums were shown to be well-defined and independent of
order and grouping, implying that the resulting monoid structure on
R has no inverses.
Since that time, end-summing with exotic R4s has become a standard

technique for constructing many exotic smoothings on a given open 4-
manifold. End-summing has also been used in other dimensions, for
example by Ancel (unpublished) in the 1980s to study high-dimensional
Davis manifolds, and by Tinsley and Wright (1997) [TW97] and Myers
(1999) [My99] to study 3-manifolds. In 2012, the first author, with King
and Siebenmann, gave a general treatment [CKS12] of end sum (called
CSI, connected sum at infinity, therein) in all dimensions and categories
(top, pl, and diff). As a corollary, there resulted a classification of
multiple hyperplanes in Rn for all n �= 3. The resulting classification
was recently used by Belegradek [B14] to study certain interesting open
aspherical manifolds.
While [G85] showed that end sums are uniquely determined for man-

ifolds inR, the general case is more complex. First, boundary summing
can already fail to be unique for simple reasons: if a summand has dis-
connected boundary, then we must specify which boundary component
to use. For example, nondiffeomorphic boundary components can lead
to boundary sums with nondiffeomorphic boundaries. We must also
be careful to specify orientations — a pair of disk bundes over S2 with
nonzero Euler numbers can be boundary summed in two different ways,
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distinguished by their signatures (0 or ±2). In general, we should spec-
ify an orientation on each orientable boundary component receiving a
1-handle.
Similarly, for end sums and 1-handles at infinity, we must specify

which ends of the summands we are using and an orientation on each
such end (if orientable). Unlike the compact case, however, this infor-
mation may still be insufficient for specifying the resulting diffeomor-
phism type. One difficulty is specific to dimension 3: the rays in use can
be knotted. Myers [My99] showed that uncountably many homeomor-
phism types of contractible manifolds can be obtained by end-summing
two copies of R3 along knotted rays. For this reason, the present paper
focuses on dimensions above 3. However, another difficulty persists in
high dimensions: rays determining a given end need not be properly ho-
motopic. The first author and Haggerty [CH14] constructed examples
of pairs of one-ended oriented n-manifolds (n ≥ 4) that are connected
at infinity but can be summed in different ways that are not even prop-
erly homotopy equivalent. We explore this phenomenon more deeply
in Section 3. After sketching the key example of [CH14], we exhibit
more subtle examples of nonuniqueness of end-summing (and related
constructions) on fixed oriented ends. Example 3.3 gives topological
5-manifolds with properly homotopy equivalent but nonhomeomorphic
end sums, and pl n-manifolds (n ≥ 9) whose end sums are properly ho-
motopy equivalent but not pl-homeomorphic. Example 3.4 gives end
sums of smooth manifolds (n ≥ 8) that are pl-homeomorphic but not
diffeomeorphic. In dimension 4, the same construction gives smooth
manifolds whose end sums are naturally identified in the topological
category, but whose smoothings are not stably isotopic. (Distinguish-
ing their diffeomorphism types seems difficult.)
These failures of uniqueness arise from complicated fundamental

group behavior at the relevant ends, contrasting with uniqueness asso-
ciated with the simply connected end of R4. Section 4 examines more
generally when ends are simple enough to guarantee uniqueness of end
sums and 1-handle attaching. In dimensions 4 and up, it suffices for the
end to satisfy the Mittag-Leffler condition (also called semistability),
whose definition we recall in Section 4. Ends that are simply connected
or topologically collared are Mittag-Leffler; in fact, the condition can
only fail when the end requires infinitely many (n− 1)-handles in any
topological handle decomposition (Proposition 4.3). For example, Stein
manifolds of complex dimension at least 2 have (unique) Mittag-Leffler
ends.
The Mittag-Leffler condition is necessary and sufficient to guarantee

that any two rays approaching the end are properly homotopic. This
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fact traces back at least to Geoghegan in the 1980s, and appears to
have been folklore since the preceding decade (see Edwards and Hast-
ings [EH76], for which Ross was consulted by Edwards, Mihalik [Mi83,
Thm. 2.1], a student of Ross, and also Geoghegan [Ge08]). Unaware
of Geoghegan’s work and prompted by Siebenmann, Calcut and King
worked out an algebraic classification of proper rays up to proper homo-
topy on an arbitrary end in 2002. This material was later excised from
the 2012 published version of [CKS12] due to length considerations and
since a similar proof had appeared in Geoghegan’s text [Ge08] in the
mean time.
The present paper gives a much simplified version of the proof, deal-

ing only with the Mittag-Leffler case, in order to highlight the topol-
ogy underlying the algebraic argument. We obtain a general statement
(Theorem 4.5) about attaching countable collections of 1-handles to an
open manifold. The following theorem is a special case.

Theorem 1.1. Let X be a (possibly disconnected) n-manifold, n ≥ 4.
Then the result of attaching a (possibly infinite) collection of 1-handles
at infinity to some oriented Mittag-Leffler ends of X depends only on
the pairs of ends to which each 1-handle is attached, and whether the
corresponding orientations agree.

Note that uniqueness of end sums along Mittag-Leffler ends (preserving
orientations) is a special case. Theorem 4.5 also deals with ends that
are nonorientable or not Mittag-Leffler.
This theorem has consequences for open 4-manifold smoothing the-

ory, which we explore in Section 5. The operation of end summing
with an exotic R4 can be treated more systematically. The theorem
shows that the monoid R acts on the set S(X) of smoothings of any
4-manifold X with a Mittag-Leffler end, and more generally a prod-
uct of copies of R acts on S(X) through any countable collection of
Mittag-Leffler ends (see Corollary 5.1). One can also deal with arbi-
trary ends by keeping track of a family of proper homotopy classes of
rays. Similarly, one can act on S(X) by summing with exotic smooth-
ings of R×S3 along properly embedded lines (Corollary 5.4), or modify
smoothings along properly embedded star-shaped graphs. While sum-
ming with a fixed exotic R4 is unique for an oriented (or nonorientable)
Mittag-Leffler end, Section 3 suggests that there should be examples
of nonuniqueness when the end of X is not Mittag-Leffler. However,
such examples seem elusive, prompting the following natural question.



ON UNIQUENESS OF END-SUMS AND 1-HANDLES AT INFINITY 5

Question 1.2. Let X be a smooth, oriented 4-manifold that is con-
nected at infinity. Can end-summing X with a fixed exotic R4, pre-
serving orientation, yield different diffeomorphism types depending on
the choice of ray in X?

We show (Proposition 5.3) that such examples would be quite difficult
to detect.
Throughout the text, we take manifolds to be Hausdorff with count-

able basis, so with only countably many components. We allow bound-
ary, and note that the theory is vacuous unless there is a noncompact
component. Open manifolds are those with no boundary and no com-
pact components. We work in a category cat that can be diff, pl,
or top. For example, diff homeomorphisms are the same as diffeo-
morphisms. Embeddings (particularly with codimension 0) are not
assumed to be proper.

2. 1-handles at infinity

We begin with our procedure for attaching 1-handles at infinity. Re-
call that a cat proper embedding γ : Y k↪→Xn of cat manifolds is
called flat if it extends to a cat embedding ν : Y k×Rn−k↪→Xn. When
all components of Y are contractible, this is automatically true in the
smooth category, or in the pl category when k = 1. However, in the
topological category, the hypothesis is necessary in order to avoid wild
arcs for n ≥ 3. Without loss of generality, we assume that ν extends to
a proper embedding Y × Dn−k↪→X for some smooth identification of
Rn−k with the interior of the closed disk Dn−k. For example, such an
embedding can be obtained from an arbitrary ν by passing to a disk
bundle in the domain, with radii controlled using a proper function
X → [0,∞).

Definition 2.1. A multiray in a cat n-manifold X is a flat cat

proper embedding γ : S × [0,∞)↪→X for some discrete (so necessar-
ily countable) set S called the index set of γ. If the domain has a single
component, γ will be called a ray. Given two multirays γ−, γ+ : S ×
[0,∞)↪→X with disjoint images, choose disjoint extensions ν± : S ×
[0,∞)× Rn−1↪→X as above, and let Z be the cat manifold obtained
by gluing together X and S × [0, 1] × Rn−1 by identifications ν± ◦
(idS ×ϕ± × ρ±), where ϕ− : [0, 1

2
) → [0,∞) and ϕ+ : (1

2
, 1] → [0,∞)

and ρ± : Rn−1 → Rn−1 are diffeomorphisms, with ρ± chosen so that
ϕ± × ρ± preserves orientation. Then Z is obtained by attaching 1-
handles at infinity to X along γ− and γ+ (see Figure 1).
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h

ZX

Figure 1. Data for addition of h, a 1-handle at infinity,
to the n-manifold X (left) and resulting n-manifold Z
(right).

We will see that Z depends on the choices of γ±, but is indepen-
dent of the choices of extensions ν±, diffeomorphisms ϕ± and ρ±, and
parametrization of the rays of γ±. The domains of ϕ± can be replaced
by smaller neighborhoods of the endpoints of [0, 1] without changing
Z, making it more obvious that attaching compact 1-handles to the
boundary of a compact manifold has the effect of attaching handles at
infinity to the interior. Yet another description is to arrange the tubu-
lar neighborhoods of the multirays to have flat boundary, then remove
the open neighborhoods and glue together the resulting Rn−1 boundary
components. The case of handle attaching where S is a single point and
X has two components that are connected by the 1-handle at infinity
is called the end-sum or connected sum at infinity in the literature.

Remark. Handles of higher index are also useful [G16], although addi-
tional subtleties arise. For example, a Casson handle can be attached
to an unknot in the boundary of a 4-ball so that the interior of the
resulting smooth 4-manifold is not diffeomorphic to the interior of any
compact manifold. However, the interior of the Casson handle is dif-
feomorphic to R4, so we can interchange the roles of the two subsets,
exhibiting the manifold as R4 with a 2-handle attached at infinity. The
latter is attached along a properly embedded S1 × [0,∞) in R4 that is
topologically unknotted but smoothly knotted, and cannot be smoothly
compactified to an annulus in the closed 4-ball.

Variations on the above 1-handle construction are used in [G13]. Let
X be a topological 4-manifold with a fixed smooth structure, and let R
be an exotic R4 (a smooth manifold homeomorphic but not diffeomor-
phic to R4). Choose a smooth ray in X, and homeomorphically identify
a smooth, closed tubular neighborhood N of it with the complement of
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a similar neighborhood in R. Transporting the smooth structure from
R to N , where it fits together with the original one on X − IntN , we
obtain a new smooth structure on X diffeomorphic to an end-sum of
X and R. The advantage of this description is that it fixes the un-
derlying topological manifold, allowing us to assert, for example, that
the two smooth structures are stably isotopic. Another variation from
[G13] is to sum a smooth structure with an exotic S3×R along a pair of
smooth, properly embedded lines, one of which is topologically isotopic
to {p}×R ⊂ S3×R. One can similarly change a smooth structure on
a high-dimensional pl manifold by summing along a line with Σ × R

for some exotic sphere Σ. We exhibit these operations in Section 5 as
well-defined monoid actions on the set of isotopy classes of smoothings
of a fixed topological manifold. One can also consider cat sums along
lines in general. We discuss nonuniqueness of this latter operation in
Section 3, to elucidate the corresponding discussion for 1-handles at
infinity.
There are several obvious sources of nonuniqueness for attaching 1-

handles at infinity. For attaching 1-handles in the compact setting,
the result can depend both on orientations and on choices of bound-
ary components. We will consider orientations in Section 4, but now
consider the noncompact analogue of the set of boundary components,
the space of ends of a manifold (e.g., [HR96]). Recall that for a mani-
fold X (for example), a neighborhood of infinity is the complement of a
compact set, and a neighborhood system of infinity is a nested sequence
{Ui|i ∈ Z

+} of neighborhoods of infinity with empty intersection, and
with the closure of Ui+1 contained in Ui for all i ∈ Z+.

Definition 2.2. For a fixed neighborhood system {Ui} of infinity, the
space of ends of X is given by E = E(X) = lim← π0(Ui).

That is, an end ε ∈ E(X) is given by a sequence V1 ⊃ V2 ⊃ V3 ⊃ · · · ,
where each Vi is a component of Ui. For two different neighborhood
systems of infinity for X, the resulting spaces E(X) can be canonically
identified: The set is preserved when we pass to a subsequence, but any
two neighborhood systems of infinity have interleaved subsequences.
A neighborhood of the end ε is an open subset of X containing one
of the subsets Vi. This notion allows us to topologize the set X ∪
E(X) so that X is homeomorphically embedded as a dense open subset
and E(X) is totally disconnected [Fr31]. (The new basis elements are
the components of each Ui, augmented by the ends of which they are
neighborhoods.) The resulting space is Hausdorff with a countable
basis. If X has only finitely many components, this space is compact,



8 JACK S. CALCUT AND ROBERT E. GOMPF

and called the Freudenthal or end compactification of X. In this case,
E(X) is homeomorphic to a closed subset of a Cantor set.
Every ray γ in a manifold X determines an end εγ ∈ E(X). This

is because γ is proper, so every neighborhood U of infinity in X con-
tains γ([k,∞)) for sufficiently large k, and this image lies in a single
component of U . In fact, an alternate definition of E(X) is as the
set of equivalence classes of rays, where two rays are considered equiv-
alent if their restrictions to Z+ are properly homotopic. A multiray
γ : S × [0,∞)↪→X then determines a function εγ : S → E(X) that is
preserved under proper homotopy of γ. Attaching 1-handles at infinity
depends on these functions for γ− and γ+, just as attaching compact 1-
handles depends on choices of boundary components, with examples of
the former easily obtained from the latter by removing boundary. We
will find more subtle dependence on the multirays in the next section,
but a weak condition preventing these subtleties in Section 4.

3. Nonuniqueness

We now investigate examples of nonuniqueness in the simplest possi-
ble setting. In each case, we begin with a manifoldX without boundary
and with finitely many ends, and attach a single 1-handle at infinity,
at a specified pair of ends. We assume the 1-handle respects a pre-
assigned orientation on X. For attaching 1-handles in the compact
setting, this would be enough information to uniquely specify the re-
sult, but we demonstrate that uniqueness can still fail for a 1-handle at
infinity. It was shown in [CH14] that even the proper homotopy type
need not be uniquely determined; Example 3.2 below sketches the sim-
plest construction from that paper. Our subsequent examples are more
subtle, having the same proper homotopy type but distinguished by
their homeomorphism or diffeomorphism types. All of these examples
necessarily have complicated fundamental group behavior at infinity,
since Section 4 proves uniqueness when the fundamental group is suit-
ably controlled. We obtain the required complexity by the following
construction, which generalizes examples of [CH14]:

Definition 3.1. For an oriented cat manifold X with two multirays
γ−, γ+ : S× [0,∞)↪→X whose images are disjoint, ladder surgery on X
along γ− and γ+ is orientation-preserving surgery on the infinite family
of 0-spheres given by {γ−(s, n), γ+(s, n)} for each s ∈ S and n ∈ Z

+.
That is, we find disjoint cat balls with flat boundaries centered at
the points γ±(s, n), remove the interiors of the balls, and glue each
resulting pair of boundary spheres together by a reflection (so that the
orientation of X extends).
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It is not hard to verify that the resulting oriented diffeomorphism type
only depends on the end functions εγ± of the multirays; see Corol-
lary 4.10 for details and a generalization to unoriented manifolds. If X
has two components X1 and X2, each with k ends, any bijection from
E(X1) to E(X2) determines a connected manifold with k ends obtained
by ladder surgery with S = E(X1). Such a manifold will be called a
ladder sum of X1 and X2. For closed, connected, oriented (n − 1)-
manifolds M and N , we let L(M,N) denote the ladder sum of the
two-ended manifolds R ×M and R × N , for the bijection preserving
the ends of R. (This is a slight departure from [CH14], which used the
one-ended manifold [0,∞) in place of R.) Note that a ladder surgery
transforms the multirays γ± into infinite unions of circles, and surgery
on all these circles (with any framings) results in the manifold obtained
from X by adding 1-handles at infinity along γ±. (This is easily seen
by interpreting the surgeries as attaching 1- and 2-handles to I ×X .)
The examples in [CH14] are naturally presented in terms of ladder

surgery and 1-handle addition at infinity. They also provide (in a
natural sense) the simplest possible examples where a single 1-handle
may be attached at infinity in essentially distinct ways, namely an
orientation-preserving end-sum of one-ended manifolds.

Example 3.2 ([CH14]). For a fixed prime p > 1, let E denote the
R2-bundle over S2 with Euler number −p (so E has a neighborhood
of infinity diffeomorphic to R × L(p, 1)). Let Y be the ladder sum of
E and R4 using rays γ− in E and γ+ in R4. We will attach a single
1-handle at infinity to the disjoint union X = Y � E in two ways to
produce distinct, one-ended, boundaryless manifolds Z0 and Z1. Let
γ0 be a ray in Y lying in E and parallel to γ−. Let γ1 be a ray in
Y lying in the R4 summand and parallel to γ+. Let γ be any ray in
E, and let Zi be obtained from X by attaching a 1-handle at infinity
along γi and γ. The manifolds Z0 and Z1 are not properly homotopy
equivalent (in fact, their ends are not properly homotopy equivalent)
since they have nonisomorphic cohomology algebras at infinity [CH14].
The basic idea is that both manifolds Zi have obvious splittings as
ladder sums. For Z0, one summand is R4, so all cup products from
H1(Z0;Z/p) ⊗ H2(Z0;Z/p) are supported in the other summand in a
1-dimensional subspace of H3(Z0;Z/p). However, Z1 has cup products
on both sides, spanning a 2-dimensional subspace.

Our remaining examples are pairs with the same homotopy type,
distinguished by more subtle means.

Example 3.3. We now show that end-summing along a fixed pair
of ends can produce properly homotopy equivalent manifolds with
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different homeomorphism types, and that summing along a line can
produce similar results. Let P and Q, respectively, denote CP 2 and
Freedman’s fake CP 2 (e.g. [FQ90]). Then there is a homotopy equiv-
alence between P and Q, restricting to a pairwise homotopy equiv-
alence between the complements of a ball interior in each. But P
and Q cannot be homeomorphic since Q is unsmoothable. The lad-
der sum L(P,Q) is an unsmoothable topological 5-manifold with two
ends. The lines R × {p} ⊂ R × P and R × {q} ⊂ R × Q can be
chosen to lie in L(P,Q), with each spanning the two ends of L(P,Q),
but they are dual to two different elements of H4(L(P,Q);Z/2) (cf.
[CH14]), with R × {q} dual to the Kirby-Siebenmann smoothing ob-
struction of L(P,Q). Clearly, there is a proper homotopy equivalence
of L(P,Q) interchanging the two lines. Thus, the two resulting ways
to sum L(P,Q) along a line with R × Q (where the orientation on
Q is reversed for later convenience) give properly homotopy equiv-
alent manifolds, namely L(Q#P,Q) and L(P,Q#Q) = L(P, P#P ).
(The last equality follows from Freedman’s classification of simply con-
nected topological 4-manifolds [FQ90].) These two manifolds cannot
be homeomorphic, since the latter is a smooth manifold whereas the
former is unsmoothable, with Kirby-Siebenmann obstruction dual to
a pair of lines running along opposite sides of the ladder. (A discus-
sion of the cohomology of such manifolds can be found in [CH14], but
more simply, there are obvious embedded copies of Q on which the
Kirby-Siebenmann obstruction evaluates nontrivially.)
While it is not surprising that summing on lines representing dif-

ferent cohomology classes can give nonhomeomorphic manifolds, this
example can also be used to elucidate end-sums. Instead of summing
along a line, we can end-sum L(P,Q) with R× Q along their positive
ends in two different ways (using rays obtained from the positive ends
of the previous lines). We obtain a pair of properly homotopy equiva-
lent, unsmoothable, three-ended manifolds. In one case, the modified
end has a neighborhood that is smoothable, and in the other case,
all three ends fail to have smoothable neighborhoods since the Kirby-
Siebenmann obstruction cannot be avoided. Thus, we have a pair of
nonhomeomorphic, but properly homotopy equivalent, manifolds, both
obtained by an orientation-preserving end sum on the same pair of ends.
There are several other variations of the construction. We can replace

the R factor by [0,∞), so that the ladder sum is one-ended, to get an
example of nonuniqueness of summing one-ended topological manifolds
with compact boundary. Unfortunately, we cannot cap off the bound-
aries to obtain one-ended open manifolds, since the Kirby-Siebenmann
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obstruction is a cobordism invariant of topological 4-manifolds. How-
ever, we can modify the original ladder sum so that we do ladder
surgery on the positive end, but end sum on the negative end (which
then has a neighborhood homeomorphic to R × (P#Q)). Now we
have a connected, two-ended open manifold such that the ends can be
joined by an orientation-preserving 1-handle at infinity in two different
ways, yielding properly homotopy equivalent but nonhomeomorphic
one-ended manifolds.
In higher dimensions, the Kirby-Siebenmann obstruction of a neigh-

borhood V of an end cannot be killed by adding 1-handles at infinity
(since H4(V ;Z/2) is not disturbed), but we can do the analogous con-
struction using higher smoothing obstructions. This time, we obtain
pl n-manifolds (for some n ≥ 9) that are properly homotopy equivalent
but not pl homeomorphic. Let P and Q be homotopy equivalent pl

(n− 1)-manifolds with P and Q − {q0} smooth but Q unsmoothable.
(For an explicit 24-dimensional pair, see Proposition 5.1 of [A68].) The
previous discussion applies almost verbatim with pl in place of top,
with the smoothing obstruction in Hn−1(X ; Θn−2) for pl manifolds X
in place of the Kirby-Siebenmann obstruction. The one change is that
smoothability of Q#Q follows since it is the double of the smooth man-
ifold obtained from Q by removing the interior of a pl ball centered at
q0. (This time the orientation reversal is necessary since the smoothing
obstruction need not have order 2.)

Example 3.4. A similar construction shows that end-summing along
a fixed pair of ends can produce pl homeomorphic but nondiffeomor-
phic manifolds. Let Σ be an exotic (n − 1)-sphere with n > 5. The
ladder sum L(Σ, Sn−1) is then a two-ended smooth manifold with a pl

self-homeomorphism that is not isotopic to a diffeomorphism. Since
Σ#Σ = Sn−1, summing L(Σ, Sn−1) along a line with R × Σ gives the
two manifolds L(Sn−1, Sn−1) and L(Σ,Σ). The first of these bounds an
infinite handlebody made with 0- and 1-handles, as does its universal
cover. Since a contractible 1-handlebody is a ball with some boundary
points removed, it follows that the universal cover of L(Sn−1, Sn−1)
embeds in Sn. However, L(Σ,Σ) contains copies of Σ arbitrarily close
to its ends. Since any homotopy (n − 1)-sphere (n > 5) that embeds
in Sn cuts out a ball, so is standard, it follows that no neighborhood
of either end of L(Σ,Σ) has universal cover embedding in Sn. Thus,
the two manifolds have nondiffeomorphic ends, although they are pl-
homeomorphic. As before, we can modify this example to get a pair
of end-sums of two-ended manifolds, or a pair obtained from a two-
ended connected manifold by joining the ends with a 1-handle in two
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different ways. This time however, we can also interpret the example
as end-summing two one-ended open manifolds, by first obtaining one-
ended manifolds with compact boundary, then capping off the bound-
ary. (Note that Σ bounds a compact manifold. Unlike codimension-0
smoothing existence obstructions, the uniqueness obstructions are not
cobordism invariants.)
This construction has an analogue in dimension 4, where the cate-

gories diff and pl coincide. Replace R× Σ by W , Freedman’s exotic
R×S3. This is distinguished from the standard R×S3 by the classical
pl uniqueness obstruction in H3(R×S3;Z/2) ∼= Z/2, dual to R×{p}.
The ladder sum L of W with R× S3 can be summed along a line with
W in two obvious ways. These can be interpreted as smoothings on the
underlying topological manifold L(S3, S3). The smoothings are non-
isotopic (even stably, i.e., after Cartesian product with R), since the
uniqueness obstruction by which they differ is dual to a pair of lines
on opposite sides of the ladder. However, the authors have not been
able to distinguish their diffeomorphism types. The problem with the
previous argument is that the sum of two copies of W along a line is
not diffeomorphic to R×S3 (although the classical invariant vanishes).
WhileW contains a copy of the Poincaré homology sphere Σ separating
its ends, so cannot embed in S4, the sum of two copies of W contains
Σ#Σ, which also does not embed in S4. The effect of summing with
reversed orientation or switched ends, or replacing Σ by a different ho-
mology sphere, is less clear. This leads to the following question, which
is discussed further in Section 4 (Question 5.5).

Question 3.5. Are there two exotic smoothings on R× S3 whose sum
along a line is the standard R× S3?

If such smoothings exist, one of which has the additional property
that every neighborhood of one end has a slice (a, b)× S3 that cannot
smoothly embed in S4, then there are two one-ended open 4-manifolds
that can be end-summed in two homeomorphic but not diffeomorphic
(or pl homeomorphic) ways.

4. Uniqueness for Mittag-Leffler ends

Having examined the failure of uniqueness in the last section, we
now look for hypotheses that guarantee that 1-handle attaching at in-
finity is unique. There are several separate issues to deal with. In the
compact setting, attaching a 1-handle to given boundary components
can yield two different results if both boundary components are ori-
entable, so uniqueness requires specified orientations in that case. The
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same issue arises for 1-handles at infinity. Beyond that, we must con-
sider the dependence on the involved multirays. Since rays in R3 can
be knotted, uncountably many homeomorphism types of contractible
manifolds arise as end-sums of two copies of R3 [My99]. (See also
[CH14].) Thus, we assume more than 3 dimensions and conclude, not
surprisingly, that the multirays affect the result only through their
proper homotopy classes, and that the choices of extensions to tubular
neighborhoods cause no additional difficulties. We have already seen
that different rays determining the same end can still lead to different
results for end-summing with another fixed manifold and ray, but we
find a weak group-theoretic condition on an end that entirely eliminates
dependence on the choice of rays limiting to that end.
We begin with terminology for orientations. We will call an end

ε of a manifold X orientable if it has an orientable neighborhood in
X. An orientation on one connected, orientable neighborhood of ε
determines an orientation on every other such neighborhood, through
the component of their intersection that is a neighborhood of ε. Such a
compatible choice of orientations will be called an orientation of ε, so
every orientable end has two orientations. We let EO ⊂ E(X) denote
the open subset of orientable ends of X. (This need not be closed, as
seen by deleting a sequence of points ofX converging to a nonorientable
end.) For a map γ : S × [0,∞) → X (S discrete), if X is smooth its
tangent bundle pulls back to a trivial bundle γ∗TX over S × [0,∞).
An orientation on this bundle will be called a local orientation of X
along γ, and if such an orientation is specified, γ will be called locally
orienting. If X is pl or topological, we use the same terminology,
using the appropriate analogue of the tangent bundle, or equivalently
but more simply, using local homology Hn(X,X − {γ(s, t)}) ∼= Z. A
homotopy γt of a locally orienting map canonically extends to a 1-
parameter family of locally orienting maps, allowing us to compare
local orientations on γ0 and γ1. If a ray γ determines an orientable end
εγ ∈ EO, then a local orientation along γ induces an orientation on the
end, since γ([k,∞)) lies in a connected, oriented neighborhood of εγ
when k is sufficiently large.
We now turn to the group theory of ends. See [Ge08] for a more

detailed treatment. An inverse sequence of groups is a sequence G1 ←
G2 ← G3 ← · · · of groups and homomorphisms. We suppress the ho-
momorphisms from the notation, since they will be induced by obvious
inclusions in our applications. A subsequence of an inverse sequence is
another inverse sequence obtained by passing to a subsequence of the
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groups and using the obvious composites of homomorphisms. Pass-
ing to a subsequence, and its inverse procedure, together generate the
standard notion of equivalence of inverse sequences.

Definition 4.1. An inverse sequence G1 ← G2 ← G3 ← · · · of groups
is called Mittag-Leffler (or semistable) if for each i ∈ Z+ there is a j ≥ i
such that all Gk with k ≥ j have the same image in Gi.

Clearly, a subsequence is Mittag-Leffler if and only if the original se-
quence is, so the notion is preserved by equivalences. After passing to
a subsequence, we may assume j = i+ 1 in the definition.
For a cat manifold X with a ray γ and a neighborhood system {Ui}

of infinity, we can always reparametrize γ so that γ([i,∞)) lies in Ui

for each i ∈ Z+. (It is more traditional to use proper maps here, but
we lose nothing by restricting to embedded rays.) Then we have:

Definition 4.2. The fundamental progroup of X based at γ is the in-
verse sequence of groups π1(Ui, γ(i)), where the homomorphism π1(Ui+1, γ(i+
1))→ π1(Ui, γ(i)) is the inclusion-induced map to π1(Ui, γ(i+ 1)) fol-
lowed by the isomorphism moving the base point to γ(i) along the arc
γ|[i, i+ 1].

Passing to a subsequence of {Ui} replaces the fundamental progroup
by a subsequence of it. Since any two neighborhood systems of infinity
have interleaved subsequences, the fundamental progroup is indepen-
dent, up to equivalence, of the choice of neighborhood system. It is
routine to check that it is similarly preserved by any proper homotopy
of γ, so it only depends on X and the proper homotopy class of γ.
Furthermore, the inverse sequence is unchanged if we replace each Ui

by its connected component containing γ([i,∞)), so it is equivalent to
use a neighborhood system of the end εγ . Beware, however, that even
if there is only one end, the choice of γ can affect the fundamental
progroup, and even whether its inverse limit vanishes. (See [Ge08] Ex-
ample 16.2.4. The homomorphisms in the example are injective, but
changing γ conjugates the resulting nested subgroups, changing their
intersection.)
We call the pair (X, γ) Mittag-Leffler if its fundamental progroup is

Mittag-Leffler. We will see in Lemma 4.8(a) below that this condition
implies γ is determined up to proper homotopy by its induced end εγ ,
so the fundamental progroup of εγ is well-defined in this case, and it
makes sense to call an end of a manifold Mittag-Leffler. Note that
this condition rules out ends made by ladder surgery, and hence the
examples of Section 3. We will denote the set of Mittag-Leffler ends of
X by EML ⊂ E(X), and its complement by Ebad.
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Many important types of ends are Mittag-Leffler. Simply connected
ends are (essentially by definition) the special case for which the given
images all vanish. Topologically collared ends, with a neighborhood
homeomorphic to R ×M for some compact (n − 1)-manifold M , are
stable, the special case for which the fundamental progroup is equiva-
lent to an inverse sequence with all maps isomorphisms. In the smooth
category, we can analyze ends using a Morse function ϕ that is ex-
hausting (i.e., proper and bounded below). For such a function, the
preimages ϕ−1(i,∞) for i ∈ Z+ form a neighborhood system of infinity.

Proposition 4.3. Let X be a smooth n-manifold. If an end ε of X is
not Mittag-Leffler, then for every exhausting Morse function ϕ on X
and every t ∈ R, there are infinitely many critical points of index n−1
in the component of ϕ−1(t,∞) containing ε. In particular, if X admits
an exhausting Morse function with only finitely many index-(n − 1)
critical points, then all of its ends are Mittag-Leffler.

Proof. After perturbing ϕ and composing it with an orientation-preserving
diffeomorphism of R, we can assume each ϕ−1[i, i+1] is an elementary
cobordism. Let V̄i be the component of ϕ−1[i,∞) containing ε. Since
ε is not Mittag-Leffler, the corresponding fundamental progroup must
have infinitely many homomorphisms that are not surjective. Thus,
there are infinitely many values of i for which V̄i is made from V̄i+1 by
attaching a 1-handle. Equivalently, the cobordism V̄i− Int V̄i+1 is built
from its boundary components in ϕ−1(i) with an (n− 1)-handle, so it
contains an index n− 1 critical point of ϕ. �

Since every Stein manifold of complex dimension m (real dimension
2m) has an exhausting Morse function with indices at mostm, we have:

Corollary 4.4. For every Stein manifold whose complex dimension is
not 1, the unique end of each component is Mittag-Leffler. �

Since the Mittag-Leffler condition on an end of a cat manifold is de-
termined by the underlying topological manifold (in fact, by its proper
homotopy type), we are free to change the smooth structure on a man-
ifold before looking for a suitable Morse function. This is especially
useful in dimension 4. For example, an exhausting Morse function
on an exotic R4 with nonzero Taylor invariant must have infinitely
many index-3 critical points [T97], but after passing to the standard
structure, there is a Morse function with a unique critical point. (Fur-
thermore, an exotic R4 is topologically collared and simply connected
at infinity.) Proposition 4.3 is most generally stated using topologi-
cal Morse functions on topological manifolds. (These are well-behaved
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[KS77] and can be constructed from handle decompositions, which exist
on all open topological manifolds, e.g. [FQ90].)
The main point of our uniqueness theorem is that when we attach 1-

handles at infinity, any locally orienting defining ray that determines a
Mittag-Leffler end will affect the outcome only through the end and lo-
cal orientation it determines. If the end is also nonorientable, then even
the local orientation has no influence. To state this in full generality,
we also allow rays determining ends that are not Mittag-Leffler, which
are required to remain in a fixed proper homotopy class. That is, we
allow an arbitrary multiray γ, but require its restriction to the subset
ε−1γ (Ebad) of the index set S (corresponding to rays determining ends
that are not Mittag-Leffler) to lie in a fixed proper homotopy class. For
1-handles with at least one defining ray determining a nonorientable
Mittag-Leffler end, no further constraint is necessary, but otherwise we
keep track of orientations. For rays we have constrained to a single
proper homotopy class, the local orientation does this. For orientable
Mittag-Leffler ends, we are not given a proper homotopy, but can work
relative to an orientation of the end. We obtain:

Theorem 4.5. For a cat n-manifold X with n ≥ 4, discrete S and
i = 0, 1, let γ−i , γ

+
i : S × [0,∞)↪→X be locally orienting cat multirays

with disjoint images such that the end functions εγ±
i
: S → E(X) are

independent of i. Suppose that

(a) the restrictions of γ−0 and γ−1 to the index subset ε−1
γ−
0

(Ebad) are

properly homotopic,
(b) for each s ∈ ε−1

γ−
0

(Ebad ∪ EO) ∩ ε−1
γ+
0

(Ebad ∪ EO), the local orienta-

tions of the corresponding rays in γ−0 and γ−1 induce the same
orientation of the end if there is one, and otherwise correspond
under the proper homotopy given in (a).

(c) the two analogous conditions apply to γ+
i .

Let Zi be the result of attaching 1-handles to X along γ±i (for any
choice of extension ν±i ). Then there is a cat homeomorphism from Z0

to Z1 sending the submanifold X onto itself by a cat homeomorphism
cat ambiently isotopic in X to the identity map.

It follows that 1-handle attaching is not affected by reparametriza-
tion of the rays (a proper homotopy), or changing the auxiliary diffeo-
morphisms ϕ± and ρ± occurring in the definition (which only results
in changing the parametrization and extension, respectively).

Corollary 4.6. For an oriented cat n-manifold X with n ≥ 4, every
countable family of pairs of Mittag-Leffler ends canonically determines
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a cat manifold obtained from X by attaching 1-handles at infinity to
those pairs of ends, respecting the orientation. �

Corollary 4.7. Every manifold obtained from a Stein manifold X by
attaching 1-handles at infinity, respecting the complex orientation, ad-
mits a Stein structure.

Proof. Since every open, oriented surface admits a Stein structure, we
assume X has real dimension 2m ≥ 4. Since X is Stein, it has an
exhausting Morse function with indices at most m. It can then be
described as the interior of a smooth handlebody whose handles have
index at most m. This is well-known when there are only finitely many
critical points. A proof of the infinite case is given in the appendix
of [G09], which also shows that when m = 2 one can preserve the
extra framing condition that arises for 2-handles. By Corollaries 4.4
and 4.6, we can realize the 1-handles at infinity by attaching compact
handles to the handlebody before passing to the interior (and after
adding infinitely many canceling 0-1 pairs if necessary to accommodate
infinitely many new 1-handles, avoiding compactness issues). Now we
can convert the handlebody interior back into a Stein manifold by
Eliashberg’s Theorem (see [CE12]). �

The proof of Theorem 4.5 follows from two lemmas. First we prove
that multirays with a given Mittag-Leffler end function are unique up
to proper homotopy.

Lemma 4.8 (a). If (X, γ) is a cat Mittag-Leffler pair, then every ray
determining the same end as γ is properly homotopic to γ. In partic-
ular, the Mittag-Leffler condition for ends is independent of choice of
ray, so the subset EML ⊂ E is well-defined.
(b) Let γ0, γ1 : S × [0,∞)↪→X be locally orienting multirays in a cat

manifold, with the same end function. Suppose that this function εγ0 =
εγ1 has image in EML, and that for each s with εγ0(s) ∈ EO, the corre-
sponding locally orienting rays of γ0 and γ1 induce the same orientation
(depending on s) of the end εγ0(s). Then there is a proper homotopy
from γ0 to γ1, respecting the given local orientations.

The first sentence and its converse are essentially Proposition 16.1.2
of [Ge08], which is presented as an immediate consequence of two earlier
statements: Proposition 16.1.1 asserts that the set of proper homotopy
classes of rays approaching an arbitrary end corresponds bijectively to
the derived limit lim1

← π1(Ui, γ(i)) of a neighborhood system Ui of in-
finity; Theorem 11.3.2 asserts that an inverse sequence of countable
groups Gi is Mittag-Leffler if and only if lim1

←Gi has only one element.
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We follow those proofs but considerably simplify the argument, elim-
inating use of derived limits, by focusing on the Mittag-Leffler case.
This reveals the underlying geometric intuition: For a product end
ε, i.e., when there is a neighborhood of ε homeomorphic to R × M ,
use the proper homotopy that is the identity on the first factor, and
on the second precomposes with the homotopy fs(t) = (1 − s)t of
[0,∞). Properness is preserved through the first factor, and any prob-
lems are pushed out to infinity. If ε only has a neighborhood system
with π1-surjective inclusions, first properly homotope the rays to agree
on Z+ ⊂ [0,∞), so they agree up to a proper sequence of loops. Sur-
jectivity again allows us to push these out to infinity. In the general
Mittag-Leffler case, we still have enough surjectivity to push each loop
to infinity after pulling it back a single level in the neighborhood sys-
tem (with properness preserved because we only pull back one level).
The following proof efficiently encodes this procedure with algebra.

Proof. First we prove (a), showing that an arbitrary ray γ′ determin-
ing the same Mittag-Leffler end as γ is properly homotopic to it.
We also keep track of preassigned local orientations along the two
rays. If εγ is orientable, we assume these local orientations induce
the same orientation on εγ (as in (b)). Let {Ui} be a neighborhood
system of infinity, arranged (by passing to a subsequence if necessary)
so that each j is i + 1 in the definition of the Mittag-Leffler condi-
tion, and that the component of U1 containing εγ is orientable if εγ is.
Then reparametrize γ so that each γ([i,∞)) lies in Ui. Reparametrize
γ′ similarly, then arrange it to agree with γ on Z+ by inductively
moving γ′ near each i ∈ Z+ separately, with compact support in-
side Ui. The limiting homotopy is then well-defined and proper. If
εγ is nonorientable, then so is the relevant component of each Ui,
so we can assume (changing the homotopy via orientation-reversing
loops as necessary) that the local orientations along the two rays agree
at each i. (This is automatic when εγ is orientable.) The two rays
now differ by a sequence of orientation-preserving loops, representing
classes xi ∈ π1(Ui, γ(i)) for each i ≥ 1. Inductively choose orientation-
preserving classes yi ∈ π1(Ui, γ(i)) for all i ≥ 2 starting from an arbi-
trary y2, and for i ≥ 1 choosing yi+2 ∈ π1(Ui+2, γ(i + 2)) to have the
same image in π1(Ui, γ(i)) as x−1i+1yi+1 ∈ π1(Ui+1, γ(i + 1)). (This is
where the Mittag-Leffler condition is necessary.) For each i ≥ 1, let
zi = xiyi+1 ∈ π1(Ui, γ(i)) (where we suppress the inclusion map). In
that same group, we then have ziz

−1
i+1 = xiyi+1y

−1
i+2x

−1
i+1 = xi. After

another proper homotopy, we can assume the two rays and their in-
duced local orientations on X agree along 1

2
Z+ and give the sequence



ON UNIQUENESS OF END-SUMS AND 1-HANDLES AT INFINITY 19

z1, z
−1
2 , z2, z

−1
3 , . . . in U1, U1, U2, U2, . . . . Now a proper homotopy fixing

Z+ + 1
2
cancels all loops between these points, so that the two rays

coincide. This completes the proof of (a), and also (since EML is now
well-defined) (b) when S is a single point.
For the general case of (b), fix a neighborhood system {Ui} as be-

fore. We wish to apply the previous argument to each pair of of rays
separately, letting γ be the given ray in γ0. (Note that each resulting
(X, γ) is now a Mittag-Leffler pair.) After reparametrizing each ray
suitably, we can assume [1,∞) maps into an orientable component of
some Ui whenever the associated end is orientable. Since the multirays
are proper, each Ui contains all but finitely many pairs of rays. Thus,
for each pair, we can apply the previous paragraph with the indexing
of {Ui} shifted, so that the argument applies to all pairs simultane-
ously with each step of each inductive argument involving only finitely
many rays. This guarantees that properness is maintained, so the proof
works as before. �

Remark. To see the correspondence with the geometric description,
first consider the case with all inclusion maps π1-surjective. Then the
argument simplifies: We can just define z1 = 1, and inductively choose
zi+1 to be any pullback of x−1i zi. Then zi is a pullback of (x1 · · ·xi−1)−1,
exhibiting the loops being transferred toward infinity.

To upgrade our proper homotopy to an ambient isotopy, we need the
following lemma.

Lemma 4.9. Suppose that X is a cat n-manifold with n ≥ 4 and
Y is a cat 1-manifold with a closed subset C ⊂ Int Y . Let Γ: I ×
Y ↪→ IntX be a topological proper homotopy, between cat embeddings
γ0 and γ1 that extend to cat embeddings νi : Y ×Rn−1↪→X whose local
orientations correspond under Γ. Then there is a cat ambient isotopy
Φ: I ×X → X, supported in a preassigned neighborhood of ImΓ, such
that Φ0 = idX and Φ1 ◦ ν0 agrees with ν1 on a neighborhood of C ×{0}
in Y × Rn−1.

To see the subtlety of this lemma, note that the corresponding state-
ment in R3 is false even with Γ a proper isotopy of Y = R: The isotopy
Γ can slide a knot out to infinity, changing the fundamental group of
the complement, and this can even be done while fixing the integer
points of R.

Proof. We modify Γ in stages. To avoid technicalities regarding flatness
of νi(∂Y ×Rn−1), we shorten Y slightly, removing a neighborhood of ∂Y
disjoint from C. Then we apply cat general position: After an ambient
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isotopy of γ0 (which becomes the first stage of Φ), we can assume the
images of γ0 and γ1 are disjoint. After a further C

0-small (hence proper)
isotopy of Γ rel {0, 1}×Y , we can assume Γ is a flat cat embedding of
I × Y , except for isolated double points when n = 4. Since the image
of Γ is now a 2-complex, it has a neighborhood W with no smoothing
obstructions, and we can upgrade the cat structure on W to a smooth
structure into which Γ is a smooth map of some smoothing of Y . (Use
the embeddings νi to define the smoothing near Γ|({0, 1}× Y ), extend
the smoothing over W , then smooth Γ by a C0-small homotopy rel
{0, 1} × Y . This will introduce more double points when n = 4.) Now
decompose Y as a cell complex with 0-skeleton Y0. We can assume Γ
restricts to a smooth embedding on some neighborhood N of I × Y0.
Define Φ on [0, 1

2
]× Y by extending Γ|N to a smooth ambient isotopy

supported in W , working in disjoint compact neighborhoods of the
components of N so that the Isotopy Extension Theorem applies. Now
it suffices to assume Γ fixes a neighborhood of Y0, and view Γ as a
countable collection of path homotopies of the 1-cells of Y . We need
the resulting immersed 2-disks to be disjoint. This is automatic when
n > 4, but is the step that fails for knotted lines in R3. For n = 4,
we push the disks off of each other by finger moves. This operation
preserves properness of Γ since each compact subset of X intersects
only finitely many disks, which have only finitely many intersections
with other disks (and we do not allow finger moves over other fingers).
Now we can extend to an ambient isotopy, working in disjoint compact
neighborhoods of the disks. Since the construction is smooth in W , the
proof is completed via uniqueness of tubular neighborhoods. �

Proof of Theorem 4.5. For each i = 0, 1, the two multirays γ−i and
γ+
i can be thought of as a single multiray γi with index set S∗ =

S × {−1, 1}. For each index (s, σ) ∈ ε−1γ0 (EO) ⊂ S∗, we arrange for the
corresponding locally orienting rays in γ0 and γ1 to induce the same
orientation of the end: If this is not already true, then Hypothesis
(b) of the theorem implies that the opposite end εγ0(s,−σ) is Mittag-
Leffler but nonorientable. In this case, reverse the local orientations
along both rays in γ1 parametrized by s. This corrects the orientations
without changing Z1, since the change extends as a reflection of the
1-handle {s} × [0, 1]× Rn−1. Now split γi into two multirays γML

i and
γbad
i , according to whether the rays determine Mittag-Leffler ends. By

Hypothesis (a), we have a proper homotopy from γbad
0 to γbad

1 , which re-
spects the local orientations by Hypothesis (b) after possible flips when
the opposite end is Mittag-Leffler but nonorientable. Lemma 4.8 then
gives a proper homotopy from γML

0 to γML
1 respecting local orientations.
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Reassembling the multirays, we obtain a proper homotopy from γ0 to
γ1 that respects local orientations. Now we apply Lemma 4.9 with
Y = S∗ × [0,∞), C = S∗ × [1,∞), and νi being the given extension of
γi. We obtain a cat ambient isotopy Φ of idX such that Φ1 ◦ ν0 agrees
with ν1 on a neighborhood N of S∗ × [1,∞). Note that the quotient
space Zi does not change if we cut back the 1-handles S∗× [0, 1]×Rn−1

to any neighborhood N ′ of S∗×{1
2
}×Rn−1 and use the restricted glu-

ing map. Recall that the gluing map factors through an Rn−1-bundle
map idS∗ ×ϕ± × ρ± to S∗ × [0,∞) × Rn−1. We can assume that the
resulting image of N ′ lies in some disk bundle inside S∗× [1,∞)×Rn−1.
A smooth ambient isotopy supported inside a larger disk bundle moves
this image into N . Conjugating with νi gives a cat ambient isotopy
Ψ(i) on X. Then Φ′ = Ψ−1(1) ◦Φ◦Ψ(0) is a cat ambient isotopy for which

Φ′1 ◦ ν0 agrees with ν1 on N ′. The cat homeomorphism Φ′1 extends to
one sending Z0 to Z1 with the required properties. �

We can now address uniqueness of ladder surgeries. Note that their
definition immediately extends to unoriented manifolds, provided that
we use locally orienting multirays.

Corollary 4.10. For a cat manifold X, discrete S and i = 0, 1, let
γ±i : S × [0,∞)↪→X be locally orienting cat multirays with disjoint
images such that the end functions εγ±

i
: S → E(X) are independent of

i. Suppose that for each s ∈ ε−1
γ−
0

(EO) ∩ ε−1
γ+
0

(EO), the local orientations

of the corresponding rays in γ±i induce the same orientation of the end
for i = 0, 1. Then the manifolds Zi obtained by ladder surgery on X
along γ±i are cat homeomorphic.

Proof. We can assume that each ray of γ±0 determining an orientable
end induces the same orientation of that end as the corresponding ray
of γ±1 , after reversing orientations on some mated pairs of rays (with
the mate determining a nonorientable end). Since the end functions
are independent of i, there is a proper homotopy of γ±0 for each choice
of sign, after which γ±i (s, n) is independent of i for each s ∈ S and
n ∈ Z+. We can assume the local orientations agree at each of these
points, after possibly changing the homotopy on each ray determining
a nonorientable end. The proper homotopy of γ±0 |S × Z+ extends to
an ambient isotopy as in the proof of Lemma 4.9, without dimensional
restriction (since we only deal with the 0-skeleton Y0). �
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5. Smoothings of open 4-manifolds

Recall from Section 2 that end-summing with an exotic R4 can be
defined as an operation on the smooth structures on a fixed topo-
logical 4-manifold, and that one can similarly change smoothings on
n-manifolds by summing with an exotic R × Sn−1 along a properly
embedded line. (The latter is most interesting when n = 4, but the
comparison with higher dimensions is illuminating.) We now address
uniqueness of both operations, expressing them as monoid actions on
the set of isotopy classes of smoothings of a topological manifold.
We first consider end-summing with exotic R4’s. In [G85], it was

shown that the set R of oriented diffeomorphism types of smooth
manifolds homeomorphic to R4 admits the structure of a commuta-
tive monoid under end-sum, with identity R4, and such that countable
sums are well-defined and independent of order and grouping. (The
operation is defined as simultaneously end-summing onto the standard
R4 along a multiray in the latter, so Lemma 4.9 completes the proof.)
For any set S, the cartesian product RS inherits a monoid structure
with the same properties, as does the submonoid RS

c of S-tuples that
are the identity except in countably many coordinates. For any monoid
M with such properties, we define an action on a set S by analogy with
group actions, but allowing infinite iteration: An action is an assign-
ment of a function S → S to each countable family F of elements of
M, in such a way that the same function results from any F ′ obtained
by partitioning F into disjoint subfamilies and summing within each
subfamily. (That is, the action is compatible with infinite summing in
the monoid, analogously to group actions.) We also require any fam-
ily consisting of just the identity to yield idS . We obtain the following
corollary of the lemmas of the previous section. We again split a multi-
ray γ : S× [0,∞)→ X into two multirays γML : SML× [0,∞)→ X and
γbad : Sbad × [0,∞)→ X, according to whether each ray determines a
Mittag-Leffler end.

Corollary 5.1. Let X be a topological 4-manifold with a locally orient-
ing multiray γ : S × [0,∞)→ X. Then γ determines an action of RS

on the set S(X) of isotopy classes of smoothings of X. The action only
depends on the proper homotopy class of γbad, the function εγML

, and
the subset of SML inducing a preassigned orientation on the orientable
ends. In particular, if X is oriented (or orientations are specified on all

orientable Mittag-Leffler ends) then the monoid REML(X)
c acts canoni-

cally on S(X).
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Note that orientation reversal induces an involution on the monoid R,
and changing the local orientations of γ changes the action by compos-
ing with this involution on the affected factors of RS.

Proof. To define the action, start with a smoothing on X and a fam-
ily {Rs|s ∈ S} of elements of R. According to Quinn ([Q82], cf. also
[FQ90]), γ can be made smooth by a topological ambient isotopy. For
each s ∈ S, choose a smooth ray γ′ in Rs, and use it to sum Rs with
X along the corresponding ray in X. We do this by homeomorphi-
cally identifying the complement of a tubular neighborhood of γ′ (with
smooth R3 boundary) with a corresponding closed tubular neighbor-
hood of the ray in X (preserving orientations), then transporting the
smoothing of Rs to X. We assume the identification is smooth near the
boundary R3’s, and then the smoothing fits together with the given one
on the rest of X. This process can be performed simultaneously for all
s ∈ S, as long as we keep the neighborhoods of the rays in X disjoint.
Each ray γ′ is unique up to smooth ambient isotopy (Lemma 4.9), and
the required identifications of neighborhoods (homeomorphic to the
half-space [0,∞) × R3) are unique up to topological ambient isotopy
that is smooth on the boundary (by the Alexander trick), so the result-
ing isotopy class of smoothings on X is independent of choices in the Rs

summands. Similarly, the resulting smoothing changes by an isotopy if
the original smoothing is isotoped or γ is changed by a proper homo-
topy (Lemma 4.9 again). In particular, the initial choice of smoothing
of γ does not matter. Since the proper homotopy class of the locally
orienting multiray γML is determined by εγML

and the orientation data
(Lemma 4.8(b)), we have a well-defined function S(X)→ S(X) deter-
mined by an element of RS and the data given in the corollary.
We extend to countable families from RS by first summing them

together in RS and then using the previous procedure. That is, for
each s ∈ S we first sum the corresponding elements of R by end-
summing them into the standard R4, then end-sum the result into X .
Since end-summing with R4 is the identity operation, this procedure is
equivalent to summing the elements of R directly into X along parallel
copies of γ. We have an action as defined above since the monoid
operation is independent of order and grouping (which again follows
since summing with R4 is the identity). If we enlarge S while requiring
the new manifolds Rs to all be R

4, the induced element of S(X) is
unchanged, so it is easy to deduce the last sentence even when EML is
uncountable. �
In contrast with more general end-sums, the action of RS on S(X)

is not known to vary with the choice of proper homotopy class of γ.



24 JACK S. CALCUT AND ROBERT E. GOMPF

Question 5.2. Suppose that two locally orienting multirays in X have
the same end function, and that for each s ∈ S, the two corresponding
rays induce the same orientation on the induced end, if it admits one.
Can the two actions of RS on S(X) be different?

We can also ask about diffeomorphism types; cf. Question 1.2. Clearly,
any negative example must involve ends that fail to be Mittag-Leffler,
such as those arising by ladder surgery. While such examples seem
likely to exist, there are also reasons for caution, as we now discuss.
First, not all exotic R4’s can give such examples. Freedman and

Taylor [FT86] constructed a “universal” R4, RU ∈ R, which is charac-
terized as being the unique fixed point of the R-action on R4. They
essentially showed that for any smoothing Σ of a 4-manifold X, the
result of end-summing with copies of RU depends only on the subset
of E(X) at which the sums are performed, regardless of whether those
ends are Mittag-Leffler. Then R subsequently acts trivially on each of
those ends. They also showed that the result of summing with RU on a
dense subset of ends creates a smoothing depending only on the stable
isotopy class of Σ (classified by H3(X;Z/2)). For such a smoothing,
RS acts trivially for any choice of multiray. The main point is that the
universal property is obtained through a countable collection of com-
pact subsets of RU that allow smooth surgery problems to be solved.
If X is summed with RU on one side of a ladder sum (for example),
those compact subsets are also accessible on the other side by reaching
through the rungs of the ladder.
A second issue is that negative examples would be subtle and hard

to distinguish:

Proposition 5.3. Let X be a topological 4-manifold with smoothing
Σ. Let γ0, γ1 : S × [0,∞) → X be multirays as in the above question,
inducing smoothings Σ0 and Σ1, respectively, via a fixed element of
RS. Then for every smooth, compact 4-manifold K, every Σ0-smooth
embedding ι : K → X is topologically ambiently isotopic to a Σ1-smooth
embedding. Every neighborhood of infinity in X contains another such
neighborhood U such that whenever ι(K) ⊂ U and K is a 2-handlebody,
the resulting isotopy can be assumed to keep ι(K) inside U .

This shows that many of the standard 4-dimensional techniques for
distinguishing smooth structures will fail in the above situation. One
of the oldest techniques for distinguishing two smoothings on R

4 is
to find a compact submanifold that smoothly embeds in one but not
the other [G85]. A newer incarnation of this idea is the Taylor in-
variant [T97], distinguishing via exotic R

4’s embedding with compact
closure. Clearly, such techniques must fail in the current situation.
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Most recently, the genus function has turned out to be useful [G13],
distinguishing by the minimal genera of smoothly embedded surfaces
representing various homology classes. However, any such surface for
Σ0 will be homologous to one of the same genus for Σ1 and vice versa.
Minimal genera at infinity [G13] will also fail: If we choose a system
of neighborhoods of infinity as in the proposition, any corresponding
sequence of Σ0-smooth surfaces in these will be isotopic to a correspond-
ing sequence for Σ1 with the same genera. A possibility remains of dis-
tinguishing Σ0 and Σ1 by sequences of smoothly embedded 3-manifolds
approaching infinity (such as by the engulfing index of [BG96], cf. also
Remark 4.3(b) of [G13]), but there does not currently seem to be any
good way to analyze such sequences. Note that the situation is not im-
proved by passing to a cover, since the corresponding lifted smoothings
will behave similarly. (The multirays γi will lift to multirays, cf. proof
of Theorem 8.1 in [G13], and for each s ∈ S the lifts of the correspond-
ing rays of γ0 and γ1 will have end functions whose images have the
same closure in E(X̃). The proof below still applies to this situation.)

Proof. For the first conclusion, let νi : S × [0,∞) × D3 → R be the
extensions of the multirays γi used for the end-sums. (Recall that
this variation of end-summing uses closed tubular neighborhoods.) By
properness, both subsets ν−1i ι(K) are contained in a single subset of
the form T = S0 × [0, n] ×D3 for some finite S0 ⊂ S and n ∈ Z. For
each s ∈ S0, the corresponding rays of γ0 and γ1 determine the same
end, and induce the same orientation on it if possible. Thus, there is a
Σ-smooth ambient isotopy Φt with Φ1 ◦ γ0(s, n) = γ1(s, n) for all such
s, with the local orientations agreeing at these points, and such that
ν−11 Φ1ι(K) still lies in T . After further isotopy, we can assume that
Φ1 ◦ ν0 = ν1 on T . After we perform the end-sums, the isotopy will
only be topological. However, Φ1 will be smooth on ι(K) as required,
since the new smoothings correspond under Φ1 on the images of T and
the smoothing Σ is preserved elsewhere on ι(K).
Now given a neighborhood of infinity, pass to a smaller neighborhood

U such that the two subsets ν−1i (U) are equal, with complement of the
form S1 × [0, m] × D3 for some finite S1 and m ∈ Z+. For any K
and ι with ι(K) ⊂ U , we can repeat the previous argument. There
is only one difficulty: If K = M3 × I, for example, some sheets of M
may be caught between ∂U and the moving image of γ0 during the
final isotopy, and be pushed out of U . However, if K is a handlebody
with all indices 2 or less, we can remove the image of K from the path
of γ0 (which will be following arcs of γ1) by transversality. The final
statement now follows as before. �
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Next we consider sums along properly embedded lines. For a fixed
n ≥ 4, let Q denote the set of oriented diffeomorphism types of man-
ifolds homeomorphic to R × Sn−1, with a given ordering of their two
ends. Each such manifold admits a proper embedding of a line, pre-
serving the order of the ends, and this is unique up to ambient isotopy
by Lemma 4.9. Thus, Q has a well-defined commutative monoid struc-
ture induced by summing along lines, preserving orientations on the
lines and n-manifolds. (This time, properness prevents infinite sums.)
The identity is R× Sn−1 with its standard smoothing. For n > 4, Q is
canonically isomorphic to the finite group Θn−1 of homotopy (n − 1)-
spheres [KM63] (by taking their product with R), but when n = 4,
Q has much more structure. High-dimensional theory predicts that
Q should be Z/2, but in fact it is an uncountable monoid with an
epimorphism to Z/2 (analogous to the Rohlin invariant of homology
3-spheres). Uncountability is already suggested by Corollary 5.1, but
the structure of Q is richer than can be obtained just by summing
with exotic R4’s. For example, there is an uncountable subfamily in
Q indexed by R, with the property that for any two elements Σ and
Σ′, no subset of Σ that is homeomorphic to R× S3 and separates the
ends of Σ can smoothly embed in Σ′, and vice versa. (Take the sub-
family with st = 1 in the final remarks of [G85], Section 3.) Thus, no
two elements of the family are obtained from a common third element
by end-summing with exotic R4’s. To obtain an action on S(X) for
n ≥ 4, let γ : S × R → X (S discrete) be a flat, proper, locally ori-
enting topological embedding. Then QS has a well-defined action on
S(X) (although without infinite iteration) by the same method as be-
fore, and this only depends on the proper homotopy class of γ. (To see
that a self-homeomorphism rel boundary of R×Dn−1 is isotopic to the
identity, first use the topological Schoenflies Theorem to reduce to the
case where {0} ×Dn−1 is fixed.) Note that while Q admits only finite
sums, the set S may be countably infinite. Example 3.4 showed that
the action of Q on S(X) for a two-ended 4-manifold X can depend on
the choice of line spanning the ends, and in high dimensions, even the
resulting diffeomorphism type can depend on the line. We next find
fundamental group conditions eliminating such dependence.
To obtain such conditions, note that the fundamental progroup of

X based at a ray γ has an indirect limit with well-defined image in
π1(X, γ(0)). (Its image equals the image of π1(U2, γ(2)) for a suitably
defined neighborhood system of infinity.) If γ is instead a line, it splits
as a pair γ± of rays, obtained by restricting its parameter ±t to [0,∞),
determining ends ε± and images G± ⊂ π1(X, γ(0)) of the corresponding
indirect limits. We will call (ε−, ε+) a Mittag-Leffler end-pair if the
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double coset space G−\π1(X, γ(0))/G+ is trivial. The proof below
shows that γ is then uniquely determined up to proper homotopy by
the end-pair, so the condition is independent of choice of γ (as well as
the direction of γ). A proper embedding γ : S×R→ X now splits into
γML and γbad according to which lines connect Mittag-Leffler end-pairs,
and the function εγML

: S × {±1} → EML picks out the corresponding
pairs. For simplicity, we now assume X is orientable.

Corollary 5.4. Let X be an oriented topological n-manifold (n ≥ 4)
with a flat, proper embedding γ : S × R → X. Then γ determines
an action of QS on S(X). The action only depends on the proper
homotopy class of γbad and the function εγML

.

If X is simply connected and EML is finite, we obtain a canonical ac-
tion of QEML×EML on S(X). In the infinite case, the situation is more
complicated, since there is no proper embedding connecting all pairs
of subsets (or even connecting a single end to all others).

Proof. For a proper embedding γ of R determining a Mittag-Leffler end-
pair ε± as above, we first show that any other embedding γ′ determining
the same ordered pair of ends is properly homotopic to γ. Let {Ui}
be a neighborhood system of infinity as in the proof of Lemma 4.8,
and reparametrize the four rays γ± andγ′± accordingly (fixing 0). As
before, we can properly homotope γ′ to agree with γ on Z ⊂ R, so
that γ and γ′ are related by a doubly infinite sequence of loops. The
loop captured between ±2 (starting at γ(0), then following γ−, γ′ and
(backwards) γ+) represents a class in π1(X, γ(0)) that by hypothesis
can be written in the form w−w+ with w± ∈ G±. After a homotopy of
γ′ supported in [−2, 2], we can assume that γ′ = γ on [−1, 1], and the
innermost loops are given by w± pulled back to π1(U1, γ(±1)). Working
with each sign separately, we now complete the proof of Lemma 4.8,
denoting the pullback of w± by x1 as before. By the definition of G±,
x1 can be assumed to pull back further to π1(U2, γ±(2)); let y2 be the
inverse of such a pullback. Completing the construction, we see that
z1 = 1, so that γ′ is then properly homotoped to γ rel [−1, 1].
Now that Mittag-Leffler pairs are well-defined, Corollary 5.4 follows

from the discussion preceding it once we verify that γML only affects the
answer through its end function. This follows as for Lemma 4.8. �
Corollary 5.4 is most interesting when n = 4, since classical smooth-

ing theory reduces the higher dimensional case to discussing the Poincaré
duals of the relevant lines in Hn−1(X ; Θn−1). When n = 4, this
same discussion applies to the classification of smoothings up to sta-
ble isotopy (isotopy after product with R), by the obstruction group
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H3(X;Z/2), but one typically encounters uncountably many isotopy
classes within each stable isotopy class. Note that the above method
can be used to study sums of more general cat manifolds along collec-
tions of lines. In dimension 4, one can also consider actions on S(X)
of the monoid Qk of oriented smooth manifolds homeomorphic to a
k-punctured 4-sphere Σk with an order on the ends, generalizing the
cases Q1 = R and Q2 = Q considered above. (The monoid operation is
summing along k-fold unions of rays with a common endpoint; see the
end of [G89] for a brief discussion.) However, little is known about this
monoid beyond what can be deduced from Corollaries 5.1 and 5.4 and
the structure of R and Q. It follows formally from having infinite sums
that R has no nontrivial invertible elements, and no nontrivial homo-
morphism to a group [G85]. However, the other monoids do not allow
infinite sums. This leads to the following reformulation of Question 3.5:

Question 5.5. Does Q (or more generally any Qk) have any nontrivial
invertible elements? Is H3(Σk;Z/2) the largest possible image of Qk

under a homomorphism to a group?

6. 1-handle slides and 0/1-handle cancellation at infinity

Our uniqueness result for adding 1-handles at infinity (Theorem 4.5)
readily establishes a uniqueness result for adding both 0- and 1-handles
at infinity. For compact handles of index 0 and 1, one may easily con-
struct countable sums where the results are connected and contractible,
but are distinguished by their numbers of ends. In this regard, adding
0- and 1-handles at infinity turns out to be simpler. For instance, in
each dimension at least four, every (at most) countable, connected,
and oriented sum of 0- and 1-handles at infinity is determined by its
first Betti number. As an application of this uniqueness result, we then
give a very natural and partly novel proof of the hyperplane unknotting
theorem. The novelty here is that 0- and 1-handles at infinity provide
the basic framework in which we employ Mazur’s infinite swindle.

Throughout this section, all manifolds are oriented and all handle
additions respect orientations.

Let X be a not necessarily connected cat n-manifold where n ≥ 4.
Add to X a collection of 0-handles at infinity Z =

⊔
i∈J zi where each

zi is cat homeomorphic to Rn. The index set J and all others below
are discrete and countable. Attach to X � Z a collection of 1-handles
at infinity H =

⊔
i∈S hi where each hi is cat homeomorphic to Rn (see

Figure 2). By Definition 2.1 and Theorem 4.5, H is given by multiray
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z 1 
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z 5 z 6 

X
h 1 

h 2 

h 4 

h 9 

h 3 

h 5 

h 6 

h 7 

h 8 

h 10 

h 11 

h 12 h 13 

Figure 2. Manifold X with added 0- and 1-handles at
infinity, the latter denoted by arcs.

data γ−, γ+ : S × [0,∞)↪→X � Z with disjoint images.

To this data, we associate a graph G defined as follows (see Figure 3).
Let vi, i ∈ I, be the proper homotopy classes of the rays in the multiray

v 1 

v 2 

v 3 

v 4 

v 5 

z 1 

z 2 

z 3 

z 4 

z 5 
z 6 

C 1 

C 2 

C 3 

D 1 

P 1 = {v 1 , v 2 , v 4}

P 2 = {v 3}

P 3 = {v 5}

Figure 3. Graph G associated to the sum in Figure 2,
and induced partition of the vertices vi in X .

data forH that lie inX. Each vi has a representative of the form γ−(ji)
or γ+(ji) for some ji ∈ S. The vertex set V of G is:

V := {vi | i ∈ I} � {zi | i ∈ J} .
The edges E of G are bijective with the 1-handles at infinity H and,
thus, are indexed by S. The edge ei, i ∈ S, corresponding to hi is
formally defined to be the multiset of vertices in V determined by the
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multiray data of hi. In particular, E itself is a multiset, and the graphG
is countable, but is not necessarily locally finite, connected, or simple.
Indeed, G may have mutiple edges and loops. Let C =

⊔
i∈I(C)Ci be

the connected components of G such that each component Ci contains
a vertex vj(i) in X. Let D =

⊔
i∈I(D)Di be the remaining components

of G where each component Di contains no vertex vj in X . Notice
that C induces a partition P = {Pj | j ∈ I(C)} of {vi | i ∈ I} where
Pj is the subset of vertices in {vi | i ∈ I} that lie in Cj . Below, Betti
numbers bk are finite or countably infinite.

Theorem 6.1. The cat oriented homeomorphism type of the result Y
of adding Z and H to X is determined by:

(a) The set of pairs (Pj , b1 (Cj)) where Pj ∈ P.
(b) The multiset with elements b1(Di) where i ∈ I(D).

Proof. First, consider a component Di of G. Let M denote the compo-
nent of Y corresponding to Di. By Corollary 4.6, we can and do assume
that the rays used to attach 1-handles at infinity in M are radial (while
still remaining proper and disjoint). In case Di is a tree, M is a nested
union of n-disks and hence is a copy of Rn. In general, a spanning tree
T of Di determines a copy of Rn in M (namely, one ignores a subset
of the 1-handles at infinity). Thus, M is Rn with b1(Di) 1-handles at
infinity attached. By Corollary 4.6, such a manifold is determined by
b1(Di).

Second, consider a component Cj of G. Let N denote the component
of Y corresponding to Cj. Let N

′ be the n-manifold obtained from N
as follows. For each vertex vk in Cj, introduce a 0/1-handle at infinity
pair where the new 1-handle at infinity attaches to a ray in the class
vk and to a ray in the new 0-handle at infinity. Also, the 1-handles at
infinity in N attached to rays in the class of vk attach in N ′j to rays
in the new 0-handle at infinity. Theorem 4.5 implies that N and N ′

are cat oriented homeomorphic. The graph C ′j corresponding to N ′

is obtained from Cj by adding a leaf to each vk. Let T be a spanning
tree of the connected graph obtained by removing the new leaves from
C ′j. Then, T determines a copy of Rn in N ′. This exhibits N ′ as: the
components of X containing the vertices in Pj , a single 0-handle at
infinity z0, b1(Cj) oriented 1-handles at infinity attached to z0, and an
oriented 1-handle at infinity from each vk ∈ Pj to z0. �
As an application of 1-handle slides and 0/1-handle cancellation at

infinity, we prove the hyperplane unknotting theorem of Cantrell [C63]
and Stallings [St65].
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Theorem 6.2. Let f : Rn−1 → Rn be a proper cat embedding where
n ≥ 4, and let H = f (Rn−1). Then, there is a cat homeomorphism
of Rn that carries H to a linear hyperplane.

A cat proper ray in Rk is unknotted provided there is a cat home-
omorphism of Rk that carries the ray to a linear ray. Recall that
each cat proper ray in Rk, k ≥ 4, is unknotted. For cat=pl and
cat=diff, this fact follows from general position, but for cat=top it
is nontrivial and requires Homma’s method (see [CKS12, § 7]). Thus,
the following holds under the hypotheses of Theorem 6.2 by taking r
to be the image under f of a linear ray in Rn−1.

Ray Hypothesis. There is a cat proper ray r ⊂ H that is unknotted
in both H and Rn where the former means f−1(r) is unknotted in Rn−1.

The hyperplane H separates Rn into two connected components by
Alexander duality. Let A′ and B′ denote the closures in Rn of these
two components as in Figure 4. So, ∂A′ = H = ∂B′, and H has a

H

R
A'

B'

n

r

(A, r ) 

(B, r ) 

a

b

Figure 4. Closures A′ and B′ of the complement of H
in Rn (left) and their unions A and B with open collars
on H (right).

bicollar neighborhood in Rn. Using the bicollar, define:

A :=A′ ∪ (open collar on H in B′)

B :=B′ ∪ (open collar on H in A′)

as in Figure 4. Figure 4 also depicts cat proper rays a ⊂ A and b ⊂ B
that are radial with respect to the collarings. Evidently, a and b are
cat ambient isotopic to r in A and B respectively (these simple iso-
topies have support in a neighborhood of the open collars).

Lemma 6.3. It suffices to show that A′ and B′ are cat homeomorphic
to closed upper half-space Rn

+.
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Proof. We are given cat homeomorphisms g : A′ → Rn
+ and h : B′ →

Rn
+. Replace h with its composition with a reflection so that h : B′ →

Rn
−. Note that g and h need not agree pointwise on H . Identify Rn−1×
{0} with Rn−1. We have a cat homeomorphism j : Rn−1 → Rn−1 given
by the restriction of g ◦ h−1 to Rn−1. Define the cat homeomorphism
k : B′ → Rn

− by k = (j × id) ◦ h (that is, compose h with j at
each height). Now, g and k agree pointwise on H . For cat=top

and cat=pl, the proof of the lemma is complete. For cat=diff, one
smooths along collars as in Hirsch [H94, Thm. 1.9, p. 182]. �
We will use the symbols in Figure 5 to denote the indicated mani-

fold/ray pairs. Here, c is a radial ray in Rn. All rays in this proof will

= (A,a) ≅ (A,r)

= (B,b) ≅ (B,r)

= (R ,c)n

Figure 5. Notation for relevant manifold/ray pairs.

be parallel (cat ambient isotopic) to r or c (these include a and b). An
added 1-handle at infinity will be denoted by an arc connecting such
symbols as in Figure 6.

Lemma 6.4. All three of the manifold/ray pairs in Figure 6 are cat

homeomorphic to one another.

≅ ≅

Figure 6. Isomorphic manifold/ray pairs.

Proof. First, adding a 1-handle at infinity to (A, a) � (B, b) yields Rn.
To see this, recall Figure 4 and choose the tubular neighborhood maps
for the 1-handle at infinity to be the full collars in the Rn−1 direc-
tions. Next, let a′ and b′ be the indicated rays in Figure 6 parallel to a
and b respectively. The lemma follows by shrinking the above tubular
neighborhood maps in the Rn−1 directions to be disjoint from a′ and b′

respectively. �
Lemma 6.5. It suffices to prove that (A, a) and (B, b) are cat home-
omorphic as pairs to (Rn, c).
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Proof. First, consider the cases cat=diff and cat=pl. The collar on
H in A is a cat closed regular neighborhood of a in A with bound-
ary H . Using the hypothesis (A, a) ∼= (Rn, c), apply uniqueness of
such neighborhoods in (Rn, c) to see that A′ is cat homeomorphic to
Rn

+. Similarly, we get B′ is cat homeomorphic to Rn
+. Now, apply

Lemma 6.3.

For cat=top, we are given a homeomorphism g : (A, a) → (Rn, c).
Let V ∼= Rn

+ be the collar added to A′ along H to obtain A as in
Figure 4. Let U ∼= Rn

+ be a collar on H in A on the opposite side of
H as in Figure 7. Recall that Rn itself is an open mapping cylinder

H

(A, a ) ( Rn, c ) 

a
V {
U {

g

c

≅

Figure 7. Homeomorphic manifold/ray pairs (A, a)
and (Rn, c). Also depicted are the hyperplane H , the
collar V added to A′ to obtain A, a collar U on the other
side of H , and their images in Rn.

neighborhood of c in R
n (see [KR63] and [CKS12, pp. 1816,1831]).

Similarly, U ∪ V is an open mapping cylinder neighborhood of a in
U ∪ V . So, g(U ∪ V ) is another open mapping cylinder neighborhood
of c in Rn. Uniqueness of such neighborhoods (see [KR63] and [CKS12])
implies there exists a homeomorphism h : g(U ∪ V ) → Rn that fixes
g(V ) pointwise. Therefore:

g(U) ∼= R
n − Intg(V ) = g(A′).

Hence, A′ ∼= U ∼= Rn
+. Similarly, B′ is homeomorphic to Rn

+. Again,
Lemma 6.3 completes the proof. �
Finally, we come to the heart of the proof of the hyperplane unknot-

ting theorem. Mazur’s infinite swindle [M59] is realized as 1-handle
slides and 0/1-handle cancellations at infinity. Figure 8 proves that
(A, a) is cat homeomorphic to (Rn, c). In Figure 8, the horizontal
region is a copy of Rn. The first, third, and fifth isomorphisms in
Figure 8 hold by Theorem 6.1. The second and fourth isomorphisms
hold by Lemma 6.4. With (A, a) ∼= (Rn, c), Figure 6 implies that
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≅

≅

≅

≅

≅

Figure 8. Mazur’s infinite swindle as 1-handle slides
and 0/1-handle cancellations at infinity.

(B, b) ∼= (Rn, c). By Lemma 6.5, our proof of the hyperplane unknot-
ting theorem is complete.
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