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The classical Vietoris-Begle Theorem is improved by observing that the image of
A" (f): A(Y; G)> A(X: G) is N,y ker(A™(X; G)» A" (f~(y); G)). This implies the Dual
Vietoris-Begle Theorem for Steenrod homology and pro-homology, in which case one can
characterize the kernel of the induced homomorphism.

AMS (MOS) Subj. Class.: Primary 55N07; Secondary 55N05

Vietoris-Begle Theorem Steenrod homology
Alexander-Spanier Cohomology pro-homology
Introduction

First recall the famous

Vietoris—Begle theorem. Let f: X - Y be a closed continuous surjective map between
paracompact Hausdorff spaces. Assume that there is n = 0 such that H*(f~(y); G) =0
for all ye Y and for k<n. Then

H*(f): H*(Y; G)-» H*(X; G)
is an isomorphism for k < n and a monomorphism for k = n.
Here H*(A; G) denotes the Alexander-Spanier cohomology of A with coefficients

in a group G. For a proof see [15, p. 344] or [10]. Recently the following dual to
the above theorem was proved by Volovikov and Nguen [16].

Dual to Vietoris—Begle theorem. Let f: X > Y be a surjective map between compact
metrizable spaces. Assume that there is n =0 such that H,(f'(y); Z) =0 for all veY
and for k< n. Then

H(f): H(X;Z)~> H/(Y:2)

is an isomorphism for k< n and an epimorphism for k = n.
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Their proof relies on the Leray spectral sequence (see [1])

The aim of this paper is to improve the Vietoris-Begle Theorem by stating that the
image of H"(f): A™(Y:G)~» H"(X: G) is (yey ker(A"(X; G) > H"(f'(y)).
Using this characterization of im H"(f) we show that the Dual Vietoris-Begle
Theorem is a consequence of the Vietoris-Begle Theorem. Then, as in the case of
cohomology, we are able to shed light on the kernel of A.(f):A,(X;2)» H,(Y:2).

In the last part of the paper analogous results are proved for pro-homology and
Cech homology.

Here H,(A: Z) denotes the Alexander-Spanier (or Steenrod) homology of A with
coefficients in the group of integers Z (see [11]).

If Ac Band a € H*(B; G), then a/ A denotes the image of « by the homomorph-
ism H*(B; G)» H*(A; G) induced by the inclusion.

By the reduced homology H.(A; G) (reduced cohomology A*(A; G)) we mean
the kernel of H,(A; G) > H,(pt; G) (the cokernel of H*(pt; G)»> H*(A; G)). In
both cases the homomorphism are induced by the projection A pt.

When using integral coefficients we will employ the notation H,(A) for H,(A; Z).

1. Improved Vietoris—Begle theorem

Theorem 1. Let f: X - Y be a closed surjective map between paracompact Hausdorff
spaces. Assume that there is n=0 such that H*(f '(y); G)=0 for all ye Y and for
k <n. Then the sequence
., A% . Y -
0> H"Y; G)—— H*(X; G)— Il H*(f7'(»); G)
yeY

is exact for k<n where y is induced by inclusion induced homomorphisms
AY(X; G)» H*"(f7'(y); G).

Proof. It suffices to show that for each a € H"(X; G) such that a/f '(y)=0 for
all ye Y there is Be H"(Y; G) with « = H"(f)(B). This follows from a technique
used by Lawson [10] in the following way:

Let U be the family of all closed sets V of Y such that a/f (V)=
H"(f/f{(V))By) for some By € H"(V; G). In order to show that Y € U it suffices
to check the following properties of U (see [12]):

(1) For each point yc Y there is Ve U containing y in its interior.

(2) V, We U implies Vu We U

(3) Vge U for se S and {Vg},.s is discrete implies | ;.5 Vse U.

(4) If Ve U then each closed subset of V belongs to U.

If B< Y, then B’ denotes f '(B).

Property 1 follows from the fact that

H"(f(y); G)=m{ﬁ"(V’; G); yeint V}
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(see [15, p. 316]). Therefore «/ V' =0 for some closed neighborhood V of y and
we can choose By =0.

Property 2 follows from the naturality of the Mayer-Vietoris sequence (see [11,
p. 246]):

A (VAW) — A(VOW) — H(V)@H" (W) —> H (VA W)

| l X |

I_—Infl(v/mwl) _e> H“(V’UW’) _C)I__{n(vr)®gn(wl)___) I__In(vrm W!)

Since a is a monomorphism we have b(8y, Bw) =0 which implies the existence of
we H"(VUW) with 0/V=8y, wo/W=8y. Then c(a/Vu W —-f*w))=0
because d is a monomorphism. So a/V'u W' —f*(w)=-e(n) for some ne
H" (VA W') and n=f*(u) because g is an isomorphism. Then put By w =
w+h(w).

Property 3 follows from the fact that H"((U,cs Vs; G) =Ml,cs H"(Vs:; G) and
Property 4 is a consequence of the fact that we can put By =8,/ W for Wc V. O

As an immediate consequence of Theorem 1 we have

Corollary 1. Let f: X - Y be a closed surjective map between paracompact Hausdorff
spaces. Assume that there is n=0 such that H*(f'(y); G)=0 for all ye Y and for
k < n. If the inclusion induced homomorphism

H"(X; G)»H"(f7'(»); G)
is trivial for all ye Y, then
H"(f): H(Y; G)» H"(X; G)

is an isomorphism.

Corollary 2. Let R be a PID (principle ideal domain) and let f: X > Y be a surjective
map between compact metrizable spaces such that for ally € Y, H*(f "'(y); R) is trivial
for k<<n (n=0) and is torsion free for k= n. Then H"(M(f), X; R) and the cokernel
of H'(f): H"(Y; R)> H"(X; R) are torsion-free. If R=Z and H"(f (y);Z) is
free Abelian for all y € Y, then H""'(M(f), X; Z) and the cokernel of H"(f) are free
Abelian.

Proof. Since [] ., H"(f'(); R) is torsion free, the cokernel of H"(f) is torsion-
free. If R=7Z and H"(f '(y); Z) are free, || P:I"(f*’(y); Z) can be embedded
as a subgroup of [[ ¢ Z,, where each Z, is a copy of Z. Therefore, im(y) can be
embedded in [[, ¢ Z, and since H"(X) is countable, im(y) is countable, too. By
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Theorem 19.2 in [6] each countable subgroup of [[,.sZ, is free Abelian and
consequently the cokernel of H"(f) is free Abelian.

To prove the remaining parts of Corollary 2 consider the double mapping
cylinder DM of f, thatis DM =X x[~1,1]J, Y x{-1, 1}, where a: X x{-1,1} >
Y x{-=1, 1} is defined by a(x, t) = (f(x), t). The natural projection from DM onto
Y is denoted by p, i: Y > DM is defined by i(y)=(y,1). Then p- i=idy and p~'(y)
is the suspension of f~'(y) for each ye Y. By what we have already proved the
cokernel G of H""'(p) is torsionfree (free Abelian in the other case). Since p - i = idy,
A" (DM)=G® H""'(Y) and from the exact sequence

0->H"Y(DM, Y)- H""'(DM)- H"'(Y)

(here Y is identified with Y x {1} via i) we infer that H""'(DM, Y) is a subgroup
of G. Thus H""'(DM, Y) is torsionfree (free Abelian).

Since DM/Y is homeomorphic to M(f)/X, where M(f) is the mapping
cylinder of f, H""'(M(f), X) is isomorphic to H""'(DM, Y) (see [11, p. 17] or
[15, Lemma 11]). Thus H"*'(M(f), X) is torsionfree (free Abelian). O

2. Dual results

Proof of the Dual Vietoris~Begle theorem. Using the short exact sequence (see [11,
p. 109])

0- Ext(H*(B, A),Z)~> H,_,(B, A)>Hom(H* (B, A), Z) > 0

we get that H*(f '(y); Z) is trivial for k < n and free Abelian for k = n (see [8, p.
107]). By Corollary 2, H*(M(f), X) is trivial for k < n and free Abelian for k = n+1.
Using the above exact sequence we have that H,(M(f), X)=0 for k<n which
concludes the proof. O

Our next goal is to shed some light on the kernel of H,(f): H,(X;Z)~> H,(Y; Z).

Theorem 2. Let f: X > Y be a surjective map between compact metrizable spaces.
Assume that there is n =0 such that ﬁk(f_l(y); Z)=0 forall ye Y and for k<n. If
Y is the union of closed subsets B,, ..., B,,, then the kernel of

H,(f): H(X;2)> H,(Y;2)
is contained in the subgroup of H,(X;Z) generated by the images of H,(f '(B;):
Z)-»H,(X;Z) fori<m.

Proof. We are going to prove Theorem 2 by induction on m. For m =1 it is obvious.
Suppose Theorem 2 is true for m <[ and consider the case m =1 Let A,, =f '(B,),
B=J7"' B;, A=f"'(B).Let Z be the mapping cylinder of f, p: Z - Y the projection
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and C=p~'(B), C,=p '(B,). Notice that the kernel of H,(f) is the image of
8: H,.1(Z, X)> H,(X). Consider Mayer-Vietoris sequence (see [11, p. 2751

I__In+1(cm’ Am)®ﬁn+l(c, A)_) I_—In+l(Z’ X)_) I-_In(cm M Ca Am M A) :O

Then for @€ H,,(Z, X) there exist Be H,,,(Cn, An), ye H,.,(C, A) with a =
B+v. Take o' =da e H,(X), B =08 < H,(A,), v =dye H,(A). Since f,{a') =0 we
have f,(8'+y') =0. Therefore, 8'+y'=0 in H,(Z) and another Mayer-Vietoris
sequence

H.(Cn ()~ H(C)®H,(C,)- H,(Z)

gives us the existence of ne H,(C n C,,) such that n=8"in H,(C,,) and n=—y'
in H,(C). By the Dual to Vietoris-Begle Theorem we may assume that ne
H,(AnA,). Then n+v =0 in H,(C) and by the inductive assumption n+vy’
belongs to the subgroup of H,(A) generated by the images of

H,(f7'(B))~> H.(A)

fork=m—1.
Now a’'=B'+y =(B'—n)+(n+v') belongs to the subgroup of H,(X) generated
by the images of

H,(f'(BW)~> A,(X)
for k< m because B'—ne H,(f '(B,)). O

Corollary 3. Let f: X > Y be a surjective map between compact metrizable spaces.
Assume that there is n =0 such that IfIk(f’l(y); Z2)=0forallye Yand k<n. If each
y € Y has a closed neighborhood V such that the inclusion induced homomorphism

H,(f7(V);2)~> A,(X;Z)
is trivial then H,(f): H,(X;2)-> H,(Y;Z) is an isomorphism.

Remark. The reader should compare Theorem 2 and Corollary 3 with results of
Soloway (see [9, 14]) for uv" ™' maps and singular homology.

To derive further corollaries we need some preliminary results.

Let X be a compact metrizable space. If U is a finite covering of X and 7 is a
partition of unity subordinated to U then we have a map m: X > N(U), where
N(U) is the nerve of U. This gives rise to a homomorphism ¢ : H.(X;Z) -
H.(N(U); Z) and by passing to the inverse limit we have a homomorphism

. H(X;Z)~invlim H(N(U); 2),

where the range is simply the kth Cech homology group H,(X; Z) of X with integer
coefficients.
Obviously ¢, is a natural transformation of functors H, and H,.
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Lemma 1. ¢, is always an epimorphism. It is an isomorphism if and only if
pro-H,.,(X; Z) satisfies the Miffag-Leffler condition. If H.(X;Z) is countable
then ¢, is an isomorphism.

Proof. Let X =invlim X,,, where each X, is a compact polyhedron. Then we have
the following exact sequence (see [5, p. 211]).

0-1lim"' H,(X,) - H(X)~invlim H.(X,)->0

Since inv lim H (X, )= H(X), ¢ is always an epimorphism. It is an isomorphism
if and only if lim' H, ,(X,)=0 which is equivalent (see [7]) to the fact that
pro-H,,,(X)={H,..(X,)} satisfies the Miffag- Leffler condition. If H,(X) is count-
able, then lim' H,.,(X,) is countable and [7] implies it has to be trivial. O

Lemma 2. If ¢: H(X;Z)~> H(X; Z) is an isomorphism and X = inv lim X,,, where
X, are compact and metrizable, then the homomorphism

H.(X;Z)-invlim H.(X,; Z)

is an isomorphism.

Proof. Since the composition of H(X) - inv lim H,(X, )~ inv lim H,(X,) = H.(X)
is an isomorphism, we infer that H,(X )~ inv lim H,(X,) is a monomorphism. On
the other hand the exact sequence 0-lim' Hy,(X,) > H.(X)~invlim H.(X,) >0
(see [5, p. 211] implies it is an epimorphism. O

Lemma 3. Suppose A is a closed subset of a compact metrizable space X such that
H.(X, A; Z) is countable for some k= 0. Then there is a closed neighborhood V of A
in X such that H,(V;Z)- H,(X;Z) has the same image as H,(A;Z) > H.(X; Z).

Proof. First consider the case where A = {x} is a one-point space. Take a decreasing
sequence V; >V, .- of closed neighborhoods of x in X such that (.-, V,, =
{x}. From the exact sequence (see [5, p. 211]) 0-lim' I-:I[,H(Vm)» fIq(x)—>
inv lim Iflq( V,.) >0 we infer that

lim" A,(V,,) =invlim A,(V,,)=0
for all q. Let G,, =im(H,(V,,)-> H,(X)) and F,, =ker(H,(V,,)> H.(X)) for each
m. Then the inverse sequence of short exact sequences
0> F,, > H(V,)>G,~>0
gives rise to the following exact sequence (see [11, p. 401]) O—invlim F,, >
invlim A, (V,,)»invlim G,, » lim' F,, - lim' A,(V,,)~lim' G,, > 0.
Hence lim' G,, =0 and since each G,, is countable, we conclude from [7] that

{G,.} satisfies the Miffag-Leffler condition. In our case ( G,, is a decreasing sequence
of groups) it means that there is N =1 such that G,, = G,,,, for m= N.
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From the exact sequence
H(V,) > A(X) > H(X, V,,) = B (X/ V,,)
we get that Gy is in the kernel of
H(X)~> H(X/V,)

for all m= N. Therefore Gy is in the kernel of H,(X)-invlim H.(X/V,,) and
since X =invlim(X/V,,), Lemma 2 implies Gy =0. Thus V=V, satisfies the
needed condition.

Now consider the general case. Then H,(X/A) = H,(X, A) is countable and there
exists a closed neighborhood V of A such that

A(V/A)> Ad(X/ A)
is trivial. Each row in the diagram

ﬁk(A) — IfIk(IV) - IfIk(V/A)

|

Iflk(A) - If[k(X) - ﬁk(X/A)

is exact and therefore im(H, (V) > H, (X)) < im(H,(A) > H,(X)) which concludes
the proof of Lemma 3. [

Corollary 4. Let f: X - Y be a surjective map between compact metric spaces. Assume
that there is n = 0 such that H,(f '(y); Z) =0 for allye Yandfork<n IfH,(Y;Z)
is countable, then there exists € >0 such that for each finite closed covering {B;}7", of
Y with sets of diameter less than ¢, the kernel of

H.(f): H(X;2)>H,.(Y;2)

is the subgroup of H,(X; Z) generated by the images of H,(f "(B,); Z)~ H,(X; Z)
forism.

Proof. By Lemma 3 for each y € Y there exists a closed neighborhood V, of y such
that I—zlk( V,)~> ﬁk( Y) is trivial. Let ¢ be the Lebesque number of the open covering
{Int V,},cy. If B is a closed subset of Y with diam B<¢, then B< V, for some
ye Y and the homomorphism Ifln(f”(B))» f{,,( Y) is trivial. Therefore Theorem
2 implies Corollary 4. [

Corollary 5. Let f: X - Y be a surjective map between compact metrizable spaces.

Assume that there is n >0 such that Iflk(f'l(y); Z)=0 for all ye Y and k<n. If

H,(X;Z) is countable, then there exists a finite subset S of Y such that the kernel of
H,(): H.(X;2)~ H,(Y;2)

is the subgroup of H,(X; Z) generated by the images of aA,(f'(»);2)» H,(X;2)
foryeS.
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Proof. From the exact sequence H,(X)- H,(X,f '(y)) = H,_.(f '(y)) =0 we get
that H,(X, f~'(y)) is countable for each ye Y.

By Lemma 3 for each y € Y there exists a closed neighborhood V, of y in Y such
that

im(H,(f'(V,) > H.(X)) =im(H,(f~'(y)) > H.(X)).

Choose a finite set S={y,,...,y,} such that B;=V, is a covering of Y. Now
Corollary 5 follows from Theorem 2. O

Example. Let X be the union of [0, 1] x {0} x {0} and the 2-spheres S, of the radius
27" 2andthecenter (27,2772, 0),n=0,1,....Themapf: X > Y =[0, 1] x {0} x {0}
is the retraction such that £(S,)={(27", 0, 0)} for n=0. Then H,(f '(y),Z) =0 for
ye Y and the kernel of H,(f) equals H,(X)= H,(X) which is uncountable. There-
fore, the kernel of H,(f) cannot be generated by the images of

H(f7'(y);2)~> H(X; 2).

3. Vietoris—Begle theorem for pro-homology

Theorem 3. Let R be a PID. Suppose f- X - Y is a surjective map of compact metrizable
spaces such that pro-I:Ik(f‘l(y); R) is trivial for all ye Y and for k <n. Then

(a) pro-H,(f): pro-H,(X; R)- pro-H,(Y; R) is an isomorphism for k < n and an
epimorphism for k =n.

(b) Upro-ﬁ"(f_l(y); R)—>pro-I§,,(X; R) is trivial for all y € Y, then pro-H,(f) is
an isomorphism.

(c) prro-fln(f”(y); R) is semistable for each ye Y, then H,(f): H,(X; R)~>
H,(Y;R) is an epimorphism. If the kernel of H,(f) is countable, then it is generated
by the images of ﬁ,,(ffl(y); R)- ﬁ,,(X; R). If pro-H,(X; R) is stable, then pro-
H.(Y,R) is stable and the kernel of H,(f) is generated by the images of
H,(f'(»); R)> H,(X; R) for ye Y.

Before proceeding with a proof of Theorem 3 we need the following:

Lemma 4. Let R be a PID. If (B, A) is a pair of compact metrizable spaces, then the
Jollowing conditions are equivalent (n=0):

(a) pro-I:Ik(B, A; R) is trivial for k< n,

(b) A*(B, A; R) is trivial for k< n and torsionfree for k =n+1.

Proof. Because H,(P, Q)= H,(P/Q) and H*(P, Q)= H*(P/ Q) for all polyhedral
pairs (P, Q) it suffices to prove Lemma 4 for the case when A = point.

Let (B, A) =invlim P,, where P; are pointed polyhedra. If (a) is satisfied, then
the direct sequence

0- Ext(H, ,(P;; R), R)> H*(P,; R)>Hom(H,(P;; R), R)>0
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of short exact sequences (see [15, p. 243]) gives H*(B,A; R)=
dir lim Hom(H,(P;; R), R) for k< n. Thus (b) follows.
If (b) is satisfied, then the inverse sequence

0- Ext(H*"'(P;; R), R)> H(P;; R)>Hom(H"(P,; R), R)~>0

of short exact sequences (see [15, p. 248]) implies that pro-H,(B, A; R) is trivial
for k<n.

Indeed, for each i there exists j>i such that the homomorphism H*(P;, R)~>
H"(Pj; R) annihilates the torsion of H*(P.; R) (is trivial) for k< n+1 (for k=< n).
Therefore, H*(P;; R) - Hk(Pj; R) factors through a free R-module and

Ext(H“(P;; R), R)>Ext(H"(P;; R), R)
is trivial for k< n+1. Similarly
Hom(H"(P;; R), R)>Hom(H“(P;; R), R)

is trivial for k < n. This concludes the proof of Lemma 4. [

Proof of Theorem 3. By Lemma 4, H*(f '(y); R) is trivial for k <n and is torsion
free for k= n. By Theorem 1 and Corollary 2, ﬁ"(M(f), X; R) is trivial for k<n
and torsion free for k= n+1. By Lemma 4, pro-H,(M(f), X; R) is trivial for k=<n
and (a) follows.

Embed X in the Hilbert cube Q and let F: Q- Z be a map such that Y is a
closed subset of Z=F(Q), F/X=f X=F '(Y) and F/Q—X is one-to-one.
Choose a decreasing sequence X, 2> X, - - - of ANR’s in Q with X =("};_, X,. Let
Y,=f(X,)and f,=F/X,: X,> Y, for p=1.

Suppose pro-I:I,,(ffl(y); R)epro-ﬁ,,(X; R) is trivial for all ye Y and fix p=1.
Then, for each y e Y, there exists a compact neighborhood V, of y in Y, such that
ﬁk(ffl(Vy); R)-> I:Ik(Xp; R) is trivial. Choose a finite subset {y,,..., ¥} of Y,
such that Y, =\, V;, where V=V, ism.

Our goal is to show that pro-H,(f,): pro-H,(X,; R)->pro-H,(Y,; R) is an
isomorphism. This follows from the following:

Special case of (b). Suppose that for a compact subset B and Y and A=f"(B),
f/ X — Ais one-to-one and pro-I:I,l(A; R)-> pro-I:I,,(X; R) is trivial. Then pro-H,(f)
is an isomorphism.

Proof of the special case. Consider the diagram

pro-H,(A; R) —— pro-H,(X; R) — pro-H,(X, A; R)

l | 1

pro-H,(B; R) —— pro-H,(Y; R) ——> pro-H,(Y, B; R).

By the part (a) of Theorem 3, the first two vertical homomorphisms are epi-
morphisms. Hence pro-H,(B; R)-»>pro-H,(Y; R) is trivial. Also X/A=Y/B
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implies that
pro-H,(X, A; R)~>pro-H,(Y, B; R)

is an isomorphism. Thus pro-H,(f) is an isomorphism.

Now (b) follows by applying its special case m times (first step is to consider the
decomposition of X, whose fibers are those of f, which are contained in V,, and
one-point sets) and then observing that pro-H,(X; R) (pro-H,(Y; R)) is the inverse
limit of pro-H,(X,; R) (pro-H,(Y,; R)) in the category of pro-(R-modules) (see
[2, Lemma 3.4]).

So it remains to prove part (c) of Theorem 3.

Special case of part (c). Assume pro-H,(X; R) is stable and Ac X is the only
non-trivial fiber of f.

Proof of the special case. Here Y=X/A and pro-I:I,,(Y; R) is isomorphic to
pro-H,(X, A; R). Consider the exact sequence

pro-ﬁ,,(A; R)—)pro-ﬁ,,(X; R)—)pro-g,,( Y, R)->0.

Since pro-H,(f) is an epimorphism, pro-H,(Y; R) is Mittag-Leffler (semistable in
today’s terminology). As in Lemma 2.2 of [3] one can show that if in the exact
sequence G, G;—~> G, G, of pro-groups, G; is stable for i =1, 3 and semistable
for i=2, 4, then G, is stable.

Thus pro-I:I,,( Y; R) is stable and by passing to the inverse limit we still have an
exact sequence

A,(A; R)> H,(X; R)»> H,(Y;R)>0

(see [11, p. 401]) which is exactly what we need in the special case of (c).

Fix p=1. For each y€ Y, there exists a compact neighborhood V, of y in Y,
such that

im(H,(f '(»); R) > H,(X,; R)) =im(H,(W,; R)> H,(X,; R))

for some W, e ANR containing f~'(V,) (this is because pro-H,(f'(»); R) is semi-
stable). Choose a finite subset {y,,..., y,} of Y, such that y,#y; for i#j and
Y, =", V,, where V,=V, i< m. Let Z, be obtained from X, by contracting each
f7'(»), i<r, to a point. By the special case of (c) applied n times, pro-H,(Z,; R)
is stable and I:In(X,,; R) - H,(Zp; R) is an epimorphism whose kernel is generated
by images of ﬁ,,(f"'(y,-); R)- ﬁ,,(Xp; R),i=m. Let g: Z,» Y, be the map induced
by f,. Then for any y € Y, there exists i << m such that f '(y)<= f '(V;) and since

pro-H,(f(V,); R) = pro-H,(Z,; R)

is trivial, pro-I:I,,(g”(y); R)—)pro-ﬁn(Zp; R) is trivial. By part (b) of Theorem 3,
pro-H,(Z,; R) > pro-H,(Y,; R)

is an isomorphism and therefore

H,(Z,; R)> H,(Y,; R)
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is an isomorphism. Thus, for each p,
H,(X,; R)> H,(Y,; R)

is an epimorphism whose kernel F, is generated by the images f{,,(F"(y); R)~
H,(X,; R),ye Y,
Take the inverse sequence of short exact sequences

0 Fp+l gn(Xp+l; R)—’Hn(YpH;R)_"O
| | | “
0 F, H,(X,; R) —— H,(Y,; R)——0.

Observe that F,., > F, is an epimorphism (it follows from the description of F,).
By passing to the inverse limit we get the following exact sequence (see [11, p. 401])

0-invlim F,-> H,(X; R)> H,(Y; R)~>lim' F,.

In our case lim' F, =0because { F,} is Mittag-Leffler. Therefore I:I,,(f): H,(X;R)~>
H,(Y;R) is epi. If pro-H,(X; R) is stable, then as before (*) implies that
{ﬁn(Yp; R)} is stable (see Lemma 2.2 in [3]) and Lemma 3.4 in [2] says that
{H,( Y,; R)} is isomorphic to pro-H,(Y; R) (it is because pro-H,(Y,; R) is stable
for all p=1). Using Lemma 2.2 of {3] once again we get that {F,} is stable if
pro-H,(X; R) is stable. We reach the same conclusion if the kernel of H,(f) is
countable: that kernel is isomorphic to inv lim F, and Corollary 6.1.9. of [4, p. 81]
says that {F,} is stable. In our case it means that F,,, > F, is an isomorphism for
sufficiently large p. We assume it is so for all p. .

_ Let F be the subgroup of fl,,(X; R) generated by the images of ﬁ,,(f"(y); R)->
ﬁ,,(X; R) for y e Y. The homomorphism

H,(X; R)> H,(X,; R)

sends F onto F,. Since H,(X;R)=invlim H,(X,;R), F>invlimF, is a
monomorphism. Therefore F - F, is a monomorphism for each p and, consequently,
F=invlim F,. O

Remark. The reader should compare Theorem 3 with results of Soloway (see [9, 14])
for uv”~" maps and the singular homology.
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