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ON LIFTING PROPERTIES FOR CONFLUENT MAPPINGS

JANUSZ J. CHARATONIK AND JANUSZ R. PRAJS

(Communicated by Alan Dow)

Abstract. Known results about lifting of paths for covering, light open and
light confluent mappings are in some sense extended for all confluent mappings
with the domain being a continuum having the arc property of Kelley. As an
application we prove that each confluently tree-like continuum has the fixed
point property.

1. Introduction

Classical theorems about lifting paths for covering, branched covering and related
mappings have been generalized to much larger classes of light open, light confluent
or light locally confluent mappings; see [2], [6], [16], [12] and the references therein.
These generalizations were initiated by the result of G. T. Whyburn about lifting
arcs and dendrites for light open mappings, [20, Theorem 2.4, p. 188]. A natural
question that appears is whether we can get any further results in this direction so
that the assumption of lightness for these mappings can be relaxed. In general, the
answer is negative, even in the case when the mapping is both open and monotone;
see Remarks 2.2 below.

In many applications, however, liftings can be replaced by approximative liftings,
i.e., mappings for which the corresponding diagrams commute up to an (arbitrarily
small) ε > 0. The main goal of this paper is to extend the lifting theorems to the
class of all confluent mappings with the compact domains having the arc property of
Kelley so that the resulting mapping is an approximative lifting. The arc property
of Kelley is a natural property shared by all locally connected compacta and some
other classes of spaces such as, for example, continua admitting, for each ε > 0,
confluent ε-mapping onto a locally connected continuum, or absolute retracts for
many natural classes of hereditarily unicoherent and tree-like continua; see [4] and
[5].

We present an application of these results by showing that confluently tree-like
continua have the fixed point property. For other related results see [2], [6], [8], [12]
[16], [19].

By a space we mean a metric space, and a mapping means a continuous function.
Let an ε > 0 be given. A mapping f : X → Y from a continuum X is called an
ε-mapping provided that diam f−1(f(x)) < ε for each point x ∈ X . For a mapping
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f : A→ B, where A and B are subspaces of a space X with a metric d, we define
d(f) = sup{d(x, f(x)) : x ∈ A}. For any nonempty subset A of a space X and any
ε > 0 we denote by NX(A, ε) the open ε-neighborhood of A in X . The symbol
N stands for the set of all positive integers. LsAn denotes the limit superior of a
sequence of sets An, respectively, as defined for example in [17, 4.9, p. 56].

A tree means a graph containing no simple closed curve. A tree T is said to have
the order at most n provided that each point of T has its order (i.e., the number
of maximal free arcs emanating from the point) not greater than n. A continuum
is said to be tree-like provided that for each ε > 0 it admits an ε-mapping onto a
tree. A dendrite means a locally connected continuum containing no simple closed
curve. A continuum that is hereditarily unicoherent (i.e., the intersection of any
two of its subcontinua is connected) and arcwise connected is called a dendroid.

A mapping f : X → Y between continua is said to be confluent provided that
for each subcontinuum Q of Y and for each component K of f−1(Q) the equality
f(K) = Q holds.

Obviously each monotone mapping is confluent, and also each open one is; see
[20, Theorem 7.5, p. 148]. For relations between these classes of mappings and for
their properties, see e.g. [13].

A path in a space X means a mapping p : [0, 1]→ X .
Given a compact space X and a space Y equipped with a metric dY , we denote

by ρ the supremum metric in the space of all mappings between X and Y , i.e.,
ρ(f, g) = sup{dY (f(x), g(x)) : x ∈ X} for any two mappings f, g : X → Y .

A continuum X is said to have the property of Kelley provided that for each
point a ∈ X , for each subcontinuum K of X containing a and for each sequence of
points an converging to a there exists a sequence of subcontinua Kn of X containing
an and converging to the continuum K. The property, introduced by J. L. Kelley
in [11, p. 26], has been recognized as an important tool in investigation of various
properties of continua, and is interesting in its own right.

Investigating absolute retracts for some classes of continua, we have found that
the following concept of the arc property of Kelley turns out to be both natural
and useful. See [4, Definition 3.3].

A continuum X is said to have the arc property of Kelley provided that for each
point a ∈ X , for each subcontinuum K of X containing a and for each sequence of
points an ∈ X converging to a there exists a sequence of arcwise connected (equiv-
alently: locally connected) subcontinua Kn of X containing an and converging to
the continuum K. The following equivalent form of the arc property of Kelley will
be used; see [5, Statement 2.16].

Statement 1.1. A continuum X with a metric d has the arc property of Kelley if
and only if for each ε > 0 there is an η = η(ε) > 0 such that for each subcontinuum
K of X and for all points p, q ∈ K and r ∈ X with d(p, r) < η, there is an arc
A ⊂ X from r to some point s such that A ⊂ NX(K, ε) and d(q, s) < ε.

2. Liftings for confluent mappings

All original results of the paper are presented in this section. Namely, we gen-
eralize lifting theorems presented in [20, Theorem 2.4, p. 188] as well as in [8,
Theorem 2, p. 574], [12] and [15, Theorem 1, p. 41] so that light open, light con-
fluent and light locally confluent mappings are replaced by any (not necessarily
light) confluent ones. The obtained mappings will be approximative liftings in this
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generalization (compare Remark 2.2). We begin with the case when the domain of
the lifted mapping is an arc.

We will use the real function η : R+ → R+ as defined in Statement 1.1 such that
η(ε) < ε, with the convention η0(ε) = ε and ηn+1(ε) = η(ηn(ε)) for each n ∈ N.

Theorem 2.1. Let X and Y be continua such that X has the arc property of Kelley.
Let f : X → Y be a confluent surjection, and p : [0, 1] → Y be a path. Then for
each ε > 0 there is a δ > 0 such that for each point a ∈ NX(f−1(p(0)), δ) there
is a path p̃ : [0, 1] → X satisfying p̃(0) = a and ρ(f ◦ p̃, p) < ε, i.e., the following
diagram ε-commutes:

X

f

��
[0, 1] p

//

p̃
=={{{{{{{{
Y

Moreover, if p is an embedding, then p̃ can also be an embedding.

Proof. Let dX and dY be metrics in X and Y , respectively. Divide [0, 1] into n
subsegments by points 0 = t0 < t1 < · · · < tn = 1 such that diam p([ti−1, ti]) < ε

2
for each i ∈ {1, . . . , n}. Let δ1 = δ1( ε2 ) be as in the definition of the uniform
continuity of f , and put δ = ηn+1(δ1).

Since a ∈ NX(f−1(p(0)), δ), there is a point q0 ∈ f−1(p(0)) such that dX(a, q0) <
δ. Denote by C1 the component of f−1(p([t0, t1])) that contains the point q0. Since
f is confluent, we have f(C1) = p([t0, t1]). So there is a point q1 ∈ C1 such
that f(q1) = p(t1). By Statement 1.1 there is an arc A1 ⊂ X from a0 = a to a
point a1 such that A1 ⊂ NX(C1, η

n(δ)) and dX(a1, q1) < ηn(δ)). Let C2 be the
component of f−1(p([t1, t2])) containing the point q1, and let q2 ∈ C2 ∩ f−1(p(t2)).
Again there is an arc A2 ⊂ X from a1 to a2 such that A2 ⊂ NX(C2, η

n−1(δ))
and dX(a2, q2) < ηn−1(δ). In general, if Ci is the component of f−1(p([ti−1, ti]))
containing the point qi−1 and if qi ∈ Ci ∩ f−1(p(ti)), we may define arcs Ai ⊂ X
from ai−1 to ai such that Ai ⊂ NX(Ci, ηn−i+1(δ)) and dX(ai, qi) < ηn−i+1(δ).

In the general case of the theorem, we let p̃|[ti−1, ti] : [ti−1, ti]→ Ai be a homeo-
morphism such that p̃(ti) = ai. In the case when p is an embedding, the construc-
tion can be done in such a way (the details are left to the reader) that the arcs
A1, . . . , An form a chain, i.e., Ai∩Aj 6= ∅ if and only if |i− j| ≤ 1. Finally, let A be
an arc contained in A1∪· · ·∪An from a0 to an. Put a′0 = a0, a

′
n = an, and for each

i ∈ {1, . . . , n − 1} choose a point a′i ∈ A ∩ Ai ∩ Ai+1. For each i ∈ {1, . . . , n} let
p̃|[ti−1, ti] : [ti−1, ti]→ a′i−1a

′
i be any homeomorphism onto the arc a′i−1a

′
i ⊂ A such

that p̃(ti) = a′i. We will show that p̃ : [0, 1] → X satisfies, in both the cases, the
needed conditions. Really, take a number t ∈ [ti−1, ti] and choose x ∈ Ci+1 so that
dX(p̃(t), x) < δ = δ( ε2 ). Then, since both p(t) and f(p̃(t)) are in the arc p([ti−1, ti]),
we have dY (p(t), f(p̃(t))) ≤ dY (p(t), f(x)) + dY (f(x), f(p̃(t))) < ε

2 + ε
2 = ε. The

proof is complete. �

Remarks 2.2. (a) The assumption of Theorem 2.1 that the continuum X has the
arc property of Kelley is essential, since there exists a monotone and open mapping
of the circle of pseudo-arcs, [1, p. 189], onto a circle; note that the domain of the
mapping contains no arc.
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(b) The results of Theorem 2.1 cannot be improved by saying that the mappings
p and f ◦ p̃ are identical. As the needed example one can take a monotone decom-
position of a 2-sphere into pseudo-arcs (see [18, Theorem 8, p. 29]). According to
[18, Proposition 1, p. 26] no arc in the domain is mapped onto an arc in the range,
while both the domain and the range spaces are locally connected continua (thus
they have the arc property of Kelley) and the mapping is not only confluent but
also monotone and open simultaneously.

Theorem 2.1, in the case when p is an embedding, will be used in the following
equivalent form.

Statement 2.3. Let X and Y be continua such that X has the arc property of
Kelley, let p : [0, 1] → Y be a path, and let f : X → Y be a confluent mapping.
Then for each sequence of points an ∈ X with Ls{an} ⊂ f−1(p(0)) there is a
sequence of paths p̃n : [0, 1]→ X such that lim ρ(f ◦ p̃n, p) = 0.

Moreover, if p is an embedding, then p̃n can also be an embedding.

The next result is an extension of Theorem 2.1 with a tree in place of an arc.

Theorem 2.4. Let f : X → Y be a confluent mapping between continua X and Y
such that X has the arc property of Kelley, and let g : T → Y be a mapping from
a tree T with some point b ∈ T . Then for each sequence of points an ∈ X such
that Ls{an} ⊂ f−1(g(b)) there is a sequence of mappings g̃n : T → X satisfying
g̃n(b) = an and lim ρ(f ◦ g̃n, g) = 0, i.e., the following diagram εn-commutes for
some sequence {εn} → 0:

X

f

��
T g

//

g̃n
>>~~~~~~~
Y

Proof. We apply induction with respect to the number i of end points of T distinct
from b. If i = 1, then T is an arc and b is an end point of T . Then we identify T
and [0, 1] and apply Theorem 2.3 for g = p letting g̃n = p̃n.

Assume now that the conclusion is true for i ∈ {1, . . . , k− 1}, where k > 1 is an
integer. We will show that it is true for i = k. Let {an} be a sequence of points in
X such that Ls{an} ⊂ f−1(g(b)).

If the point b separates T into m components C1, . . . , Cm, we apply the inductive
assumption to b and trees Tj = clCj for j ∈ {1, . . . ,m} separately, obtaining
mappings g̃n,j : Tj → X . Observe that for each n ∈ N the mapping g̃n : T → X
defined as the combination of the mappings g̃n,j , i.e., g̃n|Tj = g̃n,j for each j, is
well defined because g̃n,j(b) = an for each j ∈ {1, . . . ,m}. Then g̃n are the needed
mappings.

If b is an end point of T , then there is a ramification point c ∈ T \ {b}. Let D1

be the closure of the component of T \ {c} that contains b, and D2, . . . , Dm be the
closures of other components of T \ {c}. First we apply the inductive assumption
to b and the tree D1 obtaining, for each n ∈ N, mappings g̃n,1 : D1 → X . Next
the inductive assumption is applied to the trees D2, . . . , Dm with the distinguished
point c (in place of b), and the sequence ãn = g̃n,1(c) in place of an. We see that
Ls{ãn} ⊂ f−1(g(c)). Thus for each j ∈ {1, . . . ,m} there are mappings g̃n,j : Dj →
X such that the f ◦ g̃n,j : Dj → Y converge to g|Dj. The mappings g̃n that are
combinations of mappings g̃n,j for j ∈ {1, . . . ,m} satisfy the conclusion. �
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Theorem 2.5. Under the conditions of Theorem 2.4, if, additionally, g is an em-
bedding, the order of T is less than or equal to 3 and b is an end point of T , then
the mappings g̃n : T → X in the conclusion of Theorem 2.4 can be chosen to be
embeddings.

Proof. We apply notation from the proof of Theorem 2.4, and again proceed by
induction. For the first inductive step, i.e., for i = 1, identifying T with [0, 1], b
with 0 and g with p, we see that g̃n = p̃n can be embeddings by Statement 2.3.
Assume that the conclusion is true for i ∈ {1, . . . , k− 1}, where k > 1 is an integer.
We will show that it is true for i = k. Let again {an} be a sequence of points in X
such that Ls{an} ⊂ f−1(g(b)).

Since b is an end point of T , there is a ramification point c ∈ T \ {b}. Let D1 be
the closure of the component of T \{c} that contains b, and letD2, D3 be the closures
of other components of T \ {c}. Arguing as in the proof of Theorem 2.4, by the
inductive assumption, we obtain embeddings ĝn,1 : D1 → X with ĝn,1(b) = an and
embeddings ĝn,2 : D2 → X as well as ĝn,3 : D3 → X such that their combinations,
ĝn : T → X , have the property lim(f ◦ ĝn) = g.

Now we will slightly modify the mappings ĝn in small neighborhoods of c to
obtain embeddings g̃n. Since, for j ∈ {1, 2, 3}, the mappings ĝn,j are embeddings
with the compositions f ◦ ĝn,j converging to g on Dj , there is a sequence of open
neighborhoods Un of g(c) in Y such that, for each n ∈ N,
(2.5.1) there is a simple triod Tn ⊂ T ∩ Un having c as its vertex and such that

ĝn| cl(T \ Tn) is an embedding;
(2.5.2) ĝn(Tn) ⊂ f−1(Un);
(2.5.3) for each end point ejn of Tn, where j ∈ {1, 2, 3} and ejn ∈ Dj , we have

ord(ejn, T ) = ord(ĝn(ejn), ĝn(T )) = 2;
(2.5.4) lim diamUn = 0.

Fix an arbitrary n ∈ N. Let e1
ne

2
n be an arc in Tn, and let An be an arc in

ĝn(e1
ne

2
n) irreducible between ĝn(e1

n) and ĝn(e2
n). Furthermore, let Bn be an arc in

ĝn(e1
ne

3
n) irreducible between ĝn(e3

n) and An. The union An ∪Bn is a simple triod
in f−1(Un) with end points ĝn(ejn) for j ∈ {1, 2, 3}. We extend the embedding
ĝn| cl(T \Tn) to a mapping g̃n : T → X letting g̃n|Tn be any homeomorphism from
Tn onto An∪Bn such that g̃n(ejn) = ĝn(ejn) for j ∈ {1, 2, 3}. Observe that the g̃n so
defined is an embedding. Since lim diamUn = 0, we have lim ρ(f ◦ ĝn, f ◦ g̃n) = 0.
Thus lim ρ(f ◦ g̃n, g) = 0, as needed. The proof is complete. �
Remarks 2.6. (a) The assumption of Theorem 2.5 that each point of T has order in
T at most 3 is essential. Indeed, let X be a linear graph of the shape of the letter
H, and let a monotone mapping f : X → Y shrink the horizontal bar of H to a
point. Then Y is a 4-od of the shape of the letter X and there is no homeomorphic
copy of Y in X .

(b) An example can be constructed showing that the assumption of Theorem 2.5
on T being a tree cannot be relaxed to being a dendrite (of order at most 3).

Recall that a compact space X is called an approximative absolute retract (writ-
ten AAR) provided that whenever X is embedded in a compact space (or, equiva-
lently, in the Hilbert cube) Y , for each ε > 0 there is a mapping f : Y → X such
that d(f |X) < ε.

An AAR continuum X is called a pointed AAR if, for any fixed point x0 ∈ X ,
the mapping f : Y → X required by the above definition of an AAR additionally
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satisfies f(x0) = x0. One can use the example of the sin(1/x)-curve to see that the
class of AAR tree-like continua is essentially larger than the class of pointed ones.

Observation 2.7. A tree-like continuum X is a (pointed) AAR if and only if (for
each x0 ∈ X and) for each ε > 0 there exists a mapping f : X → T with d(f) < ε
onto a tree T contained in X (such that f(x0) = x0).

Proof. If X , embedded in a space Y , admits such mappings f , then f can be
extended to Y because T is an AR. On the other hand, if a tree-like (pointed)
AAR X is embedded in the Hilbert cube Q, then for each ε > 0 there is a mapping
f ′ : Q → X such that f ′|X is an ε-mapping (and f ′(x0) = x0). Thus f ′(X) is
a locally connected tree-like continuum, i.e., a dendrite. The mapping f ′|X can
be slightly modified to an ε-mapping f : X → X such that f(X) is a tree (and
f(x0) = x0). �

Theorem 2.8. Let f : X → Y be a confluent mapping between continua X and Y
such that X has the arc property of Kelley, and let g : Z → Y be a mapping from
a tree-like AAR continuum Z. Then for each ε > 0 there is a mapping g̃ : Z → X
such that ρ(f ◦ g̃, g) < ε, i.e., the following diagram ε-commutes:

X

f

��
Z g

//

g̃
>>~~~~~~~
Y

Moreover, if Z is a pointed AAR tree-like continuum, then for each point z ∈ Z
there exists a δ > 0 such that for each a ∈ NX(f−1(g(z)), δ) we can additionally
obtain g̃(z) = a.

Proof. By Observation 2.7 there are mappings kn : Z → Tn onto trees Tn ⊂ Z
such that lim ρ(kn, id |Z) = 0. By Theorem 2.4 applied for g|Tn : Tn → Y there are
mappings g̃n : Tn → X such that ρ(f ◦ g̃n, g|Tn) < 1

n . Thus

lim ρ(f ◦ g̃n ◦ kn, (g|Tn) ◦ kn) = 0 and lim ρ((g|Tn) ◦ kn, g) = 0.

Therefore lim ρ(f ◦ (g̃n ◦ kn), g) = 0, and we choose g̃ = g̃n ◦ kn for sufficiently large
n, which completes the proof of the general case.

To show the pointed case, fix a point z ∈ Z. Let kn : Z → Tn be as in the
previous case. Since Z is a pointed AAR we can additionally assume that kn(z) = z.
Suppose that there is no required δ. Thus there is a sequence {am} ⊂ X such that
Ls{am} ⊂ f−1(g(z)) and such that for eachm there is no required g̃ with g̃(z) = am.
By Theorem 2.4 applied again for g|Tn : Tn → Y there are mappings g̃n,m : Tn → X
such that for each n ∈ N we have limm ρ(f ◦ g̃n,m, g|Tn) = 0 and g̃n,m(z) = am.
Using the “diagonal procedure” we can find a sequence of indices mn such that
limn ρ(f ◦ (g̃n,mn ◦ kn), g|Tn) = 0. Thus, for sufficiently large n, for a = an and
g̃ = g̃n,mn ◦ kn, we have g̃(z) = a and ρ(f ◦ g̃, g) < ε, a contradiction. �

To see some applications of Theorem 2.8 we recall the needed concepts.
A compact X is called an absolute retract for a class T L of tree-like continua

(written AR(T L)) provided that whenever X is embedded in a tree-like continuum
Y , the embedded copy of X is a retract of Y .

A subcontinuum X of a continuum Y is said to be terminal in Y if each subcon-
tinuum of Y that intersects X and Y \X contains X . A continuum X is said to
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be an absolute terminal retract provided that if X is embedded in a continuum Y
in such a way that the embedded copy, X ′, is a terminal subcontinuum of Y , then
X ′ is a retract of Y (see [7]).

A continuum X is said to be confluently tree-like provided that for each ε > 0
there is a confluent ε-mapping from X onto a tree.

Remark 2.9. The following classes of tree-like continua are composed of AARs, and
thus their members can be taken as the space Z in Theorem 2.8:

(i) general case:
(2.9.1) tree-like absolute terminal retracts; this class actually is identical with tree-

like AARs (see [7]);
(ii) pointed case:

(2.9.2) trees;
(2.9.3) dendrites;
(2.9.3) AR(T L);
(2.9.4) confluently tree-like continua (see Theorem 2.12 below).

In particular, the following continua belong both to AR(T L) and to the class of
confluently tree-like ones: each cone over a compact 0-dimensional set (see [14, p.
183]), Knaster type continua (see [3, Corollary 3.7]), and any inverse limit of trees
with confluent bonding mappings (see [3, Theorem 3.6]).

In view of Theorem 2.8 the following question seems to be of a special interest.

Question 2.10. Is each dendroid an AAR?

The above question is related to the next one about the existence of small re-
tractions on dendroids (see [7, Questions 5.5-5.8]).

Question 2.11. Let X be a dendroid. Do there exist, for each ε > 0, a tree T ⊂ X
and an ε-mapping r : X → T such that r is a retraction?

Question 2.11, asked by B. Knaster some 40 years ago, is still open, despite
numerous attempts to solve it.

As another application of Theorem 2.8 we will prove that each confluently tree-
like continuum has the fixed point property. The study of the fixed point property
for tree-like continua has been an exciting and challenging area in topology for
many decades; see, e.g., [10] and the references therein.

Theorem 2.12. Each confluently tree-like continuum X is a pointed AAR.

Proof. We will show the equivalent condition from Observation 2.7.
By Corollary 2.26 of [5] the continuum X has the arc property of Kelley. Fix

x0 ∈ X and for each n ∈ N let fn : X → Tn be confluent 1
n -mappings, where Tn

are trees. Without loss of generality, we can assume that Tn and X are subsets
of a common space Y such that lim d(fn) = 0. Fix ε > 0 and choose m ∈ N so
that d(fm) < ε

2 . Let gmn : Tm → X be approximate liftings of the identities on the
trees Tm guaranteed by Theorem 2.4, where b = fn(x0) and an = x0. Note that
(gmn ◦ fn)(x0) = x0. For each x ∈ Tm we have

d(x, gmn (x)) ≤ d(gmn (x), fm(gmn (x))) + d(fm(gmn (x)), x) ≤ d(fm) + d(fm ◦ gmn ),

whence d(gmn ) ≤ d(fm) + d(fm ◦ gmn ). Therefore, since d(fm ◦ gmn )→ 0 as n →∞,
there is an n ∈ N such that d(gmn ) < ε

2 . Define f ′ = gmn ◦ fm. Then d(f ′) ≤



584 JANUSZ J. CHARATONIK AND JANUSZ R. PRAJS

d(gmn ) + d(fm) < ε
2 + ε

2 = ε, and the set f ′(X) is a continuum contained in a
tree-like locally connected continuum gmn (Tm). Thus f ′(X) is a dendrite. We can
slightly modify the mapping f ′ to a mapping f : X → X so that d(f) < ε, f(X) is
a tree in f ′(X) and f(x0) = x0. The proof is complete. �

As a consequence of Observation 2.7 and Theorem 2.12 we have the following
results.

Corollary 2.13. Each confluently tree-like continuum X has the fixed point prop-
erty.

Proof. Let a mapping g : X → X be given, and let fn : X → X be mappings
guaranteed by Theorem 2.4 for the corresponding numbers 1

n . The composition
fn ◦ g|fn(X) is a mapping from the tree fn(X) into itself. So it has a fixed point
xn. Observe that any accumulation point of the sequence {xn} is a fixed point of
g. �
Remark 2.14. Corollary 2.13 can also be obtained using Theorem 2.12 and the
corollary in [9, p. 19] saying that each AAR has the fixed point property.

Since each confluently tree-like continuum has the arc property of Kelley (see [5,
Corollary 2.26]), in connection with Corollary 2.13 one can ask the following.

Question 2.15. Does the arc property of Kelley for tree-like continua imply the
fixed point property?
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