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ANOTHER HOMOGENEOUS PLANE CONTINUUM 
BY 

R. H. BING AND F. B. JONES 

1. History of problem. A set X is homogeneous if for each pair of points 
x, y of X there is a homeomorphism of X onto itself that takes x into y. 

In 1920 Knaster and Kuratowski [21] raised the following question: If a 
nondegenerate bounded plane continuum is homogeneous, is it necessarily 
a simple closed curve? 

In 1922, Knaster [20] described a hereditarily indecomposable plane 
continuum. It is reported that he suspected that this continuum had other 
interesting properties and suggested to his students the problem of discover- 
ing if this Knaster continuum (as it came to be called) had the property 
possessed by an arc of being topologically equivalent to each of its non- 
degenerate subcontinua. This Knaster continuum is homogeneous and fur- 
nishes a counterexample to an affirmative answer of the above question, but 
this was not discovered until 1951. 

A partial affirmative solution was given to the question in 1924 when 
Mazurkiewicz [22] showed that the bounded nondegenerate homogeneous 
plane continuum is a simple closed curve if it is locally connected. This result 
was improved in 1951 when Cohen [12] showed that the continuum is a 
simple closed curve if it either is arcwise connected or contains a simple 
closed curve. 

A false affirmative solution was announced [25] in 1937. (Of course, at 
the time, it was not known that the solution was false-this only developed 
eleven years later when a counter-example was given.) This false solution 
was extended [II] in 1944 when an attempt was made to classify all homo- 
geneous bounded closed plane sets. 

That a pseudo-arc is homogeneous was shown first by Bing [3] in 1948 
and shortly thereafter by essentially the same methods by Moise [24]. Both 
of these proofs made use of the description of the pseudo-arc given by Moise 
[23] to show that a pseudo-arc is topologically equivalent to each of its non- 
degenerate subcontinua. 

In 1951 Bing [4] discovered that the pseudo-arc described by Moise in 
1948 is actually topologically equivalent to the continuum Knaster described 
twenty-six years earlier by different methods. In fact, it was shown that any 
two nondegenerate snake-like hereditarily indecomposable continua are topo- 
logically equivalent. Also, it was shown that in the category sense, most 
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bounded continua in En (n> 1) are pseudo-arcs. Hence, most bounded plane 
continua are homogeneous. 

In 1953 two papers [18; 19] appeared questioning the homogeneity of the 
pseudo-arc. The second of the papers made an unsuccessful attempt to cor- 
rect an error in the first. Inasmuch as these papers received not unfavorable 
reviews (Mathematical Reviews vol. 15 (1954) p. 146; p. 335) despite the 
errors in them, it seems desirable to mention that the pseudo-arc has not 
been abandoned as an example of a homogeneous plane continuum. 

In 1954, working independently, Bing and Jones each discovered a homo- 
geneous plane continuum that was neither a simple closed curve nor a 
pseudo-arc. Neither knew of the others work until the titles of the papers 
appeared adjacent to each other on the 1954 summer program of the Ameri- 
can Mathematical Society [6; 15]. Inasmuch as both had discovered the 
same example, it was decided to make this a joint paper. The first part of 
this paper showing that the example a circle of pseudo-arcs-is homo- 
geneous was written by Bing. The latter part showing that such a circle of 
pseudo-arcs can be imbedded in the plane was prepared by Jones. 

Perhaps the future holds the answer as to whether or not there are other 
homogeneous bounded plane continua. Jones' result [14] that each bounded 
homogeneous plane continuum which does not separate the plane is inde- 
composable may guide our search. Bing has described a continuum (Example 
2 of [4]) that is suspected of being homogeneous. However, at the moment, 
the only nondegenerate bounded plane continua known to be homogeneous 
are the simple closed curve, the pseudo-arc, and the circle of pseudo-arcs 
described in this paper. Other pertinent references are found in the bibliog- 
raphy of this paper. 

2. The example. In this section we describe a homogeneous plane con- 
tinuum which we call a circle of pseudo-arcs. First we define some terms that 
we shall use. 

A chain is a finite collection D of open sets d1, d2, * * , dn such that di 
intersects dj if i, j are adjacent integers and otherwise p(di, dj) is positive. 
We say that i, j are adjacent if I i-jl ? 1-hence i is adjacent to itself. We 
use p to denote the distance function. In earlier papers the weaker condition 
that nonadjacent links did not intersect was used instead of the stronger 
condition that they were a positive distance apart but in some respects this 
is less convenient for our present purposes than the stronger condition. 

The elements d1, dn of the above chain D are called end links of D and 
the other links are called interior links. If each link is of diameter less than E, 

D is called an e-chain. The subchain of D consisting of dr, dr+i, * * * ds is 
denoted by D(r, s). 

Suppose D =d1, d2, d . ., 4 is a chain which covers a point set X. Then 
each point of X lies in some link of D. We say that D properly covers X if 
each link of D contains a point of X. Also, D irreducibly covers X of each link 
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of D contains a point of X that is not covered by any other link of D. If a 
chain irreducibly covers a set, then it properly covers the set, but not con- 
versely. 

A compact continuum is called snake-like [5] if for each positive number 
E, it can be covered by an E-chain. The pseudo-arc described in [23; 3; 4; 7] 
is an example of a snake-like continuum. 

A continuum G is called an arc of continua { gI 0 1}x ? } if there is a 
map f of G onto [0, 1] such that f' (x) is the continuum gx. Then { gx } is an 
upper semicontinuous collection of continua filling G such that the cor- 
responding decomposition space is an arc. Then go and gi are called the end 
elements of { gx }. We use G(a, b) to denote the sum of all continua in the col- 
lection {gxa?<x<b}. 

Such a continuum G is a snake-like arc of continua {gxl 0 ?<x 1 } if it is 
snake-like. If each element of {gx} is a pseudo-arc, G is called a snake-like 
arc of pseudo-arcs. If in addition, the collection { gx } is continuous (f is open), 
then G is called a continuous snake-like arc of pseudo-arcs. In Theorem 10 we 
show that any two continuous snake-like arcs of pseudo-arcs of homeo- 
morphic-indeed there is a very strong type of homeomorphism between 
them. 

A circular chain differs from a regular chain in that the first and last links 
intersect. A compact nonsnake-like continuum which for each positive num- 
ber E can be covered by an e-circular chain is called circle-like. 

The bounded plane continuum which is shown in this paper to be homo- 
geneous is a continuous circle-like circle of pseudo-arcs-which we call for 
brevity, a circle of pseudo-arcs. It is a circle-like continuum M such that there 
is a continuous decomposition of M into pseudo-arcs such that the decom- 
position space is a simple closed curve. Hence, there is an open map f of M 
onto a circle such that the inverse of each point of the circle is a pseudo-arc. 

Perhaps certain of the continua used by Anderson in [1; 2] were circles 
of pseudo-arcs but this was not pointed out there. It follows from Theorem 10 
that any two circles of pseudo-arcs are topologically equivalent and that 
each is homogeneous. 

In establishing homeomorphisms between snake-like continua it is fre- 
quently convenient to consider sequences of chains covering them and rela- 
tions between these chains. The chain D2 refines the chain D1 if each link of D2 
lies in a link of D1. A chain map H of a chain E into a chain D is a single 
valued function that assigns a link of D to each link of E such that the images 
of adjacent links are adjacent-that is H(ei) and H(ei+1) are adjacent links 
of D. If each link of D is the image of a link of E, we say that H maps E 
onto D. We note that the chain map H does not operate on the points in the 
links of E but only on the links. Chain maps play much the same role in this 
paper as following a pattern did in [3 ]. 

3. Snake-like arcs of continua. In this section we prove some theorems 
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about snake-like continua. A modification of the argument in the following 
proof shows that each tree-like continuum as defined in [5] is unicoherent 
but we shall not be concerned with tree-like continua in this paper. 

THEOREM 1. Each snake-like continuum is unicoherent. 

Proof. Suppose a snake-like continuum M is the sum of two continua 
M1, M2. We show that M is unicoherent by showing that each pair of points 
p, q of M1. M2 belongs to a component in M1l M2. 

Suppose d1, d2, * , dn is a chain covering M, pEdi, qEdj, and i<j. 
Since each of M1, M2 is connected and contains p+q, each intersects each 
link of di, di+,, * * * , dj. Hence there is a sequence of points P = Pi, pi+,, * , p 
=q where PEzdr M1. If d1, d2, * * * X dn is an E-chain, then p(pr, M2) <E and 
P (P, pr+l) < 2 E. 

Since M is snake-like, for each positive number E it can be covered by 
an e-chain. The results of the preceding paragraph show that there is a 
sequence R1, R2, - * * such that Rk is a finite number of points p = pk 

pk, * k* P =q such that pkM1J, p(pk, M2) < 1/k, and p (pk, pk+D) < I/k. 
Some subsequence of R1, R2, . . . converges to a set L. But L is con- 

nected, contains p+q, and belongs to both M1 and M2. Since p and q are 
arbitrary points of M1 M2, we have that M1 M2 is connected and M is 
unicoherent. 

THEOREM 2. Suppose G is a snake-like arc of continua { gI 0? x <1 } and 
O<a<b<c<d<l. There is a positive number E such that if D is any E-chain 
whatever covering G, any link of D intersecting G(b, c) is between any link of D 
intersecting G(O, a) and any link intersecting G(d, 1). 

Proof. The required number E is any positive number less than each of 
p(G(O, a), G(b, c)), p(G(b, c), G(d, 1)), and p(G(O, b), G(c, 1))/2. 

Let D =d1, d2, . . . , dn be an e-chain covering G and di, dj, dk be elements 
of D intersecting G(O, a), G(b, c), and G(d, 1) respectively where i<k. We 
show that i <j < k. 

Since each of G(O, b), G(c, 1) is connected, there are subchains D', D" of 
D containing di and dk respectively and covering G(O, b), G(c, 1) respectively 
such that each link of D' intersects G(O, b) and each link of D" intersects 
G(c, 1). Since p(G(O, b), G(c, 1)) > 2E, some link dt of D lies between the links 
of D' and the links of D". Hence i<t<k. 

If j<i<t, G(b, c) intersects di because G(b, c) is connected and intersects 
each of dj and dt. This is impossible because G(O, a) intersects di and p(G(0, a), 
G(b, c)) > E. Similarly, it is impossible that t < k <j. Hence i <j < k. 

THEOREM 3. Suppose G is a snake-like arc of continua { gx I O < x <1 } . Then 
for each positive number E there is an E-chain D covering G such that the first 
link of D intersects go and the last link intersects gi. 

Proof. Suppose a is a positive number less than each of e/2 and p(go, gl)/2. 
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Since G is snake-like, there is a b-chain E = el, e2, * * * , en covering G. Suppose 
ei, e5 are the first and last members of this chain intersecting go while er, e8 
are the first and last members of the chain intersecting gi. Then E(i, j) and 
E(r, s) are subchains of E properly covering go and gi respectively and no 
link of E(i, j) intersects any link of E(r, s). For convenience we suppose that 
i<j<r <s. 

Let a, b be numbers such that O<a<b<1, E(i, j) covers G(O, a), and 
E(r, s) covers G(b, 1). An application of Theorem 2 gives a positive number y 
such that if F is a y-chain covering G, then any link of F intersecting G(a, b) 
lies between any link of F intersecting G(O, a/2) and any intersecting 
G((b+1)/2, 1). We put the further restriction on Py that if F is a y-chain 
irreducibly covering G, then F refines E, any link of F intersecting G(O, a) 
lies in a link of E(i, j), and any link of F intersecting G(b, 1) lies in a link of 
E(r, s). 

Let F =fi, f2, * * fm be a y-chain irreducibly covering G and ft, f. be 
links of F intersecting go and gl respectively such that no link of F between 
ft and fu intersects go+gl. For convenience we suppose that t <u. Let F(v, w) 
be the subchain of F(t, u) which is maximal with respect to the property that 
f, lies in an end link of E(i, j) andfw lies in an end link of E(r, s). Then E(i, j) 
covers each link of F(1, v) and E(r, s) covers each link of F(w, m). For con- 
venience we suppose that fV lies in es and fw lies in e,. 

Use A to denote the sum of the elements of F(1, v) and B to denote the 
sum of the elements of F(v, m). Then the elements of D are A ei, A ei+,, . . . 
A ej, fv+i, fv+2, - ,f , B - er,Ber+ , IB e8. 

THEOREM 4. Suppose G is a snake-like arc of continua { g, O < x ?1 } and p 
is a point of G- (go +gl). Then each neighborhood of p which does not intersect 
go+gi separates go from gi in G. 

Proof. Suppose U is a neighborhood of p which does not intersect go+gi 
and e is a positive number such that e<p(p, G- U). 

By Theorem 3 there is an e-chain D =di, d2, * * *, dA covering G such that 
d1 intersects go and dn intersects gi. Let di be an element of D that contains p. 
Then G- U is the sum of the mutually exclusive closed sets G (di +d2+ * * i 
+di) - U and G (d+di+l + . . . +d) - U while the first of these sets con- 
tains go and the second contains g1. 

THEOREM 5. Suppose G is a snake-like arc of indecomposable continua 
gx |0 ? x ? 1 } and E is a chain covering G such that E properly covers each gx. 

Then if Uis an open set such that U G0, U (go+gl) =0, and U lies in a link 
of E, then G - U may be expressed as the sum of two mutually separated sets 
A, B such that go CA, g1CB, and for each x (O <x< 1), either A * g. intersects 
each link of E or B gx intersects each link of E. 

Proof. Let D1, D2, * * * be a decreasing sequence of chains covering G 
such that the first link of each Di intersects go and the last link intersects gl. 
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Theorem 3 shows that there are such chains. 
Let di be a link of some Di such that d1C U and diameter di is less than 1. 

Then Theorem 4 implies that G-d1 is the sum of two mutually separated 
sets A1, B1 containing go, gi respectively. Using the assumption that the 
theorem is false, we find that there are numbers a,, bi such that 0 <a, <bi <1 
and for each x (a,<? x ? b1), neither A1 gx nor B, gx intersects each link of E. 

Let d2 be a link of some Di such that d2Cdl, d2 (G(0, a) +?G(b1, 1)) =0, and 
diameter d2 is less than 1/2. Then G-d2 is the sum of two mutually separated 
sets A2, B2 containing G(O, a,) and G(b1, 1) respectively. If the theorem is 
false, there are numbers a2, b2 such that a, < a2 <b2 < b and for each gx 
(a2 <x < b2) neither A2 gx nor B2 gx intersects each link of E. 

We continue this procedure to get a sequence of open sets di, d2, d3, * 
a sequence of numbers a1, a2, a3, * * * and a sequence of numbers bi, b2, b3, 
such that di+?Cdj, dj is of diameter less than 1/j and is a link of some Di, 
aj<aj+i<bj+l<bj, and G-dj is the sum of two mutually separated sets Aj, 
Bj containing G(O, aj-1), G(bj-1, 1) respectively. 

Let c be a number such that O < a, < a2 < . . . <c< . . . < b2 <bi< 1. We 
show that the assumption that the theorem is false leads to the contradiction 
that gc is decomposable. For some increasing sequence of integers n(1), 
n(2), **, An(l) gc, An(2) gc, * * converges to a set A and Bn(l) gc, Bn(2) 
gc, * **converges to a set B,. Now A, is a continuum because Ai 0g is not 

the sum of two sets whose distance apart is more than 1/i. It is a proper sub- 
continuum of gc since no Agi g intersects each link of E. Also, Bc is a proper 
subcontinuum of gc. But gc is decomposable because it is the sum of the two 
proper subcontinua A0, B,. 

4. Chain maps. In this section we give some theorems about chain maps. 
The first of these might be labeled a fixed point theorem for chain maps. 

THEOREM 6. Suppose D = d1, d2, * * * , dn and E = el, e2, * .. , em are chains 
and H1, H2 are two chain maps of D into E such that Hi (i= 1, 2) takes a link 
of D into em-i. Then for some link di of D, the link Hi(di) of E is adjacent to the 
link H2(di). 

Proof. Suppose Hi(di) precedes H2(di) in e1, e2, , em. If each link 
H1(dj) of E precedes the corresponding link H2(dj), let di be a link of D such 
that H1(di) =eCm-. Then Hi(di) is adjacent to H2(di). 

If for some link dj of D, H1(dj) does not precede H2(dj), let di be the first 
such link of D. Then H1(di) is adjacent to H2(di). 

We note that if one chain covers a pseudo-arc, then another chain cover- 
ing it can be inscribed in the first in a prescribed way. 

THEOREM 7. Suppose D= d1, d2, * * * , dn is a chain properly covering a 
pseudo-arc P and H is a chain map of a chain X = Xi, X2, .. , Xm onto D. Then 
there is a chain E =eC, e2, , em properly covering P such that ei Cdj if 
H(xi) = dj. 
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In fact, if A, B are closed sets in P di, P d. respectively and H(xr) =d, 
H(x8) = d, the chain E may be selected so that A Cer, B Ce8. 

Proof. The proof would be slightly easier if A Cd1 - d2, B Cd, - 41, r = 1, 
s= m, Xr is the only element of X that H takes into di, and x5 is the only ele- 
ment of X that H takes into dn. We now prove the theorem in this special 
case. 

Let Pi, P2 be points of different components of P in di-d2, dn-d,-, 
respectively and D1, D2, * * * be a sequence of chains from pl to P2 such that 
each Di covers P, Di is of mesh less than 1/i, Di+, is crooked in Di, and 
D =D. Then it follows from Theorem 6 of [3] that there is a chain E =e, 
e2, * * , em from Pi to P2 such that E covers P, eiCdj if H(xi) =dj, and for 
some integer r, each link of E is the sum of links of Dr. 

Now that we have shown the theorem is true in the special case we alter 
D, X, H and obtain D', X', H' so that the special case applies. Then we ad- 
just the E' obtained to get the required E. We suppose with no loss of gener- 
ality that r<s. 

The chain D' is obtained as follows. Let Uo, Ul, U2 be open subsets of 
di, d, * d2, d2 respectively such that P (dl+d2) C Uo + U1+ U2, P.* (d- d2) 
+A CUo, P (d2-di) C U2, UO U2=O, and A *Ui=O. Also, let Un-,, Un, Un+, 
be open subsets of dn-1, dn1 dn respectively such that P (dn_l+dn) C Un- 
+ Un+ Un+, P* (dn-l-dn) C Un_l P (dn-dn-l) +B C Un+, Un-lUn+l = 0 
and Un B=0. Then D'= Uo, Ul, U2, d3, dn-2, Un1, Un, Un+l 

The chain X'=y', Yr, Yr-i *, Y2, Xl, X2, I Xm Zm-il . . . zs, z/ is ob- 
tained from X by adding r elements on at the front and m + 1-s on at the 
end. Then H' is the chain map of X' onto D' so that H'(y') = Uo, H'(z') 
= Un+, H'(xi) =H'(yi) = H'(zi) = Uj (or dj) if H(xi) = dj. 

Since the special case applies to D', X', and H', there is a chain E'=f', 
fr,fr-i, *** f2, el', l , e', gm-i, * g8, g' such that A Cf', B Cg', and 
a link e' of E' lies in a link d of D' provided d is the image under H' of the 
link of X' corresponding to e'. 

The chain E = el, e2, , * * , em satisfying the conclusions of the theorem is 
obtained by adding together certain elements of E'. The link er is the sum of 
f', fr, e' while e8 is the sum of g', g, e'. In general ei is the sum of e', fi, gi 
(if there are such f's and g's). 

The following theorem concerning the existence of chains that cover a 
snake-like arc of pseudo-arcs in a prescribed fashion will be of use in showing 
that certain such continua are homeomorphic. 

THEOREM 8. Suppose P is a snake-like arc of pseudo-arcs {pj 0? x <1 }, 
D =di, d2, * * * , dn is a chain covering P such that each link of D intersects 
each px, and H is a chain map of a chain Y=yl, Y2, , * * ym onto D. Then 
there is a chain E= ei, e2, * *, em covering P such that each P. intersects each 
link of E and eiCdj if H(yi) =dj. 
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Proof. First we consider the case where H(yi) =di, H(ym) = dn. Let UA, UB 
be open sets with closures in d1, d2 respectively such that UA, UB intersect 
each element of { P. }I. 

It follows from Theorem 7 that for each a (O <a <1) there is a chain 
E(a) =e(a)i, e(a)2, * * *, e(a). covering pa such that UA paCe(a)l, UB Pa 
Ce(a)m, e(a)iCdj if H(yi) =dj. 

The upper semicontinuity of the collection {p.,} implies that a lies in a 
connected open subset Ia of (O< x ?1) such that if xIa, then E(a) covers 
P., UA P.Ce(a)l, and UB*PpCe(a)m. A finite collection Ia,, 1a2, , Iat of 
such open connected subsets cover (O< x <1). Let E(a,), E(a2), , E(at) 
be the corresponding E(a)'s. 

We now show how to form E from E(al), E(a2), E(at). It follows 
from Theorem 4 that P is covered by open sets U1, U2, * , Ut such that 
Ui Uj= UA+ UB if i F#j and if Px (Ui -( UA+ UB)) # O, then xzIai. Then 
the chain E whose kth link ek=e(al)k* Ul+e(a2)k U2+ * * +e(at)k. Ut is the 
required chain. 

The purpose of the restriction that H(y1) =d, H(ym) = dn was to make it 
apparent that each Px intersected each link of E. To prove the theorem in 
the more general case, suppose H(yr) =di, H(y) =dn. Then alter Y as was 
done in the proof of Theorem 7 by adding elements onto the first of it and 
elements onto the last of it so that the resulting chain Y' has ends in d1, dn 
respectively and such that the added elements of Y' can be combined with 
the original links to get a chain resembling Y. Then end chains of the result- 
ing chain E' may be added onto the center of E' as was done in the proof of 
Theorem 7 so as to get a chain E satisfying the conditions of the theorem. 

In stating the following corollary to Theorem 8, the same symbols are 
used as appear at the place in the proof of Theorem 10 where it is applied. 

COROLLARY TO THEOREM 8. Suppose Q(i/k, (i+1)/k) is a snake-like arc 
of pseudo-arcs {qx/i/k< x ? (i+1)/k }, E is a chain covering Q(i/k, (i+ 1)/k) 
such that each qx intersects each link of E, and H1 is a chain map of a chain 
D(r, s) onto E. Then there is a positive number e such that if F(t, u) is an e- 
chain irreducibly covering Q(i/k, (i+1)/k), then there is a chain map R(2+1)/2k 
of F(t, u) onto D(r, s) such that for each link fi of F(t, u), fiCHlR(2+l)/2k(fi), 
and if fv, fv+i, * * *, fw is a subchain of F(t, u) irreducibly covering some qx, 
then each link of D(r, s) is the image of three consecutive links offv, fv+?, fw. 

In obtaining this result from Theorem 8, we let the P, {Px| O < x < 1 }, and 
D of the theorem be the Q(i/k, (i+1)/k), {qx i/k<x?(i+1)/k}, and E of 
the corollary, Y be a chain with four times as many links as D (r, s), and H be 
a chain map that takes links of Y numbered 4i+1, 4i+2, 4i+3, 4i+4 into 
the image under H1 of the ith link of D(r, s). Then e is a number so small that 
any e-chain properly covering Q(i/k, (i+ 1)/k) is a refinement of the chain E 
promised by Theorem 8. 
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5. A homeomorphism between pseudo-arcs. The following theorem shows 
that if the same e-chain properly covers two pseudo-arcs, there is a homeo- 
morphism of one onto the other that moves no point by more than 6. It also 
shows how a chain map can be approximated with a homeomorphism. 

THEOREM 9. Suppose D, E are chains properly covering pseudo-arcs P, Q 
and H is a chain map of D onto E such that each link of E is the image of a link 
of D which contains a point of P not on the closure of any other link of D. Then 
there is a homeomorphism h of P onto Q such that for each link di of D, h(P di) 
CH(di). 

The rather awkward condition that each link of E is the image of a link 
of D that covers a point of P not covered by the closure of any other link of 
D is necessary because it may be that D = d1, d2, * * * , dn and E = el, e2, , * * en 

have the same number of links, H(di)=ei, PCJ2+d3+ * * +d,-1, and 
Q1Ze2+e3+ * * * +e,_,. The less complicated but more stringent condition 
that each link of E is the image of an interior link of D might be substituted. 

We use two simplifications in this proof so as to make the remaining part 
of the proof essentially like the proof of Theorem 12 of [3]. 

FIRST SIMPLIFICATION. We now show that there is no loss of generality in 
supposing that D and E =el, e2, * * , en have the same number of links, II 
takes the ith link of D into the ith link of E, and each end link of D contains 
a point not on the closure of any other link of D. 

Let D"=d, d2", . , d " be the chain such that d ' is the sum of the 
links of D that go into the ith link of E under H. Then D" is a chain covering 
P such that each end link of D" contains a point not contained on the closure 
of any other link of D". Also, if h is a homeomorphism of P onto Q such that 
h(P d ') Cei, then h is the required homeomorphism. Hence we suppose with 
no loss of generality that D"'=dP, d', *, d'' =d1, d2, 
H(di) = ei, P (di - d2) contains a point pi, and P (dn - dn1) contains a point 
P2 such that Pi, p2 belong to different composants of P. 

SECOND SIMPLIFICATION. We replace chains D = dl, d2, * * dn and 
E = ei, e2, , en left after the first simplification with chains D' =d', 

X**d4_3 and E' = el, e2', *, e3 covering P and Q respectively such 
that piG(d/ - d2), P2Ce(dln3 - d4n4), and if h is any homeomorphism of P 
onto Q such that h(P di)Ce_1+ei'+l, then h is the required homeo- 
morphism. 

First we suppose that ql, q2 are points of different composants of Q in 
ei - e2 and en-en-, respectively. If there are not already such points, points 
may be deleted from e2 and en-1 to make the condition satisfied. 

Suppose that e is a positive number so small that each subset of Q of 
diameter less than 5e lies in one link of E. Let F be an e-chain properly cover- 
ing Q. Then e' is the sum of all links of F whose closures intersect el -e2, 
el is the sum of all links of F whose closures intersect e2 - (ei +e3), e' is the 



180 R. H. BING AND F. B. JONES [January 

sum of all links of F whose closures intersect e3-(e2+e4), , and e4n-3 is 
the sum of all links of F whose closures intersect en- en-l The links of F 
with closures in ei-e2 are combined to form e', e 3, e t; the links of F with 
closures in e2 e3 are combined to form e6', Cl, e8, , and the links of G 
with closures in e,-l * en are combined to form e4.-6, e48n5p ein-4. (See Figure 1.) 

d4' i.d4/_4 d4! d4jo d4 I1 

e4i-6 e4i-5. e4i-4 e4i-3 

e4i-2 e4i.1 e4C 

FIG. 1 

Let 8 be a positive number so small that the distance between any pair of 
nonadjacent links of D =di, d2, * * , dn is more than 58 and p(P1+P2, d2+dn-1) 
>38. Let G be a 8-chain properly covering P and refining D. Then d3' is 
the sum of the links of G that intersect di d2, d7 is the sum of the links of G 
that intersect d2 d3, , and d4n_5 is the sum of the links of G that intersect 
dn-I dn. Also, d' is the sum of the links of G whose closures contain Pi; d2' is 
the sum of the other links of G in ei - e2; d4, d', d6 are formed by combining 
links of G in e2 -(e1+e3), , d4n-3 is the sum of the links of G whose closures 
contain P2; d4n_4 is the sum of the other links of G in en-en-l. See Figure 1. 

We now show that if h is a homeomorphism of P onto Q such that 
h(P d!)Ce_1+e'!+ 1, then h is the required homeomorphism because 
h(P di) Cei. The reason is that h(P di)Ch(P (d4s_5+d4s_4+d4i-3+d4i-2 
+ d411)) C e4{_6 + e4{_5 + e4j_4 + e4M-3 + e4{_2 + e4j_l + e4iCei. 

Completion of proof. It follows from Theorem 13 of [3] and the definition 
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of a pseudo-arc that there is a sequence of chains F1, F2, * * * from PI to P2 
such that Fi covers P, Fi+I is crooked in Fi, and Fi is of mesh less than 1/i. 
Also, there is a sequence of chains G1, G2, . . . from qi to q2 such that Gi 
covers Q, G*+1 is crooked in Gi, and Gi is of mesh less than 1/i. 

In order to define the homeomorphism h we shall obtain a sequence of 
chains D1, D2, * * -from Pl to P2 and a sequence of chains E1, E2, * * * from 
q, to q2 such that (1) Di covers P and Ei covers Q; (2) Di, Ei (i> 2) are of mesh 
less than 1/i; and (3) Di=db, dt, , d' and Ei=e*, e, , e, have the 
same number of links and there is a chain map Hi of Ei+I onto Ei and Di+, 
onto Di such that d'+lCHi(dj+1), ej+ CHi(ej+'), and if Hi(dj1+) =d, then 
Hi(ej+ 1) = et. 

We set D1=D' and E1=E' where D' and E' are the chains obtained in 
the second simplification. 

Let E2 be any Gi of mesh less than 1/3 that refines Ei and H2 be any chain 
map of E2 onto E1 such that ej CHI(ej) for each j. Then by Theorem 6 of [3 ] 
we find that there is a chain D2 from PI to P2 covering P such that for some 
integer r, each link of D2 is the sum of links of Fr, D2 has the same number of 
links as E2, and d2Cdl=H1(dj) if HI(ej) =dl. 

Let D3 be any Fi of mesh less than 1/4 that refines D2 and H2 be any chain 
map of D3 onto D2 such that djCH2(dj ) for each j. Again it follows from Theo- 
rem 6 of [3] that there is a chain E3 from q, to q2 covering Q such that for 
some integer r, each link of E3 is the sum of links of Gr, E3 has the same 
number of links as D3, and e Ce =H2(e;) if H2(dy) =d2. 

The sequences D1, D2, and E1, E2, are obtained by a repetition 
of this procedure. 

Let d(p, i) denote the sum of the elements of Di containing the point p 
of P and e(p, i) denote the sum of the corresponding elements of Ei. Then 
d(p, ii+1)Cd(p, i). Also, e(p, i+1)Ce(p, i) since if ej1` lies in e(p, i+1), dj+' 
contains p, Hi(dj1+) =d' contains p and lies in d(p, i), and es lies in e(p, i) and 
contains ej+'. The homeomorphism h is defined so that h(p) is the intersection 
of the closures of the decreasing sequence of open sets e(p, 1), e(p, 2), 
That h is a homeomorphism of P onto Q follows from an argument similar 
to that contained at the end of the proof of Theorem 10 of this paper or in 
Theorem 11 of [3]. 

Finally we show that h(P d)C1_1+l+e+1. If p is a point of di, d(p, 1) 
Cdl1+dl+dl+1 and h(p)G?(p, 1)Cel 1+e'+4+1. Hence h(P*d')C41_1+ + 

6. Homeomorphisms between arcs of pseudo-arcs. The theorem of this 
section shows that there is a strong type of topological equivalence between 
any two continuous snake-like arcs of pseudo-arcs. It is a key theorem to the 
showing that each circle of pseudo-arcs is homogeneous. 

THEOREM 10. Suppose P, Q are continuous snake-like arcs of pseudo-arcs 
px }I { qx } (O < x ?1). Then each homeomorphism h that takes the sum of the 
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ends of P onto the sum of the ends of Q may be extended to a homeomorphism 
taking P onto Q. In fact, if h(po) =qo, the extended homeomorphism h may be 
chosen so that h(p.) =qz. 

Proof. Here is an outline of our plan. We shall get a sequence of chains 
D1, D2, * * -covering P and a sequence of chains E1, E2, * * -covering Q 
and use these sequences to define our homeomorphism h. Also, we obtain 
sequences of chain maps H1, H2, * * * and K1, K2, * * -such that Hi takes 
Di onto Ei and Ki takes Ej+j onto Di. This is illustrated as follows: 

D1 D2 D3 D K D+, 

El E2 E3 Es s+ I 

The chain map H1 will be an approximation to the homeomorphism h we 
are seeking in that for each point p of P, there is an integer i such that p 
belongs to the ith link d' of DI and h(p) belongs to the link H1(dj) of E1. Also, 
K1 will be an approximation to h-' in that for each point q of Q there is an 
integer i such that q is an element of the ith link e2 of E2 and h-1(q) is in the 
link Kl(e2) of D1. Furthermore, K1 agrees with HT1 in that each link of E2 
lies in its image under H1Kl. 

The D's, E's, H's, K's will be defined in the following order: E1, D1, H1, 
E2, K1, D2, H2, E3, K3, * - - . The meshes of Di and Ei are less than 1/2i. 
In general, el+l is contained in HiKi(ej+') where ej'+ is the jth link of Ei+l 
and dj1` is contained in KiHi+1(dj1+). (See Figure 2.) 

The D's, E's, H's and K's will be chosen so that for each point p of px, 
there is a decreasing sequence of links dl1, d2, ... containing p (d. ?D,) 
such that Ki_rIi(d ) = d' 'i 1 and H1(d1 ), H2(d'2), is a sequence of links 
(Hi(dfi) GEE) whose closures contain a point q of qz. The homeomorphism h 
is chosen so that h(p) =q. In order to define the D's, E's, H's, and K's 
properly, we extend the homeomorphism h to certain elements of { p. } as we 
go. 

We shall use P(a, b) to denote the sum of the elements of {p4, a_ x ?b 
and Q(a, b) to denote the sum of the elements of {qJa<x? b}. 

Now for the details of the proof. 
Step 1. In this step we define E1 and extend the homeomorphism h to 

some more elements of {1p,}. The step contains three parts. 
(a) Consider a chain E1 irreducibly covering Q and of mesh less than 1/2. 
(b) It follows from the continuity of the collection {p, } and the bi- 

compactness of an arc that there is a positive integer n such that if 0 < b -a 
< 1/n, then the subchain of E1 that irreducibly covers Q(a, b) properly covers 
each element of { qI/a<x?b}. 

(c) Extend the homeomorphism h already defined on po+Pl to po+pl/n 
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el C eK HiKI(el) ds C d, = K,H2(d3) 

H2 Ki Hi 

E1 el 

FIG. 2 

+p2/n+ * ** +pi. We do not need to exercise the care in making this exten- 
sion that we will need to do in later steps. We merely impose the condition 
that h takes p/,, homeomorphically onto qi/mn 

Step 2. In this step we define D1, H1, and extend the map h still further by 
defining it on more elements of { P. } . We wish the following conditions to be 
satisfied. 

I. If link di of D1 intersects pi/n, then H1(dj) contains h(dj p,/n). 
II. For each x, H1 takes any subchain of D1 that properly covers px onto 

a subchain of E1 that properly covers qx. 
Parts (a)-(e) of Step 2 are used in getting D1 and H1. Parts (f)-(h) show 

that H1 and D1 satisfy the above Conditions I and II. In Part (i) we extend 
the homeomorphism to other elements of { px }. 

(a). In Step 2a we get a preliminary approximation F to the chain D1. 
We let F be an e-chain covering P where e is small enough to make the follow- 
ing statements true. (1) e < 1/2. (2) No link of F intersects both Pa and Pb 
if 1/2n_b-a. (3) The image under h of any subset of po+pl/n+ . . . +Pi of 
diameter less than 5e lies in an element of E1. (4) Any subchain of F covering 
an element of { px } has at least six times as many links as E1. 

(b) In this part of Step 2 we get approximations Ro, R1/2n, R1/n, R3/2nq . . . 

R1 to H1. 
First we describe Ri/ (i=O, 1, * * , n). Consider the subchainft,ft+i, * *. 

of F irreducibly covering pi,, and the subchain er, e,+i, * * *, e8 of E1 ir- 
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reducibly covering qiln. Then Riln is a chain map of ft, ft+1, * * fu onto 
e,. e,.1, * * *, e, such that h(fj pi/,) CRiln(fj) and for each element ek of er, 
er+l * .. *, es there are three consecutive elements of ft, ft+?, * * *, fu that go 
into ek under Riln. A precaution to take to insure that each ek is the image of 
three consecutive elements of ft, ft+i, * * *, fu is to decide that Ril,(fj-2) 
=Ri,n(fj.) = Riln(fj) =Ri/n(fj+l) =Rin (fj+2) =ek if ek is the only element of E1 
such that h(fj pi/.) Cek. Condition 3 of Step 2a enables us to do this. Unless 
f; is the first or last element of F, such an Riln sends more than three con- 
secutive elements of F into ek. 

Now we describe R(2i+l)/2n (i=O, 1, , n-i). Letf ,ftt+, ,fu and 
er, er+l, * , e8 be the subchains of F and E1 that irreducibly cover P(i/n, 
(i+l)/n) and Q(i/n, (i+l)/n) respectively. It may be that the subscripts 
t and u mentioned here may differ considerably from the t and u mentioned 
in the last paragraph but the r and s used here do not differ by more than 1 
from those used there. It follows from Step lb that er, er+1, * * *, e8 properly 
covers each element of { qx/i/n _ x ? (i + 1)/n }. Then R(2i+l),2n is any chain 
map whatever of ft, ft+i, * * *, fu onto erg er+lg . . . , eS so long as it is 
true that for each element ek of er, er+1, * * *, e8 and each subchain f,, 
f,+lg . . . 1 fw of ft, ft+i, * * *, fu irreducibly covering an element of { pX i/n 
<x < (i+ 1)/n} there are three consecutive elements of f,, * * * , fw that 
go into ek under R(2i+l)/2n. We must be more careful in describing the analogue 
of R(2i+l) 2n in Step 3 but we can accomplish the result here by letting R(2i+l)/2, 
send the first three elements of ft, ft+i, * * *, fu into er; the next three into 
er+1, * 

. - , the next three into e8, the next three into e8-i, * , , . Condition 4 
of Step 2a assures us that f, f,+,, * * * , fw1 has enough elements that such a 
procedure will cause each element of er, er+l, * . *, e8 to be the image of some 
three consecutive members of fv, fv+,, . . . fw under R(2i?l),/2n 

If it were true that all the R's agreed, we could use F and an extension 
of the R's for D1 and H1. However, there is no reason why they must agree 
so we get a chain D1 that refines F and a chain map H1. In obtaining H, we 
shall be influenced by Ri/n near pi/n and by R(2i+l),2n on the part of P between 
Pi/n and P(i+l)/n* 

(c) We mentioned that we are influenced by Ri/n near Pi/n. We now de- 
scribe the part Pi of P near Pi/n where we were influenced. 

Let e be a positive number less than 1/2n and so small that if ftgtt+ig, . . . ,fu 
is the subchain of F irreducibly covering Pi/n and er, er+1, * * *, e, is the 
image of ft, ft+i, * * , fu under Ri/n, then ft, ft+i, * * *, fu properly covers 
each element of {px I |x-i/n| ?e and er, er+1, . . *, e8 properly covers each 
element of { q | x-i/n| I e . We shall describe Pi so that PiCP(i/n-e, 
i/n+e). 

Since each of Ri/n, R(2i+l),/2n, and R(2i-1),2n takes ft, ft , fu (and pos- 
sibly more) onto a subchain (possibly a different one) of E1 that properly 
covers qi/n, it follows from Theorem 6 that there are an fv and an f, of ft, 
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ft+i, , fu such that R(2i+l)/n(fy), Ri,n(f,) are adjacent and R(2il)/2n(fZ)I 
Riln(fz) are adjacent. 

By Theorem 5 there is an open set Ui in P(i/n, i/n+e) -fv, such that 
UiCfy and P - Ui is the sum of two mutually exclusive closed sets Ai, Bi 
such that P(O, i/n) CAi, P(i/n+e, 1) CBi, and for each element p, of 
{pxIi/n?<xi/1n+e}, there is one of the sets px-Ai, px-Bi that intersects 
each element of ft, ft+l . * fu. 

Also, there is an open set Vi in P(i/n-e, i/n) such that Vi Ui=O, 
Vi Cfz, and P- Vi is the sum of two mutually exclusive closed sets A!, B 
such that P(O, 1/n-E)CA!, P(i/n, 1)CB,, for each element px of 
1pX|i/n-E<x<i/n} there is one of the sets p A,', px* B!' that intersects 
each element of ft, ft+l, * fu. 

Then Pi=A,iB!' if i=1, 2, * , n-1. If i=O, Pi=Ai; if i=n, Pi=Bl. 
We note that pi/,CPi. 

(d) In this step we define the chain D1. Let D1 be a chain irreducibly 
covering P of mesh so small that (1) if an element d of D1 intersects Pi, it 
lies in Pi+ Ui+ Vi and in a link of the subchain of F that irreducibly covers 
pi/,, (2) if d does not intersect any Pi, then it lies in some P(i/n, (i+l)/n) 
and in a link of the subchain of F that irreducibly covers P(i/n, (i+l)/n), 
(3) d does not intersect both Ui and Vi but it lies in fy or f, according as it 
intersects Ui or Vi. We note that if d intersects Pi, it lies in an element of F 
on which Ril, is defined and otherwise it lies in an element of F on which 
some R(2i+l)2l2n is defined. 

(e) We now describe the chain map H1 of D1 onto E1. Suppose d is an 
element of D1 that lies in fk of F. If d intersects the Ui mentioned in Step 2c, 
then we pick fk to be fy; then H1(d) is Riln(fy) or R(2i+l)/2n(fy) according as d 
does or does not intersect Pi. If d intersects Vi, then we pick fk to be f,; 
H1(d) is Riln(fz) or R(2i-1)/2n(fz) according as d does or does not intersects Pi. 
If d intersects Pi but neither Ui nor Vi, pick fk to be any link of F on which 
Riln is defined; then H1(d) =Riln(fk). If d does not intersect any Vi+Pi+ Ui, 
it lies in some P(i/n, (i+l)/n) so pick fk to be some link of F on which 
R(2 i+) /2n(fk) is defined; then Hf1(d) = R(2i+l),2n(fk). 

(f) Here we show that H1 is a chain map-that is H1(dj) is adjacent to 
Hl(dj+?) where dj, dj+l are adjacent elements of D1. If both dj and dj+l inter- 
sect Pi, then H1(dj) is adjacent to Hl(dj+1) because Ri/n is a chain map. If 
one intersects Pi and the other does not, either both intersect Ui or both inter- 
sect Vi. If both intersect Ui, both lie infy and Ril n(fy) is adjacent to R(2i+l) /2n(fy); 
if both intersect Vi, both lie in fz and Riln(f,) is adjacent to R(2i-l)/2n(fz). If 
neither dj nor di+1 intersect any Pi, then H1(dj) is adjacent to Hl(dj+1) be- 
cause each R(2i+l) /2n is a chain map. 

(g) In Step 2g we show that the chain map H1 satisfies Condition I men- 
tioned at the beginning of Step 2. 

Suppose dj intersects Pi/n, djCfk, and H1(dj) =Riln(fk). We find from the 
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definition of Ri1n in Step 2b that h(fk*pi/n) CRi1,(fk). Hence h(d.pPiln) 
CRt ,n(fk) = Hi(dj) . 

(h) Now we turn to Condition II. Suppose that di intersects p. (i/n _x 
< (i+ 1)/n). First we show that H1(dj) intersects qx. 

There is an element fk of F containing dj such that H1(dj) is equal to 
either Rt/n(fk), R(2i+l)/2n(fk), or R(i+l),n(fk). If HT(dj) =Ri/n(fk), HL(dj) is a link 
of the subchain of E1 irreducibly covering qi/n and hence intersects qx as a 
result of conditions in Step lb; if H1(dj) =R(i+l)/n(fk), H1(dj) is a link of the 
subchain of E1 irreducibly covering q(i+1)/n and hence intersects qx; if Hl(dj) 
=R(2i+l)/2n(fk), H1(dj) is a link of the subchain of E1 irreducibly covering 
Q(i/n, (i+l)/n) as noted in Step 2b and hence intersects each element of 

{qx/i/n x < (i + 1) /n} by Step lb. 
Suppose dv, d,+1, * * *, d4 is the subchain of D1 that irreducibly covers p=. 

Now we show that if ek is an element of the subchain of E1 irreducibly cover- 
ing qx, then there is an element di of dv, dv+l, * *, 4d such that ek=Hl(dj). 

If PA intersects Pi+ Ui it follows -from the definition of e in Step 2c that 
ek is an element of the subchain er, er+, * , e, of E1 that irreducibly covers 

qi/n. 

If px Pi intersects each element of the subchain ft, ft+i, * , fu of F that 
irreducibly covers Pi/n, consider the three consecutive elements fa-,l fa, fa+i 
of ft, ft+li , * fu that go into ek under Rs/n as mentioned in Step 2b. There 
is a dj of dv, d,+1, * * * , d4 such that di px Pi intersects fa. Then Hj(dj) is 
equal to either Ri/n(fal), Ri1n(fa) , or Riin(fa+i) and all three of them are equal 
to ek. 

In case p. intersects Pi+Ui but px Pi does not intersect each of ft, 

ft+?, * * * , fu, then p. - (Ui +Pi) intersects each element of ft, ft+11 , * fu by 
definition of Ai, Bi in Step 2c. Now let fai1, fa, fa+l be three consecutive ele- 
ments of the subchain ft, ft+l? * * fu that go into ek under R(2i+l)/2n. There 
is a dj of dv, dv+1, * * * X d,4 such that dj lies infa and intersects P.-(Ui+Pi). 
Then H1(dj) is either R(2i+l)/2n(fa-l), R(2i+l)/2n(fa), or R(2i+l)12n(fa+l) and all 
three are equal to ek. 

In case px intersects Vi+ +Pi+1, we also find that there is an element dj 
of dv, dv+l, . . ., dw such that ek=H,(dj). 

In case p. does not intersect Pi+ Ui+ Vi+i+Pi+i, we find that ek is a 
link of the subchain of Ek that irreducibly covers Q(i/n, (i+l)/n). Let 

ft, ft+i, * * * , fu be the subchain of F that irreducibly covers pr, and fa-1, fa, 
fa+l be the three consecutive elements of ft, ft+l? * * fu that go into ek 

under R(2i+l),2n. Again we find that there is an element dj of dV, dv+i, . ., dw 
in fa such that H1(dj) = ek. 

(i) As in Step lb we find that there is an integer k such that k is a multiple 
of n and if 0? b-a < 1/k, the subchain of D1 that irreducibly covers P(a, b) 
properly covers each element of { pz I a _ x < b } and the image of this subchain 
under H1 properly covers each element of I qz a _ x _ b }. 
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We now extend the homeomorphism h to Po, Pl/k, P2/k, ... , Pl. This is 
done so that h(Pi/k) =qilk and such that for each element dj of the subchain 
of D1 that properly covers Pi/k, h(Pi/k * dj) CHi(dj). Theorem 9 assures us that 
h can be extended in this fashion. 

Step 3. In this step we define a chain E2 covering Q, a chain map K1 of E2 
onto D1, and extend the map h to additional elements of { p.,}. The step is 
much like Step 2. We are getting an approximation to h-1 instead of to h. 

We show that there is a 1/4-chain E2 irreducibly covering Q and a chain 
map K1 of E2 onto D1 such that 

I. If link ei of E2 intersects qjlk, then h-1(ej'qj/k) CKl(ei). 
II. For each x, K1 takes any subchain of E2 properly covering qx onto a 

subchain of D1 properly covering p2,. 
III. ejCH1Kl(ej) for each link ei of E2. 
The thing making Step 3 more complicated than Step 2 is Condition III. 

The proof that there are E2 and K1 satisfying Conditions I and II is similar 
to that showing that there are D1 and H1 satisfying Conditions I and II of 
Step 2. 

Here we show how to alter the arguments of Step 2 to get E2 and K1 
to satisfy Condition III in addition to I and II. 

As in Step 2, we get an approximation F to E2. The F of Step 3 will be 
an E-chain irreducibly covering Q where e is small enough to make the follow- 
ing statements true. (1) e < 1/4. (2) No link of F intesects qa and qb if 1/2k < b 
-a. (3) The image under h-' of any subset of qo+ql/k+ * * * +ql of diameter 
less than 5E lies in an element of E1. (4) e is less than the e mentioned in the 
corollary to Theorem 8 where the D(r, s) there is the subchain of D, irreduc- 
ibly covering P(i/k,(i+l)/k) (i=O, 1, * * *, k-1) and E is the image of 
D(r, s) under H1. 

The chain map Ri/k we define here is similar to the Ril,'s defined in Step 
2b in that Ri/k takes the subchain ft, ft+i, * .. , f. of F that irreducibly covers 
qi/k onto the subchain dv, d,+*, * *, d4 of D1 that irreducibly covers Pi/k such 
that each element of dv, dv+1, , dw is the image of three consecutive ele- 
ments of ft, ft+i, * - *, fU and for each j, h-'(qilk-fj) CRi,k(fj) Operating on 
both sides of h-'(qi/k *fi) CPi/k* Rilk(fj) by h we find that qilk fjCh(Pi/k 

Rilk(fj)). Since h(Pi/k Ri/k(fj)) CH1Ri,k(fj) by Step 2i, we have that qilk 

*fiCH,Rilk (fi) 

To complete the analogue of Step 2b, we only need to pick a chain map 
R(2i+l),2k. It takes the subchain ft, f,+l, * I fU of F that irreducibly covers 
Q(i/k, (i+l)/k) onto the subchain dr, dr+li * . * dg of D1 that irreducibly 
covers P(i/k, (i+l)/k) so that (1) fjCH1R(2i+l),2k(fj) and (2) for each x 
(i/k?_x<(i+1)/k), R(2i+l)/2k takes the subchain ft, fv+,* , f, of F ir- 
reducibly covering qx onto dr, dr+l, * * * , ds so that each element of dr, 

dr+l, * * * X d8 is the image of three consecutive links of fe, fv+,, * * *, fW. That 
there is such a map R(2i+l)/2k follows from the fact that the mesh of the chain 
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F was taken smaller than the e mentioned in the corollary to Theorem 8. 
In the analogue to Step 2c we pick e so small that the Qi, Vi, Ui we obtain 

will have the property that if fj is an element of the subchain of F irreducibly 
covering qilk, then ( Vi+Qi+ Ui) fjCHlRi/k(fj). (We already have that 
qilk -fjCHlRi/k(fj) from the definition of Ri/k.) 

Now the argument in Step 3 proceeds as the argument in Step 2 through 
parts c, d, e, f, g, h, and i. The purpose in extending the homeomorphism h 
in part (i) is to help in setting up Step 4. We complete the discussion of Step 3 
by showing that the E2 we obtained in the analogue of Step 2d satisfies Con- 
dition III with respect to the K1 we obtained in the analogue of Step 2e. 

Suppose the link ej of E2 intersects Qi (where Qi is the analogue of Pi in 
Step 2c), ejCfz, and Kl(f,) =Ri/k(f,). Then f. is a link of the subchain of F 
irreducibly covering qilk and ej C Vi + Qi + Ui. Since (Vi + Qi + Ui) 
-fzCH1Ri1k(fz)1 ej CH1Ki(ej) . 

Suppose ei does not intersect any Qi. Then there is an fz such that e, Cfz 
and Ki(ej) =R(2i+l)/2k(fz). But since fzCHlR(2i+l)/2k(fz), ejCHiKi(ej). 

Steps 4, 5, * . . These steps are essentially repetitions of Step 3. We 
have Conditions A, A', B, B' satisfied which are modifications of Conditions 
II and III of Step 3. 

In Step 2n we find a chain Dn irreducibly covering P and a chain map H, 
of Dn onto En such that the following conditions hold. 

A. For each x (O <x < 1), Hn takes any subchain of Dn properly covering 
p, onto a subchain of En properly covering qx. 

B. diCKn_1Hn(ds) for each link di of Dn. 
In Step 2n+1 we get a chain En+1 irreducibly covering Q and a chain 

map Kn of En+1 onto Dn satisfying the following conditions. 
A'. For each x (O ?x <1), Kn takes any subchain of En+1 properly cover- 

ing qx onto a subchain of Dn properly covering f'. 
B'. eiCHnKn(ei) for each link es of En+1. 
Although we carry along analogues of Condition I of Step 3, the only part 

of this that will interest us henceforward is the following. 
C. If link di of Dn intersects Po+Pi, then h(di (po+pi)) CHn(di). 
C'. If link ei of En+1 intersects qo+qi, then h-'(ei. (qo+qi)) CKn(ei). 
DEFINITION OF HOMEOMORPHISM h. For each point p of P let d(p, i) 

denote the sum of the elements of Di containing p and Hid(p, i) denote the 
sum of the images under Hi of the elements of Di in d(p, i). We note that 
d(p, i) is the sum of one or two adjacent links of Di while Hid(p, i) is the 
sum of one or two adjacent links of Ei. 

Of course, d(p, ii+1) Cd(p, i). We now show that Hi+id(p, i+1) CHid(p, i) 
by showing that if e>+1 =Hs+1(d1+') where d'+1 is an element of Di+, in d(p, i+1), 
then ej+l'CHid(p, i). Since dk+CK,Hi+,(dk+) by Condition B, the link 
KiHi+?(dk+') =Ki(ej+') of Di lies in d(p, i). Also, ej+ CHiKi(ej+') by Condi- 
tion B' and HiKi(ej+') =Hi(dk+1)CHid(p, i). 
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For each point p of P, let h(p) be the intersection of the closures of the 
decreasing sequence of open sets H1(d(p, 1)), H2(d(p, 2)), H3(d(p, 3)), 
The intersection exists because Hi+ld(p, i+1)) CHi(d(p, i)). It is a point be- 
cause the diameter of the closure of Hi(d(p, i)) is less than 2/2i. 

If q is any point of d(p, i), the diameter- of Hi(d(p, i))+Hi(d(q, i)) is less 
than 3/2i so p(h(p), h(q)) <3/2i. Therefore h is continuous. 

If PEP=, we find from Condition A that Hi(d(p, i)) intersects qx. Hence 
h(p) Gqx. 

We now show that h takes P onto Q. Let q be a point of Q and ej be an 
element of Ei containing q. There is an element d' of Di such that Hi(d') =ej. 
Therefore for some point p of P, ejCHi(d(p, i)). Since the diameter of 
Hi(d(p, i)) is less than 2/2i, p(q, h(p)) < 2/2i. This shows that h(P) is dense 
in Q. Since h(P) is closed, it is equal to Q. 

The transformation h we have defined agrees with the given homeomor- 
phism h on po+pl because for each point p of po+pl, Hi(d(p, i)) contains 
h(p) by Condition C. 

Finally we show that h is 1-1. Suppose h(p) = h(q). Since the closures of 
Hid(p, i) and Hid(q, i) intersect and we are dealing in this paper only with 
chains whose nonadjacent links do not have closures that intersect, then 
Hid(p, i) intersects Hid(q, i). Since Ki-, is a chain map, the set Ki-1Hid(p, i) 
intersects the set Ksi-Hid(q, i). But the closures of these two sets contain p 
and q respectively so p(p, q) <4/2i. Therefore p = q if h(p) = h(q). 

7. A circle of pseudo-arcs. It follows from Theorem 10 that each circle 
of pseudo-arcs is homogeneous and that any two of them are homeomorphic. 
In this section we show that the plane contains a circle of pseudo-arcs. But 
we first describe an analogous upper-semicontinuous collection G of arcs in the 
plane. 

Let W1 and W2 be circles in the plane with center at (0, 0) and radii equal 
to one and two, respectively. We shall define a collection { g4 -7rxx<7r} of 
mutually exclusive arcs such that each gz is a straight line interval which 
is irreducible from W1 to W2 (or which is the sum of two such straight line 
intervals whose intersection is a common end point), g_r = gT, and 
Egx(-7r<x<7r) is a circle-like continuum. 

Let g_ be the sum of the two straight line intervals from (r = 1, 0= -r) 
to (r=2, 0= -7r?7r/12). Let gT=g-,. Let go be the sum of the two straight 
line intervals from (1, 0) to (2, ?ir/12). Let gr/2 be the sum of the straight 
line intervals from (2, ir/2) to (1, 2r/2 +?r/12) and let g-,/2 be the sum of 
the straight line intervals from (2, -7r/2) to (1, -7r/2 +7r/12). Because of 
their shape, these elements of { gz } will be called V's. 

Now let U denote the set of all points of the annulus W1W2 not belonging 
to any V defined thus far. There are a finite number of components of U 
which intersect both Wi and W2 and in each of these components two V's 
will be defined. Let the arc Ti (i = 1, 2) be the closure of the intersection of 
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such a component of U with Wi. One end point of Ti (i= 1, 2) is an end 
point of a V and the other end point of Ti is the vertex of a V. Now construct 
two disjoint V's in U such that one of these V's has its end points on Ti 
(i = 1, 2), the other has its vertex on Ti and these three points are the quarter 
points of Ti. The reader should note that on W1 or W2 no vertex of a V is ad- 
jacent to a vertex of a V and no end point of a V is adjacent to an end point 
of another V. 

After the above construction of a pair of V's has been carried out for 
every component of U which intersects both W1 and W2, a new U may be 
defined and the process continued countably many (so) times. Let G denote 
the collection of all the V's together with each straight line interval which is 
the limit of a convergent sequence of V's but which is not a subset of a V. 
By appropriately choosing the subscripts x, { gx -7rw? x 7r} is the collection 
G. It is easy to see that G is an upper-semicontinuous collection of arcs, G is a 
circle (if its elements are thought of as points) and G* (the sum of the ele- 
ments of G) is a circle-like continuum. Something quite similar to the fact 
that G* is circle-like has been previously observed by Roberts [25]. 

The reader will note that G is not a continuous collection. This is due 
fundamentally to the fact that in the plane an arc has two sides. Furthermore 
G* is not homogeneous for still another reason, namely, some points of G are 
local separating points (the vertices of the V's) while others are not. But if 
pseudo-arcs are substituted for the V's, it should be possible to eliminate 
these two properties from G and G* respectively while in general keeping G 
and G* unchanged in other respects. 

As before let W1 and W2 be concentric circles in the plane with center at 
(0, 0) and radii one and two, respectively. Since there are countably many 
V's of the preceding construction, let them be V1, V2, V3, * * - in inverse 
order to the polar angle between as and ci (the end points of Vi). Let bi be 
the vertex of Vi and for convenience let bi belong to W1 when i is odd but 
belong to W2 when i is even. 

Now there exists a sequence D1, D2, D3, of circular chains of simple 
domains in the plane such that 

(1) for each positive integer i, the closure of each element of Di+, is a 
subset of some element of Di; 

(2) for each i, each element of Di intersects the annulus W1W2 and not 
both of two intersecting links of Di intersect W1 + W2, 

(3) if (for each i) bi is the maximum diameter of a link of Di, then Si-*O, 
(4) the subscripts of the elements of Di which intersect Wi preserve the 

counterclockwise order on W1 and the subscripts of these intersecting W2 pre- 
serve the counterclockwise order on W2, 

(5) if ai, bi, and ci are the end points and vertex of Vi, there is a natural 
number m(i) such that the (shortest) subchain of Dm(i) irreducible from ai 
to ci contains bi, the subchain of Dm(i)+l irreducible from ai to bi contains ci, 
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the subchain of Dm(i)+2 irreducible from bi to ci contains as, the subchain of 
Dm(i)+3 irreducible from ai to ci contains bi, etc., 

(6) (W1+W2) HID=closure of E(ai+bi+ci) as in the preceding ex- 
ample, 

(7) for each i, Di is the sum of finitely many subchains Til, Ti2, 
Ti,,(i) such that (a) Ti,*, T, T,(i) is a circular chain, and (b) for each j, 
[1 <j _ n(i)], Tij is either irreducible from W1 to W2 or (for some k) irreduci- 
ble about ak+bk+Ck, and 

(8) if h <i, each element of T I} n( is a subset of two intersecting ele- 
ments of { Th;} jh) and 

(9) if h <i and Tij is a refinement of Thk+ Thl, Tij is crooked [3] with re- 
spect to Thk+ Th, where I= (k + 1) mod n(h). 

FIG, 3 

Now let M = IID* and let G denote the set of all subcontinua of M which 
are irreducible from Wi to W2. The reader will observe that if (9) were omitted 
the construction of the chains Di could be carried out in such a way that each 
element of G would be an arc if its intersection with Wi + W2 were two points 
and indecomposable if this intersection were three points. Also, in this case 
M would be a continuous circle-like circle of continua. With the addition of 
(9) one may see with the help of [3] that each element of G is a pseudo-arc. 
It follows from Theorem 10 that M is homogeneous. 
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