AN ADDENDUM TO THE VIETORIS-BEGLE THEOREM

Jerzy DYDAK

Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300, U.S.A.

Received 11 March 1985 Revised 21 January 1986

The classical Vietoris-Begle Theorem is improved by observing that the image of $\tilde{H}^n(f)$: $\tilde{H}(Y; G) \rightarrow \tilde{H}^n(X; G)$ is $\bigcap_{y \in Y} \ker(\tilde{H}^n(X; G) \rightarrow \tilde{H}^n(f^{-1}(y); G))$. This implies the Dual Vietoris-Begle Theorem for Steenrod homology and pro-homology, in which case one can characterize the kernel of the induced homomorphism.

AMS (MOS) Subj. Class.: Primary 55N07; Secondary 55N05	
Vietoris-Begle Theorem	Steenrod homology
Alexander-Spanier Cohomology	pro-homology

Introduction

First recall the famous

Vietoris–Begle theorem. Let $f: X \to Y$ be a closed continuous surjective map between paracompact Hausdorff spaces. Assume that there is $n \ge 0$ such that $\tilde{H}^k(f^{-1}(y); G) = 0$ for all $y \in Y$ and for k < n. Then

 $\overline{H}^{k}(f): \overline{H}^{k}(Y; G) \rightarrow \overline{H}^{k}(X; G)$

is an isomorphism for k < n and a monomorphism for k = n.

Here $\overline{H}^k(A; G)$ denotes the Alexander-Spanier cohomology of A with coefficients in a group G. For a proof see [15, p. 344] or [10]. Recently the following dual to the above theorem was proved by Volovikov and Nguen [16].

Dual to Vietoris–Begle theorem. Let $f: X \to Y$ be a surjective map between compact metrizable spaces. Assume that there is $n \ge 0$ such that $\tilde{H}_k(f^{-1}(y); \mathbb{Z}) = 0$ for all $y \in Y$ and for k < n. Then

$$\bar{H}_k(f)$$
: $\bar{H}_k(X;\mathbb{Z}) \to \bar{H}_k(Y;\mathbb{Z})$

is an isomorphism for k < n and an epimorphism for k = n.

0166-8641/86/\$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

Their proof relies on the Leray spectral sequence (see [1])

The aim of this paper is to improve the Vietoris-Begle Theorem by stating that the image of $\hat{H}^n(f)$: $\tilde{H}^n(Y; G) \rightarrow \tilde{H}^n(X; G)$ is $\bigcap_{y \in Y} \ker(\tilde{H}^n(X; G) \rightarrow \tilde{H}^n(f^{-1}(y)))$. Using this characterization of im $\tilde{H}^n(f)$ we show that the Dual Vietoris-Begle Theorem is a consequence of the Vietoris-Begle Theorem. Then, as in the case of cohomology, we are able to shed light on the kernel of $\tilde{H}_n(f)$: $\tilde{H}_n(X; Z) \rightarrow \tilde{H}_n(Y; Z)$.

In the last part of the paper analogous results are proved for pro-homology and Čech homology.

Here $\overline{H}_n(A; \mathbb{Z})$ denotes the Alexander-Spanier (or Steenrod) homology of A with coefficients in the group of integers \mathbb{Z} (see [11]).

If $A \subseteq B$ and $\alpha \in \overline{H}^k(B; G)$, then α/A denotes the image of α by the homomorphism $\overline{H}^k(B; G) \rightarrow \overline{H}^k(A; G)$ induced by the inclusion.

By the reduced homology $\tilde{H}_k(A; G)$ (reduced cohomology $\tilde{H}^k(A; G)$) we mean the kernel of $\bar{H}_k(A; G) \rightarrow \bar{H}_k(pt; G)$ (the cokernel of $\bar{H}^k(pt; G) \rightarrow \bar{H}^k(A; G)$). In both cases the homomorphism are induced by the projection $A \rightarrow pt$.

When using integral coefficients we will employ the notation $\overline{H}_n(A)$ for $\overline{H}_n(A; \mathbb{Z})$.

1. Improved Vietoris-Begle theorem

Theorem 1. Let $f: X \to Y$ be a closed surjective map between paracompact Hausdorff spaces. Assume that there is $n \ge 0$ such that $\tilde{H}^k(f^{-1}(y); G) = 0$ for all $y \in Y$ and for k < n. Then the sequence

$$0 \to \tilde{H}^{k}(Y; G) \xrightarrow{\bar{H}^{k}(f)} \tilde{H}^{k}(X; G) \xrightarrow{\gamma} \prod_{y \in Y} \tilde{H}^{k}(f^{-1}(y); G)$$

is exact for $k \leq n$ where γ is induced by inclusion induced homomorphisms $\tilde{H}^k(X; G) \rightarrow \tilde{H}^k(f^{-1}(y); G)$.

Proof. It suffices to show that for each $\alpha \in \overline{H}^n(X; G)$ such that $\alpha/f^{-1}(y) = 0$ for all $y \in Y$ there is $\beta \in \overline{H}^n(Y; G)$ with $\alpha = \overline{H}^n(f)(\beta)$. This follows from a technique used by Lawson [10] in the following way:

Let U be the family of all closed sets V of Y such that $\alpha/f^{-1}(V) = \overline{H}^n(f/f^{-1}(V))(\beta_V)$ for some $\beta_V \in \overline{H}^n(V; G)$. In order to show that $Y \in U$ it suffices to check the following properties of U (see [12]):

(1) For each point $y \in Y$ there is $V \in U$ containing y in its interior.

(2) $V, W \in U$ implies $V \cup W \in U$.

(3) $V_S \in U$ for $s \in S$ and $\{V_S\}_{s \in S}$ is discrete implies $\bigcup_{s \in S} V_S \in U$.

(4) If $V \in U$ then each closed subset of V belongs to U.

If $B \subseteq Y$, then B' denotes $f^{-1}(B)$.

Property 1 follows from the fact that

$$\bar{H}^{n}(f^{-1}(y); G) = \lim \{\bar{H}^{n}(V'; G); y \in \text{int } V\}$$

(see [15, p. 316]). Therefore $\alpha/V'=0$ for some closed neighborhood V of y and we can choose $\beta_V = 0$.

Property 2 follows from the naturality of the Mayer-Vietoris sequence (see [11, p. 246]):

Since a is a monomorphism we have $b(\beta_V, \beta_W) = 0$ which implies the existence of $\omega \in \overline{H}^n(V \cup W)$ with $\omega/V = \beta_V$, $\omega/W = \beta_W$. Then $c(\alpha/V' \cup W' - f^*(\omega)) = 0$ because d is a monomorphism. So $\alpha/V' \cup W' - f^*(\omega) = e(\eta)$ for some $\eta \in \overline{H}^{n-1}(V' \cap W')$ and $\eta = f^*(\mu)$ because g is an isomorphism. Then put $\beta_{V \cup W} = \omega + h(\mu)$.

Property 3 follows from the fact that $\bar{H}^n(\bigcup_{s \in S} V_S; G) = \prod_{s \in S} \bar{H}^n(V_S; G)$ and Property 4 is a consequence of the fact that we can put $\beta_W = \beta_V / W$ for $W \subset V$. \Box

As an immediate consequence of Theorem 1 we have

Corollary 1. Let $f: X \to Y$ be a closed surjective map between paracompact Hausdorff spaces. Assume that there is $n \ge 0$ such that $\mathring{H}^k(f^{-1}(y); G) = 0$ for all $y \in Y$ and for k < n. If the inclusion induced homomorphism

 $\tilde{H}^n(X; G) \rightarrow \tilde{H}^n(f^{-1}(y); G)$

is trivial for all $y \in Y$, then

$$\bar{H}^n(f)$$
: $\bar{H}^n(Y;G) \rightarrow \bar{H}^n(X;G)$

is an isomorphism.

Corollary 2. Let R be a PID (principle ideal domain) and let $f: X \to Y$ be a surjective map between compact metrizable spaces such that for all $y \in Y$, $\tilde{H}^k(f^{-1}(y); R)$ is trivial for k < n ($n \ge 0$) and is torsion free for k = n. Then $\bar{H}^n(M(f), X; R)$ and the cokernel of $\bar{H}^n(f): \bar{H}^n(Y; R) \to H^n(X; R)$ are torsion-free. If $R = \mathbb{Z}$ and $\bar{H}^n(f^{-1}(y); \mathbb{Z})$ is free Abelian for all $y \in Y$, then $\bar{H}^{n+1}(M(f), X; \mathbb{Z})$ and the cokernel of $\bar{H}^n(f)$ are free Abelian.

Proof. Since $\prod_{y \in Y} \tilde{H}^n(f^{-1}(y); R)$ is torsion free, the cokernel of $\tilde{H}^n(f)$ is torsionfree. If $R = \mathbb{Z}$ and $\bar{H}^n(f^{-1}(y); \mathbb{Z})$ are free, $\prod_{y \in Y} \tilde{H}^n(f^{-1}(y); \mathbb{Z})$ can be embedded as a subgroup of $\prod_{s \in S} \mathbb{Z}_s$, where each \mathbb{Z}_s is a copy of \mathbb{Z} . Therefore, $\operatorname{im}(\gamma)$ can be embedded in $\prod_{s \in S} \mathbb{Z}_s$ and since $\bar{H}^n(X)$ is countable, $\operatorname{im}(\gamma)$ is countable, too. By Theorem 19.2 in [6] each countable subgroup of $\prod_{s \in S} \mathbb{Z}_s$ is free Abelian and consequently the cokernel of $\overline{H}^n(f)$ is free Abelian.

To prove the remaining parts of Corollary 2 consider the double mapping cylinder DM of f, that is $DM = X \times [-1, 1] \bigcup_{\alpha} Y \times \{-1, 1\}$, where $\alpha \colon X \times \{-1, 1\} \rightarrow Y \times \{-1, 1\}$ is defined by $\alpha(x, t) = (f(x), t)$. The natural projection from DM onto Y is denoted by p, $i \colon Y \rightarrow DM$ is defined by i(y) = (y, 1). Then $p \cdot i = id_Y$ and $p^{-1}(y)$ is the suspension of $f^{-1}(y)$ for each $y \in Y$. By what we have already proved the cokernel G of $\overline{H}^{n+1}(p)$ is torsionfree (free Abelian in the other case). Since $p \cdot i = id_Y$, $\overline{H}^{n+1}(DM) = G \oplus \overline{H}^{n+1}(Y)$ and from the exact sequence

$$0 \rightarrow \overline{H}^{n+1}(DM, Y) \rightarrow \overline{H}^{n+1}(DM) \rightarrow \overline{H}^{n+1}(Y)$$

(here Y is identified with $Y \times \{1\}$ via i) we infer that $\bar{H}^{n+1}(DM, Y)$ is a subgroup of G. Thus $\bar{H}^{n+1}(DM, Y)$ is torsionfree (free Abelian).

Since DM/Y is homeomorphic to M(f)/X, where M(f) is the mapping cylinder of f, $\overline{H}^{n+1}(M(f), X)$ is isomorphic to $\overline{H}^{n+1}(DM, Y)$ (see [11, p. 17] or [15, Lemma 11]). Thus $\overline{H}^{n+1}(M(f), X)$ is torsionfree (free Abelian). \Box

2. Dual results

Proof of the Dual Vietoris–Begle theorem. Using the short exact sequence (see [11, p. 109])

$$0 \rightarrow \operatorname{Ext}(\bar{H}^{k}(B, A), \mathbb{Z}) \rightarrow \bar{H}_{k-1}(B, A) \rightarrow \operatorname{Hom}(\bar{H}^{k-1}(B, A), \mathbb{Z}) \rightarrow 0$$

we get that $\overline{H}^k(f^{-1}(y); \mathbb{Z})$ is trivial for k < n and free Abelian for k = n (see [8, p. 107]). By Corollary 2, $\overline{H}^k(M(f), X)$ is trivial for $k \le n$ and free Abelian for k = n + 1. Using the above exact sequence we have that $\overline{H}_k(M(f), X) = 0$ for $k \le n$ which concludes the proof. \Box

Our next goal is to shed some light on the kernel of $\overline{H}_n(f)$: $\overline{H}_n(X;\mathbb{Z}) \to \overline{H}_n(Y;\mathbb{Z})$.

Theorem 2. Let $f: X \to Y$ be a surjective map between compact metrizable spaces. Assume that there is $n \ge 0$ such that $\tilde{H}_k(f^{-1}(y); \mathbb{Z}) = 0$ for all $y \in Y$ and for k < n. If Y is the union of closed subsets B_1, \ldots, B_m , then the kernel of

$$\bar{H}_n(f): \bar{H}_n(X;\mathbb{Z}) \to \bar{H}_n(Y;\mathbb{Z})$$

is contained in the subgroup of $\tilde{H}_n(X;\mathbb{Z})$ generated by the images of $\tilde{H}_n(f^{-1}(B_i):\mathbb{Z}) \rightarrow \tilde{H}_n(X;\mathbb{Z})$ for $i \leq m$.

Proof. We are going to prove Theorem 2 by induction on *m*. For m = 1 it is obvious. Suppose Theorem 2 is true for m < l and consider the case m = l. Let $A_m = f^{-1}(B_m)$, $B = \bigcup_{i=1}^{m-1} B_i$, $A = f^{-1}(B)$. Let Z be the mapping cylinder of $f, p: Z \to Y$ the projection and $C = p^{-1}(B)$, $C_m = p^{-1}(B_m)$. Notice that the kernel of $\bar{H}_n(f)$ is the image of $\partial: \bar{H}_{n+1}(Z, X) \to \bar{H}_n(X)$. Consider Mayer-Vietoris sequence (see [11, p. 275])

$$\bar{H}_{n+1}(C_m, A_m) \oplus \bar{H}_{n+1}(C, A) \to \bar{H}_{n+1}(Z, X) \to \bar{H}_n(C_m \cap C, A_m \cap A) = 0.$$

Then for $\alpha \in \overline{H}_{n+1}(Z, X)$ there exist $\beta \in \overline{H}_{n+1}(C_m, A_m)$, $\gamma \in \overline{H}_{n+1}(C, A)$ with $\alpha = \beta + \gamma$. Take $\alpha' = \partial \alpha \in \overline{H}_n(X)$, $\beta' = \partial \beta \in \overline{H}_n(A_m)$, $\gamma' = \partial \gamma \in \overline{H}_n(A)$. Since $f_*(\alpha') = 0$ we have $f_*(\beta' + \gamma') = 0$. Therefore, $\beta' + \gamma' = 0$ in $\overline{H}_n(Z)$ and another Mayer-Vietoris sequence

$$\tilde{H}_n(C \cap C_m) \to \tilde{H}_n(C) \oplus H_n(C_m) \to \tilde{H}_n(Z)$$

gives us the existence of $\eta \in \overline{H}_n(C \cap C_m)$ such that $\eta = \beta'$ in $\overline{H}_n(C_m)$ and $\eta = -\gamma'$ in $\overline{H}_n(C)$. By the Dual to Vietoris-Begle Theorem we may assume that $\eta \in \overline{H}_n(A \cap A_m)$. Then $\eta + \gamma' = 0$ in $H_n(C)$ and by the inductive assumption $\eta + \gamma'$ belongs to the subgroup of $\overline{H}_n(A)$ generated by the images of

$$\bar{H}_n(f^{-1}(B_k)) \to \bar{H}_n(A)$$

for $k \leq m - 1$.

Now $\alpha' = \beta' + \gamma' = (\beta' - \eta) + (\eta + \gamma')$ belongs to the subgroup of $\overline{H}_n(X)$ generated by the images of

$$\tilde{H}_n(f^{-1}(B_k)) \to \tilde{H}_n(X)$$

for $k \leq m$ because $\beta' - \eta \in \tilde{H}_n(f^{-1}(B_m))$. \Box

Corollary 3. Let $f: X \to Y$ be a surjective map between compact metrizable spaces. Assume that there is $n \ge 0$ such that $\tilde{H}_k(f^{-1}(y); \mathbb{Z}) = 0$ for all $y \in Y$ and k < n. If each $y \in Y$ has a closed neighborhood V such that the inclusion induced homomorphism

$$\tilde{H}_n(f^{-1}(V);\mathbb{Z}) \rightarrow \tilde{H}_n(X;\mathbb{Z})$$

is trivial then $\overline{H}_n(f)$: $\overline{H}_n(X; \mathbb{Z}) \rightarrow \overline{H}_n(Y; \mathbb{Z})$ is an isomorphism.

Remark. The reader should compare Theorem 2 and Corollary 3 with results of Soloway (see [9, 14]) for uv^{n-1} maps and singular homology.

To derive further corollaries we need some preliminary results.

Let X be a compact metrizable space. If U is a finite covering of X and π is a partition of unity subordinated to U then we have a map $\pi: X \to N(U)$, where N(U) is the nerve of U. This gives rise to a homomorphism $\phi_U: \overline{H}_k(X; \mathbb{Z}) \to \overline{H}_k(N(U); \mathbb{Z})$ and by passing to the inverse limit we have a homomorphism

$$\phi_k$$
: $H_k(X; \mathbb{Z}) \rightarrow \text{inv lim } \overline{H}_k(N(U); \mathbb{Z})$

where the range is simply the kth Čech homology group $\check{H}_k(X; \mathbb{Z})$ of X with integer coefficients.

Obviously ϕ_k is a natural transformation of functors \bar{H}_k and \check{H}_k .

Lemma 1. ϕ_k is always an epimorphism. It is an isomorphism if and only if pro- $H_{k+1}(X; \mathbb{Z})$ satisfies the Miffag-Leffler condition. If $\overline{H}_k(X; \mathbb{Z})$ is countable then ϕ_k is an isomorphism.

Proof. Let $X = inv \lim X_n$, where each X_n is a compact polyhedron. Then we have the following exact sequence (see [5, p. 211]).

$$0 \rightarrow \lim^{1} \bar{H}_{k+1}(X_n) \rightarrow \bar{H}_k(X) \rightarrow \text{inv} \lim \bar{H}_k(X_n) \rightarrow 0$$

Since inv lim $\bar{H}_k(X_n) = \check{H}_k(X)$, ϕ_k is always an epimorphism. It is an isomorphism if and only if $\lim^1 \bar{H}_{k+1}(X_n) = 0$ which is equivalent (see [7]) to the fact that pro- $H_{k+1}(X) = \{\bar{H}_{k+1}(X_n)\}$ satisfies the Miffag-Leffler condition. If $\bar{H}_k(X)$ is countable, then $\lim^1 \bar{H}_{k+1}(X_n)$ is countable and [7] implies it has to be trivial. \Box

Lemma 2. If $\phi_k: \overline{H}_k(X; \mathbb{Z}) \to H_k(X; \mathbb{Z})$ is an isomorphism and $X = \text{inv} \lim X_n$, where X_n are compact and metrizable, then the homomorphism

$$\overline{H}_k(X;\mathbb{Z}) \to \text{inv} \lim \overline{H}_k(X_n;\mathbb{Z})$$

is an isomorphism.

Proof. Since the composition of $\overline{H}_k(X) \rightarrow \text{inv} \lim \overline{H}_k(X_n) \rightarrow \text{inv} \lim \overline{H}_k(X_n) = H_k(X)$ is an isomorphism, we infer that $\overline{H}_k(X) \rightarrow \text{inv} \lim \overline{H}_k(X_n)$ is a monomorphism. On the other hand the exact sequence $0 \rightarrow \lim^1 \overline{H}_{k+1}(X_n) \rightarrow \overline{H}_k(X) \rightarrow \text{inv} \lim \overline{H}_k(X_n) \rightarrow 0$ (see [5, p. 211] implies it is an epimorphism. \Box

Lemma 3. Suppose A is a closed subset of a compact metrizable space X such that $\overline{H}_k(X, A; \mathbb{Z})$ is countable for some $k \ge 0$. Then there is a closed neighborhood V of A in X such that $\widetilde{H}_k(V; \mathbb{Z}) \rightarrow \widetilde{H}_k(X; \mathbb{Z})$ has the same image as $\widetilde{H}_k(A; \mathbb{Z}) \rightarrow \widetilde{H}_k(X; \mathbb{Z})$.

Proof. First consider the case where $A = \{x\}$ is a one-point space. Take a decreasing sequence $V_1 \supset V_2 \cdots$ of closed neighborhoods of x in X such that $\bigcap_{m=1}^{\infty} V_m = \{x\}$. From the exact sequence (see [5, p. 211]) $0 \rightarrow \lim^1 \tilde{H}_{q+1}(V_m) \rightarrow \tilde{H}_q(x) \rightarrow$ inv $\lim \tilde{H}_q(V_m) \rightarrow 0$ we infer that

 $\lim^{1} \tilde{H}_{q}(V_{m}) = \operatorname{inv} \lim \tilde{H}_{q}(V_{m}) = 0$

for all q. Let $G_m = \operatorname{im}(\tilde{H}_k(V_m) \to \tilde{H}_k(X))$ and $F_m = \operatorname{ker}(\tilde{H}_k(V_m) \to \tilde{H}_k(X))$ for each m. Then the inverse sequence of short exact sequences

$$0 \rightarrow F_m \rightarrow \tilde{H}_k(V_m) \rightarrow G_m \rightarrow 0$$

gives rise to the following exact sequence (see [11, p. 401]) $0 \rightarrow \text{inv} \lim F_m \rightarrow \text{inv} \lim \tilde{H}_k(V_m) \rightarrow \text{inv} \lim G_m \rightarrow \lim^1 F_m \rightarrow \lim^1 \tilde{H}_k(V_m) \rightarrow \lim^1 G_m \rightarrow 0.$

Hence $\lim^1 G_m = 0$ and since each G_m is countable, we conclude from [7] that $\{G_m\}$ satisfies the Miffag-Leffler condition. In our case $(G_m$ is a decreasing sequence of groups) it means that there is $N \ge 1$ such that $G_m = G_{m+1}$ for $m \ge N$.

From the exact sequence

$$\tilde{H}_k(V_m) \to \tilde{H}_k(X) \to \tilde{H}_k(X, V_m) = \tilde{H}_k(X/V_m)$$

we get that G_N is in the kernel of

$$\bar{H}_k(X) \to \bar{H}_k(X/V_m)$$

for all $m \ge N$. Therefore G_N is in the kernel of $\tilde{H}_k(X) \rightarrow \text{inv} \lim \tilde{H}_k(X/V_m)$ and since $X = \text{inv} \lim (X/V_m)$, Lemma 2 implies $G_N = 0$. Thus $V = V_N$ satisfies the needed condition.

Now consider the general case. Then $\tilde{H}_k(X/A) = \tilde{H}_k(X, A)$ is countable and there exists a closed neighborhood V of A such that

 $\tilde{H}_k(V/A) \rightarrow \tilde{H}_k(X/A)$

is trivial. Each row in the diagram

is exact and therefore $\operatorname{im}(\tilde{H}_k(V) \to \tilde{H}_k(X)) \subset \operatorname{im}(\tilde{H}_k(A) \to \tilde{H}_k(X))$ which concludes the proof of Lemma 3. \Box

Corollary 4. Let $f: X \to Y$ be a surjective map between compact metric spaces. Assume that there is $n \ge 0$ such that $\tilde{H}_k(f^{-1}(y); \mathbb{Z}) = 0$ for all $y \in Y$ and for k < n. If $\tilde{H}_n(Y; \mathbb{Z})$ is countable, then there exists $\varepsilon > 0$ such that for each finite closed covering $\{B_i\}_{i=1}^m$ of Y with sets of diameter less than ε , the kernel of

$$\tilde{H}_n(f)$$
: $\tilde{H}_n(X;\mathbb{Z}) \to \tilde{H}_n(Y;\mathbb{Z})$

is the subgroup of $\tilde{H}_n(X; \mathbb{Z})$ generated by the images of $\tilde{H}_n(f^{-1}(B_i); \mathbb{Z}) \rightarrow \tilde{H}_n(X; \mathbb{Z})$ for $i \leq m$.

Proof. By Lemma 3 for each $y \in Y$ there exists a closed neighborhood V_y of y such that $\tilde{H}_k(V_y) \rightarrow \tilde{H}_k(Y)$ is trivial. Let ε be the Lebesque number of the open covering $\{\operatorname{Int} V_y\}_{y \in Y}$. If B is a closed subset of Y with diam $B < \varepsilon$, then $B \subset V_y$ for some $y \in Y$ and the homomorphism $\tilde{H}_n(f^{-1}(B)) \rightarrow \tilde{H}_n(Y)$ is trivial. Therefore Theorem 2 implies Corollary 4. \Box

Corollary 5. Let $f: X \to Y$ be a surjective map between compact metrizable spaces. Assume that there is n > 0 such that $\tilde{H}_k(f^{-1}(y); \mathbb{Z}) = 0$ for all $y \in Y$ and k < n. If $\tilde{H}_n(X; \mathbb{Z})$ is countable, then there exists a finite subset S of Y such that the kernel of

$$\tilde{H}_n(f)$$
: $\tilde{H}_n(X;\mathbb{Z}) \to \tilde{H}_n(Y;\mathbb{Z})$

is the subgroup of $\tilde{H}_n(X; \mathbb{Z})$ generated by the images of $\tilde{H}_n(f^{-1}(y); \mathbb{Z}) \rightarrow \tilde{H}_n(X; \mathbb{Z})$ for $y \in S$. **Proof.** From the exact sequence $\tilde{H}_n(X) \to \tilde{H}_n(X, f^{-1}(y)) \to \tilde{H}_{n-1}(f^{-1}(y)) = 0$ we get that $\tilde{H}_n(X, f^{-1}(y))$ is countable for each $y \in Y$.

By Lemma 3 for each $y \in Y$ there exists a closed neighborhood V_y of y in Y such that

$$\operatorname{im}(\tilde{H}_n(f^{-1}(V_y) \to \tilde{H}_n(X)) = \operatorname{im}(\tilde{H}_n(f^{-1}(y)) \to \tilde{H}_n(X)).$$

Choose a finite set $S = \{y_1, \ldots, y_p\}$ such that $B_i = V_{y_i}$ is a covering of Y. Now Corollary 5 follows from Theorem 2. \Box

Example. Let X be the union of $[0, 1] \times \{0\} \times \{0\}$ and the 2-spheres S_n of the radius 2^{-n-2} and the center $(2^{-n}, 2^{-n-2}, 0), n = 0, 1, \ldots$. The map $f: X \to Y = [0, 1] \times \{0\} \times \{0\}$ is the retraction such that $f(S_n) = \{(2^{-n}, 0, 0)\}$ for $n \ge 0$. Then $\tilde{H}_1(f^{-1}(y), \mathbb{Z}) = 0$ for $y \in Y$ and the kernel of $\bar{H}_2(f)$ equals $\bar{H}_2(X) = \check{H}_2(X)$ which is uncountable. Therefore, the kernel of $\bar{H}_2(f)$ cannot be generated by the images of

$$\overline{H}_2(f^{-1}(y);\mathbb{Z}) \to \overline{H}_2(X;\mathbb{Z}).$$

3. Vietoris-Begle theorem for pro-homology

Theorem 3. Let R be a PID. Suppose $f: X \to Y$ is a surjective map of compact metrizable spaces such that pro- $\tilde{H}_k(f^{-1}(y); R)$ is trivial for all $y \in Y$ and for k < n. Then

(a) pro- $H_k(f)$: pro- $H_k(X; R) \rightarrow$ pro- $H_k(Y; R)$ is an isomorphism for k < n and an epimorphism for k = n.

(b) If $pro-\tilde{H}_n(f^{-1}(y); R) \rightarrow pro-\tilde{H}_n(X; R)$ is trivial for all $y \in Y$, then $pro-H_n(f)$ is an isomorphism.

(c) If $\operatorname{pro-}\tilde{H}_n(f^{-1}(y); R)$ is semistable for each $y \in Y$, then $\check{H}_n(f)$: $\check{H}_n(X; R) \to \check{H}_n(Y; R)$ is an epimorphism. If the kernel of $\check{H}_n(f)$ is countable, then it is generated by the images of $\check{H}_n(f^{-1}(y); R) \to \check{H}_n(X; R)$. If $\operatorname{pro-}H_n(X; R)$ is stable, then pro- $H_n(Y, R)$ is stable and the kernel of $\check{H}_n(f)$ is generated by the images of $\check{H}_n(f^{-1}(y); R) \to \check{H}_n(X; R)$.

Before proceeding with a proof of Theorem 3 we need the following:

Lemma 4. Let R be a PID. If (B, A) is a pair of compact metrizable spaces, then the following conditions are equivalent $(n \ge 0)$:

- (a) pro- $\tilde{H}_k(B, A; R)$ is trivial for $k \leq n$,
- (b) $\tilde{H}^k(B, A; R)$ is trivial for $k \le n$ and torsionfree for k = n + 1.

Proof. Because $H_k(P, Q) = \tilde{H}_k(P/Q)$ and $H^k(P, Q) = \tilde{H}^k(P/Q)$ for all polyhedral pairs (P, Q) it suffices to prove Lemma 4 for the case when A = point.

Let $(B, A) = \text{inv} \lim P_i$, where P_i are pointed polyhedra. If (a) is satisfied, then the direct sequence

 $0 \rightarrow \operatorname{Ext}(H_{k-1}(P_i; R), R) \rightarrow H^k(P_i; R) \rightarrow \operatorname{Hom}(H_k(P_i; R), R) \rightarrow 0$

of short exact sequences (see [15, p. 243]) gives $H^k(B, A; R) =$ dir lim Hom $(H_k(P_i; R), R)$ for $k \le n$. Thus (b) follows.

If (b) is satisfied, then the inverse sequence

 $0 \rightarrow \operatorname{Ext}(H^{k+1}(P_i; R), R) \rightarrow H_k(P_i; R) \rightarrow \operatorname{Hom}(H^k(P_i; R), R) \rightarrow 0$

of short exact sequences (see [15, p. 248]) implies that $\text{pro-}H_k(B, A; R)$ is trivial for $k \leq n$.

Indeed, for each *i* there exists j > i such that the homomorphism $H^k(P_i, R) \rightarrow H^k(P_j; R)$ annihilates the torsion of $H^k(P_i; R)$ (is trivial) for $k \le n+1$ (for $k \le n$). Therefore, $H^k(P_i; R) \rightarrow H^k(P_i; R)$ factors through a free *R*-module and

 $\operatorname{Ext}(H^k(P_i; R), R) \rightarrow \operatorname{Ext}(H^k(P_i; R), R)$

is trivial for $k \le n+1$. Similarly

$$\operatorname{Hom}(H^k(P_i; R), R) \to \operatorname{Hom}(H^k(P_i; R), R)$$

is trivial for $k \leq n$. This concludes the proof of Lemma 4. \Box

Proof of Theorem 3. By Lemma 4, $\tilde{H}^k(f^{-1}(y); R)$ is trivial for k < n and is torsion free for k = n. By Theorem 1 and Corollary 2, $\tilde{H}^k(M(f), X; R)$ is trivial for $k \le n$ and torsion free for k = n + 1. By Lemma 4, pro- $H_k(M(f), X; R)$ is trivial for $k \le n$ and (a) follows.

Embed X in the Hilbert cube Q and let $F: Q \to Z$ be a map such that Y is a closed subset of Z = F(Q), F/X = f, $X = F^{-1}(Y)$ and F/Q - X is one-to-one. Choose a decreasing sequence $X_1 \supset X_2 \cdots$ of ANR's in Q with $X = \bigcap_{p=1}^{\infty} X_p$. Let $Y_p = f(X_p)$ and $f_p = F/X_p: X_p \to Y_p$ for $p \ge 1$.

Suppose pro- $\tilde{H}_n(f^{-1}(y); R) \to \text{pro-}\tilde{H}_n(X; R)$ is trivial for all $y \in Y$ and fix $p \ge 1$. Then, for each $y \in Y_p$ there exists a compact neighborhood V_y of y in Y_p such that $\tilde{H}_k(f^{-1}(V_y); R) \to \tilde{H}_k(X_p; R)$ is trivial. Choose a finite subset $\{y_1, \ldots, y_m\}$ of Y_p such that $Y_p = \bigcup_{i=1}^m V_i$, where $V_i = V_{y_i}, i \le m$.

Our goal is to show that $\operatorname{pro-}H_n(f_p)$: $\operatorname{pro-}H_n(X_p; R) \to \operatorname{pro-}H_n(Y_p; R)$ is an isomorphism. This follows from the following:

Special case of (b). Suppose that for a compact subset B and Y and $A = f^{-1}(B)$, f/X - A is one-to-one and pro- $\tilde{H}_n(A; R) \rightarrow \text{pro-}\tilde{H}_n(X; R)$ is trivial. Then pro- $H_n(f)$ is an isomorphism.

Proof of the special case. Consider the diagram

By the part (a) of Theorem 3, the first two vertical homomorphisms are epimorphisms. Hence pro- $\tilde{H}_n(B; R) \rightarrow \text{pro-}\tilde{H}_n(Y; R)$ is trivial. Also X/A = Y/B implies that

$$\operatorname{pro-}H_n(X, A; R) \rightarrow \operatorname{pro-}H_n(Y, B; R)$$

is an isomorphism. Thus $\text{pro-}H_n(f)$ is an isomorphism.

Now (b) follows by applying its special case *m* times (first step is to consider the decomposition of X_p whose fibers are those of f_p which are contained in V_1 , and one-point sets) and then observing that pro- $H_n(X; R)$ (pro- $H_n(Y; R)$) is the inverse limit of pro- $H_n(X_p; R)$ (pro- $H_n(Y_p; R)$) in the category of pro-(*R*-modules) (see [2, Lemma 3.4]).

So it remains to prove part (c) of Theorem 3.

Special case of part (c). Assume pro- $H_n(X; R)$ is stable and $A \subseteq X$ is the only non-trivial fiber of f.

Proof of the special case. Here Y = X/A and pro- $\tilde{H}_n(Y; R)$ is isomorphic to pro- $H_n(X, A; R)$. Consider the exact sequence

pro-
$$\tilde{H}_n(A; R) \rightarrow \text{pro-}\tilde{H}_n(X; R) \rightarrow \text{pro-}\tilde{H}_n(Y; R) \rightarrow 0.$$

Since pro- $H_n(f)$ is an epimorphism, pro- $\tilde{H}_n(Y; R)$ is Mittag-Leffler (semistable in today's terminology). As in Lemma 2.2 of [3] one can show that if in the exact sequence $G_4 \rightarrow G_3 \rightarrow G_2 \rightarrow G_1$ of pro-groups, G_i is stable for i = 1, 3 and semistable for i = 2, 4, then G_2 is stable.

Thus pro- $\tilde{H}_n(Y; R)$ is stable and by passing to the inverse limit we still have an exact sequence

$$\check{\tilde{H}}_n(A; R) \to \check{\tilde{H}}_n(X; R) \to \check{\tilde{H}}_n(Y; R) \to 0$$

(see [11, p. 401]) which is exactly what we need in the special case of (c).

Fix $p \ge 1$. For each $y \in Y_p$ there exists a compact neighborhood V_y of y in Y_p such that

$$\operatorname{im}(\tilde{H}_n(f^{-1}(y); R) \to \tilde{H}_n(X_p; R)) = \operatorname{im}(\tilde{H}_n(W_y; R) \to \tilde{H}_n(X_p; R))$$

for some $W_y \in ANR$ containing $f^{-1}(V_y)$ (this is because pro- $H_n(f^{-1}(y); R)$ is semistable). Choose a finite subset $\{y_1, \ldots, y_m\}$ of Y_p such that $y_i \neq y_j$ for $i \neq j$ and $Y_p = \bigcup_{i=1}^m V_i$, where $V_i = V_{y_i}$, $i \leq m$. Let Z_p be obtained from X_p by contracting each $f^{-1}(y_i)$, $i \leq r$, to a point. By the special case of (c) applied *n* times, pro- $H_n(Z_p; R)$ is stable and $\check{H}_n(X_p; R) \rightarrow \check{H}_n(Z_p; R)$ is an epimorphism whose kernel is generated by images of $\check{H}_n(f^{-1}(y_i); R) \rightarrow \check{H}_n(X_p; R)$, $i \leq m$. Let $g: Z_p \rightarrow Y_p$ be the map induced by f_p . Then for any $y \in Y_p$ there exists $i \leq m$ such that $f^{-1}(y) \subset f^{-1}(V_i)$ and since

pro-
$$\tilde{H}_n(f^{-1}(V_y); R) \rightarrow \text{pro-}\tilde{H}_n(Z_p; R)$$

is trivial, pro- $\tilde{H}_n(g^{-1}(y); R) \rightarrow \text{pro-}\tilde{H}_n(Z_p; R)$ is trivial. By part (b) of Theorem 3,

$$\operatorname{pro-}H_n(Z_p; R) \rightarrow \operatorname{pro-}H_n(Y_p; R)$$

is an isomorphism and therefore

$$\dot{H}_n(Z_p; R) \rightarrow \dot{H}_n(Y_p; R)$$

is an isomorphism. Thus, for each p,

$$\dot{H}_n(X_p; R) \rightarrow \dot{H}_n(Y_p; R)$$

is an epimorphism whose kernel F_p is generated by the images $\check{H}_n(F^{-1}(y); R) \rightarrow \check{H}_n(X_p; R), y \in Y_p$.

Take the inverse sequence of short exact sequences

Observe that $F_{p+1} \rightarrow F_p$ is an epimorphism (it follows from the description of F_p). By passing to the inverse limit we get the following exact sequence (see [11, p. 401])

$$0 \rightarrow \operatorname{inv} \lim F_p \rightarrow \check{H}_n(X; R) \rightarrow \check{H}_n(Y; R) \rightarrow \operatorname{lim}^1 F_p.$$

In our case $\lim^{1} F_{p} = 0$ because $\{F_{p}\}$ is Mittag-Leffler. Therefore $\check{H}_{n}(f)$: $\check{H}_{n}(X; R) \rightarrow \check{H}_{n}(Y; R)$ is epi. If pro- $H_{n}(X; R)$ is stable, then as before (*) implies that $\{\check{H}_{n}(Y_{p}; R)\}$ is stable (see Lemma 2.2 in [3]) and Lemma 3.4 in [2] says that $\{\check{H}_{n}(Y_{p}; R)\}$ is isomorphic to pro- $H_{n}(Y; R)$ (it is because pro- $H_{n}(Y_{p}; R)$) is stable for all $p \ge 1$). Using Lemma 2.2 of [3] once again we get that $\{F_{p}\}$ is stable if pro- $H_{n}(X; R)$ is stable. We reach the same conclusion if the kernel of $\check{H}_{n}(f)$ is countable: that kernel is isomorphic to inv $\lim F_{p}$ and Corollary 6.1.9. of [4, p. 81] says that $\{F_{p}\}$ is stable. In our case it means that $F_{p+1} \rightarrow F_{p}$ is an isomorphism for sufficiently large p. We assume it is so for all p.

Let F be the subgroup of $\tilde{H}_n(X; R)$ generated by the images of $\check{H}_n(f^{-1}(y); R) \rightarrow \check{H}_n(X; R)$ for $y \in Y$. The homomorphism

 $\check{\tilde{H}}_n(X; R) \rightarrow \check{\tilde{H}}_n(X_p; R)$

sends F onto F_p . Since $\check{H}_n(X; R) = \operatorname{inv} \lim \check{H}_n(X_p; R)$, $F \to \operatorname{inv} \lim F_p$ is a monomorphism. Therefore $F \to F_p$ is a monomorphism for each p and, consequently, $F = \operatorname{inv} \lim F_p$. \Box

Remark. The reader should compare Theorem 3 with results of Soloway (see [9, 14]) for uv^{n-1} maps and the singular homology.

References

- [1] G. Bredon, Sheaf Theory (McGraw-Hill, New York, 1967).
- [2] J. Dydak, On LCⁿ-divisors, Topology Proceedings 3 (1978) 319-333.
- [3] J. Dydak, Local n-connectivity of quotient spaces and one-point compactifications, Shape Theory and Geom. Top. Proc., Dubrovnik, 1981, Lecture Notes in Math. 870 (Springer, Berlin, 1981) 48-72.
- [4] J. Dydak and J. Segal, Shape theory: An introduction, Lecture Notes in Math. 688 (Springer, Berlin, 1978) 1-150.

- [5] D.A. Edwards and H.M. Hastings, Čech and Steenrod Homotopy Theories With Applications to Geometric Topology, Lecture Notes in Math. 542 (Springer, Berlin, 1976).
- [6] L. Fuchs, Infinite Abelian Groups Vol. I (Academic Press, New York/London, 1970).
- [7] B.I. Gray, Spaces of the same n-type for all n, Topology 5 (1966) 241-243.
- [8] P.J. Hilton and U. Stammbach, A Course in Homology Algebra, (Springer, Berlin).
- [9] R.C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977) 495-552.
- [10] J.D. Lawson, Comparison of taut cohomologies, Aequationes Math. 9 (1973) 201-209.
- [11] W.S. Massey, Homology and Cohomology Theory, (Dekker, New York, 1978).
- [12] E. Michael, Local properties of topological spaces, Duke Math. J. 21 (1954) 163-171.
- [13] J. Milnor, On axiomatic homology theory, Pac. J. Math. 12 (1962) 337-341.
- [14] R.N. Soloway, Somewhere acyclic mappings of manifolds are compact, Ph.D. thesis, University of Wisconsin, 1971.
- [15] E.H. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966).
- [16] A.Ju. Volovikov and Nguen Le Anh, On the Vietoris-Begle Theorem, Vestnik Moskov. Univ. Ser. I Math. Mekh. 1984 no. 3, 70-71.