Another Homogeneous Plane Continuum
Author(s): R. H. Bing and F. B. Jones
Source: Transactions of the American Mathematical Society, Vol. 90, No. 1 (Jan., 1959), pp. 171-192
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/1993272

Accessed: 11/01/2011 13:42

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@ jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society.

ANOTHER HOMOGENEOUS PLANE CONTINUUM

BY
R. H. BING AND F. B. JONES

1. History of problem. A set X is homogeneous if for each pair of points x, y of X there is a homeomorphism of X onto itself that takes x into y.

In 1920 Knaster and Kuratowski [21] raised the following question: If a nondegenerate bounded plane continuum is homogeneous, is it necessarily a simple closed curve?

In 1922, Knaster [20] described a hereditarily indecomposable plane continuum. It is reported that he suspected that this continuum had other interesting properties and suggested to his students the problem of discovering if this Knaster continuum (as it came to be called) had the property possessed by an arc of being topologically equivalent to each of its nondegenerate subcontinua. This Knaster continuum is homogeneous and furnishes a counterexample to an affirmative answer of the above question, but this was not discovered until 1951.

A partial affirmative solution was given to the question in 1924 when Mazurkiewicz [22] showed that the bounded nondegenerate homogeneous plane continuum is a simple closed curve if it is locally connected. This result was improved in 1951 when Cohen [12] showed that the continuum is a simple closed curve if it either is arcwise connected or contains a simple closed curve.

A false affirmative solution was announced [25] in 1937. (Of course, at the time, it was not known that the solution was false-this only developed eleven years later when a counter-example was given.) This false solution was extended [11] in 1944 when an attempt was made to classify all homogeneous bounded closed plane sets.

That a pseudo-arc is homogeneous was shown first by Bing [3] in 1948 and shortly thereafter by essentially the same methods by Moise [24]. Both of these proofs made use of the description of the pseudo-arc given by Moise [23] to show that a pseudo-arc is topologically equivalent to each of its nondegenerate subcontinua.

In 1951 Bing [4] discovered that the pseudo-arc described by Moise in 1948 is actually topologically equivalent to the continuum Knaster described twenty-six years earlier by different methods. In fact, it was shown that any two nondegenerate snake-like hereditarily indecomposable continua are topologically equivalent. Also, it was shown that in the category sense, most

Presented to the Society, September 2, 1954 by R. H. Bing and by F. B. Jones under the title On a certain type of homogeneous plane continuum; received by the editors April 15, 1957.
bounded continua in $E^{n}(n>1)$ are pseudo-arcs. Hence, most bounded plane continua are homogeneous.

In 1953 two papers [$18 ; 19$] appeared questioning the homogeneity of the pseudo-arc. The second of the papers made an unsuccessful attempt to correct an error in the first. Inasmuch as these papers received not unfavorable reviews (Mathematical Reviews vol. 15 (1954) p. 146; p. 335) despite the errors in them, it seems desirable to mention that the pseudo-arc has not been abandoned as an example of a homogeneous plane continuum.

In 1954, working independently, Bing and Jones each discovered a homogeneous plane continuum that was neither a simple closed curve nor a pseudo-arc. Neither knew of the others work until the titles of the papers appeared adjacent to each other on the 1954 summer program of the American Mathematical Society [6;15]. Inasmuch as both had discovered the same example, it was decided to make this a joint paper. The first part of this paper showing that the example-a circle of pseudo-arcs-is homogeneous was written by Bing. The latter part showing that such a circle of pseudo-arcs can be imbedded in the plane was prepared by Jones.

Perhaps the future holds the answer as to whether or not there are other homogeneous bounded plane continua. Jones' result [14] that each bounded homogeneous plane continuum which does not separate the plane is indecomposable may guide our search. Bing has described a continuum (Example 2 of [4]) that is suspected of being homogeneous. However, at the moment, the only nondegenerate bounded plane continua known to be homogeneous are the simple closed curve, the pseudo-arc, and the circle of pseudo-arcs described in this paper. Other pertinent references are found in the bibliography of this paper.
2. The example. In this section we describe a homogeneous plane continuum which we call a circle of pseudo-arcs. First we define some terms that we shall use.

A chain is a finite collection D of open sets $d_{1}, d_{2}, \cdots, d_{n}$ such that d_{i} intersects d_{j} if i, j are adjacent integers and otherwise $\rho\left(d_{i}, d_{j}\right)$ is positive. We say that i, j are adjacent if $|i-j| \leqq 1$-hence i is adjacent to itself. We use ρ to denote the distance function. In earlier papers the weaker condition that nonadjacent links did not intersect was used instead of the stronger condition that they were a positive distance apart but in some respects this is less convenient for our present purposes than the stronger condition.

The elements d_{1}, d_{n} of the above chain D are called end links of D and the other links are called interior links. If each link is of diameter less than ϵ, D is called an ϵ-chain. The subchain of D consisting of $d_{r}, d_{r+1}, \cdots, d_{s}$ is denoted by $D(r, s)$.

Suppose $D=d_{1}, d_{2}, \cdots, d_{n}$ is a chain which covers a point set X. Then each point of X lies in some link of D. We say that D properly covers X if each link of D contains a point of X. Also, D irreducibly covers X of each link
of D contains a point of X that is not covered by any other link of D. If a chain irreducibly covers a set, then it properly covers the set, but not conversely.

A compact continuum is called snake-like [5] if for each positive number ϵ, it can be covered by an ϵ-chain. The pseudo-arc described in $[23 ; 3 ; 4 ; 7]$ is an example of a snake-like continuum.

A continuum G is called an arc of continua $\left\{g_{x} \mid 0 \leqq x \leqq 1\right\}$ if there is a $\operatorname{map} f$ of G onto $[0,1]$ such that $f^{-1}(x)$ is the continuum g_{x}. Then $\left\{g_{x}\right\}$ is an upper semicontinuous collection of continua filling G such that the corresponding decomposition space is an arc. Then g_{0} and g_{1} are called the end elements of $\left\{g_{x}\right\}$. We use $G(a, b)$ to denote the sum of all continua in the collection $\left\{g_{x} \mid a \leqq x \leqq b\right\}$.

Such a continuum G is a snake-like arc of continua $\left\{g_{x} \mid 0 \leqq x \leqq 1\right\}$ if it is snake-like. If each element of $\left\{g_{x}\right\}$ is a pseudo-arc, G is called a snake-like arc of pseudo-arcs. If in addition, the collection $\left\{g_{x}\right\}$ is continuous (f is open), then G is called a continuous snake-like arc of pseudo-arcs. In Theorem 10 we show that any two continuous snake-like arcs of pseudo-arcs of homeo-morphic-indeed there is a very strong type of homeomorphism between them.

A circular chain differs from a regular chain in that the first and last links intersect. A compact nonsnake-like continuum which for each positive number ϵ can be covered by an ϵ-circular chain is called circle-like.

The bounded plane continuum which is shown in this paper to be homogeneous is a continuous circle-like circle of pseudo-arcs-which we call for brevity, a circle of pseudo-arcs. It is a circle-like continuum M such that there is a continuous decomposition of M into pseudo-arcs such that the decomposition space is a simple closed curve. Hence, there is an open map f of M onto a circle such that the inverse of each point of the circle is a pseudo-arc.

Perhaps certain of the continua used by Anderson in [1;2] were circles of pseudo-arcs but this was not pointed out there. It follows from Theorem 10 that any two circles of pseudo-arcs are topologically equivalent and that each is homogeneous.

In establishing homeomorphisms between snake-like continua it is frequently convenient to consider sequences of chains covering them and relations between these chains. The chain D_{2} refines the chain D_{1} if each link of D_{2} lies in a link of D_{1}. A chain map H of a chain E into a chain D is a single valued function that assigns a link of D to each link of E such that the images of adjacent links are adjacent-that is $H\left(e_{i}\right)$ and $H\left(e_{i+1}\right)$ are adjacent links of D. If each link of D is the image of a link of E, we say that H maps E onto D. We note that the chain map H does not operate on the points in the links of E but only on the links. Chain maps play much the same role in this paper as following a pattern did in [3].
3. Snake-like arcs of continua. In this section we prove some theorems
about snake-like continua. A modification of the argument in the following proof shows that each tree-like continuum as defined in [5] is unicoherent but we shall not be concerned with tree-like continua in this paper.

Theorem 1. Each snake-like continuum is unicoherent.
Proof. Suppose a snake-like continuum M is the sum of two continua M_{1}, M_{2}. We show that M is unicoherent by showing that each pair of points p, q of $M_{1} \cdot M_{2}$ belongs to a component in $M_{1} \cdot M_{2}$.

Suppose $d_{1}, d_{2}, \cdots, d_{n}$ is a chain covering $M, p \in d_{i}, q \in d_{j}$, and $i<j$. Since each of M_{1}, M_{2} is connected and contains $p+q$, each intersects each link of $d_{i}, d_{i+1}, \cdots, d_{j}$. Hence there is a sequence of points $p=p_{i}, p_{i+1}, \cdots, p_{j}$ $=q$ where $p_{r} \in d_{r} \cdot M_{1}$. If $d_{1}, d_{2}, \cdots, d_{n}$ is an ϵ-chain, then $\rho\left(p_{r}, M_{2}\right)<\epsilon$ and $\rho\left(p_{r}, p_{r+1}\right)<2 \epsilon$.

Since M is snake-like, for each positive number ϵ it can be covered by an ϵ-chain. The results of the preceding paragraph show that there is a sequence R_{1}, R_{2}, \cdots such that R_{k} is a finite number of points $p=p_{1}^{k}$, $p_{2}^{k}, \cdots, p_{t}^{k}=q$ such that $p_{r}^{k} \in M_{1}, \rho\left(p_{r}^{k}, M_{2}\right)<1 / k$, and $\rho\left(p_{r}^{k}, p_{r+1}^{k}\right)<1 / k$.

Some subsequence of R_{1}, R_{2}, \cdots converges to a set L. But L is connected, contains $p+q$, and belongs to both M_{1} and M_{2}. Since p and q are arbitrary points of $M_{1} \cdot M_{2}$, we have that $M_{1} \cdot M_{2}$ is connected and M is unicoherent.

Theorem 2. Suppose G is a snake-like arc of continua $\left\{g_{x} \mid 0 \leqq x \leqq 1\right\}$ and $0<a<b<c<d<1$. There is a positive number ϵ such that if D is any ϵ-chain whatever covering G, any link of D intersecting $G(b, c)$ is between any link of D intersecting $G(0, a)$ and any link intersecting $G(d, 1)$.

Proof. The required number ϵ is any positive number less than each of $\rho(G(0, a), G(b, c)), \rho(G(b, c), G(d, 1))$, and $\rho(G(0, b), G(c, 1)) / 2$.

Let $D=d_{1}, d_{2}, \cdots, d_{n}$ be an ϵ-chain covering G and d_{i}, d_{j}, d_{k} be elements of D intersecting $G(0, a), G(b, c)$, and $G(d, 1)$ respectively where $i<k$. We show that $i<j<k$.

Since each of $G(0, b), G(c, 1)$ is connected, there are subchains $D^{\prime}, D^{\prime \prime}$ of D containing d_{i} and d_{k} respectively and covering $G(0, b), G(c, 1)$ respectively such that each link of D^{\prime} intersects $G(0, b)$ and each link of $D^{\prime \prime}$ intersects $G(c, 1)$. Since $\rho(G(0, b), G(c, 1))>2 \epsilon$, some link d_{t} of D lies between the links of D^{\prime} and the links of $D^{\prime \prime}$. Hence $i<t<k$.

If $j<i<t, G(b, c)$ intersects d_{i} because $G(b, c)$ is connected and intersects each of d_{j} and d_{t}. This is impossible because $G(0, a)$ intersects d_{i} and $\rho(G(0, a)$, $G(b, c))>\epsilon$. Similarly, it is impossible that $t<k<j$. Hence $i<j<k$.

Theorem 3. Suppose G is a snake-like arc of continua $\left\{g_{x} \mid 0 \leqq x \leqq 1\right\}$. Then for each positive number ϵ there is an ϵ-chain D covering G such that the first link of D intersects g_{0} and the last link intersects g_{1}.

Proof. Suppose δ is a positive number less than each of $\epsilon / 2$ and $\rho\left(g_{0}, g_{1}\right) / 2$.

Since G is snake-like, there is a δ-chain $E=e_{1}, e_{2}, \cdots, e_{n}$ covering G. Suppose e_{i}, e_{j} are the first and last members of this chain intersecting g_{0} while e_{r}, e_{s} are the first and last members of the chain intersecting g_{1}. Then $E(i, j)$ and $E(r, s)$ are subchains of E properly covering g_{0} and g_{1} respectively and no link of $E(i, j)$ intersects any link of $E(r, s)$. For convenience we suppose that $i<j<r<s$.

Let a, b be numbers such that $0<a<b<1, E(i, j)$ covers $G(0, a)$, and $E(r, s)$ covers $G(b, 1)$. An application of Theorem 2 gives a positive number γ such that if F is a γ-chain covering G, then any link of F intersecting $G(a, b)$ lies between any link of F intersecting $G(0, a / 2)$ and any intersecting $G((b+1) / 2,1)$. We put the further restriction on γ that if F is a γ-chain irreducibly covering G, then F refines E, any link of F intersecting $G(0, a)$ lies in a link of $E(i, j)$, and any link of F intersecting $G(b, 1)$ lies in a link of $E(r, s)$.

Let $F=f_{1}, f_{2}, \cdots, f_{m}$ be a γ-chain irreducibly covering G and f_{t}, f_{u} be links of F intersecting g_{0} and g_{1} respectively such that no link of F between f_{t} and f_{u} intersects $g_{0}+g_{1}$. For convenience we suppose that $t<u$. Let $F(v, w)$ be the subchain of $F(t, u)$ which is maximal with respect to the property that f_{v} lies in an end link of $E(i, j)$ and f_{w} lies in an end link of $E(r, s)$. Then $E(i, j)$ covers each link of $F(1, v)$ and $E(r, s)$ covers each link of $F(w, m)$. For convenience we suppose that f_{v} lies in e_{j} and f_{w} lies in e_{r}.

Use A to denote the sum of the elements of $F(1, v)$ and B to denote the sum of the elements of $F(v, m)$. Then the elements of D are $A \cdot e_{i}, A \cdot e_{i+1}, \cdots$, $A \cdot e_{j}, f_{v+1}, f_{v+2}, \cdots, f_{w-1}, B \cdot e_{r}, B \cdot e_{r+1}, \cdots, B \cdot e_{s}$.

Theorem 4. Suppose G is a snake-like arc of continua $\left\{g_{x} \mid 0 \leqq x \leqq 1\right\}$ and p is a point of $G-\left(g_{0}+g_{1}\right)$. Then each neighborhood of p which does not intersect $g_{0}+g_{1}$ separates g_{0} from g_{1} in G.

Proof. Suppose U is a neighborhood of p which does not intersect $g_{0}+g_{1}$ and ϵ is a positive number such that $\epsilon<\rho(p, G-U)$.

By Theorem 3 there is an ϵ-chain $D=d_{1}, d_{2}, \cdots, d_{n}$ covering G such that d_{1} intersects g_{0} and d_{n} intersects g_{1}. Let d_{i} be an element of D that contains p. Then $G-U$ is the sum of the mutually exclusive closed sets $G \cdot\left(d_{1}+d_{2}+\cdots\right.$ $\left.+d_{i}\right)-U$ and $G \cdot\left(d_{i}+d_{i+1}+\cdots+d_{n}\right)-U$ while the first of these sets contains g_{0} and the second contains g_{1}.

Theorem 5. Suppose G is a snake-like arc of indecomposable continua $\left\{g_{x} \mid 0 \leqq x \leqq 1\right\}$ and E is a chain covering G such that E properly covers each g_{x}. Then if U is an open set such that $U \cdot G \neq 0, U \cdot\left(g_{0}+g_{1}\right)=0$, and \bar{U} lies in a link of E, then $G-U$ may be expressed as the sum of two mutually separated sets A, B such that $g_{0} \subset A, g_{1} \subset B$, and for each $x(0 \leqq x \leqq 1)$, either $A \cdot g_{x}$ intersects each link of E or $B \cdot g_{x}$ intersects each link of E.

Proof. Let D_{1}, D_{2}, \cdots be a decreasing sequence of chains covering G such that the first link of each D_{i} intersects g_{0} and the last link intersects g_{1}.

Theorem 3 shows that there are such chains.
Let d_{1} be a link of some D_{i} such that $d_{1} \subset U$ and diameter d_{1} is less than 1 . Then Theorem 4 implies that $G-d_{1}$ is the sum of two mutually separated sets A_{1}, B_{1} containing g_{0}, g_{1} respectively. Using the assumption that the theorem is false, we find that there are numbers a_{1}, b_{1} such that $0<a_{1}<b_{1}<1$ and for each $x\left(a_{1} \leqq x \leqq b_{1}\right)$, neither $A_{1} \cdot g_{x}$ nor $B_{1} \cdot g_{x}$ intersects each link of E.

Let d_{2} be a link of some D_{i} such that $d_{2} \subset d_{1}, d_{2} \cdot\left(G\left(0, a_{1}\right)+G\left(b_{1}, 1\right)\right)=0$, and diameter d_{2} is less than $1 / 2$. Then $G-d_{2}$ is the sum of two mutually separated sets A_{2}, B_{2} containing $G\left(0, a_{1}\right)$ and $G\left(b_{1}, 1\right)$ respectively. If the theorem is false, there are numbers a_{2}, b_{2} such that $a_{1}<a_{2}<b_{2}<b_{1}$ and for each g_{x} ($a_{2} \leqq x \leqq b_{2}$) neither $A_{2} \cdot g_{x}$ nor $B_{2} \cdot g_{x}$ intersects each link of E.

We continue this procedure to get a sequence of open sets $d_{1}, d_{2}, d_{3}, \cdots$, a sequence of numbers $a_{1}, a_{2}, a_{3}, \cdots$ and a sequence of numbers $b_{1}, b_{2}, b_{3}, \cdots$ such that $d_{j+1} \subset d_{j}, d_{j}$ is of diameter less than $1 / j$ and is a link of some D_{i}, $a_{j}<a_{j+1}<b_{j+1}<b_{j}$, and $G-d_{j}$ is the sum of two mutually separated sets A_{j}, B_{j} containing $G\left(0, a_{j-1}\right), G\left(b_{j-1}, 1\right)$ respectively.

Let c be a number such that $0<a_{1}<a_{2}<\cdots<c<\cdots<b_{2}<b_{1}<1$. We show that the assumption that the theorem is false leads to the contradiction that g_{c} is decomposable. For some increasing sequence of integers $n(1)$, $n(2), \cdots, A_{n(1)} \cdot g_{c}, A_{n(2)} \cdot g_{c}, \cdots$ converges to a set A_{c} and $B_{n(1)} \cdot g_{c}, B_{n(2)}$ $\cdot g_{c}, \cdots$ converges to a set B_{c}. Now A_{c} is a continuum because $A_{i} \cdot g_{c}$ is not the sum of two sets whose distance apart is more than $1 / i$. It is a proper subcontinuum of g_{c} since no $A_{i} \cdot g_{c}$ intersects each link of E. Also, B_{c} is a proper subcontinuum of g_{c}. But g_{c} is decomposable because it is the sum of the two proper subcontinua A_{c}, B_{c}.
4. Chain maps. In this section we give some theorems about chain maps. The first of these might be labeled a fixed point theorem for chain maps.

Theorem 6. Suppose $D=d_{1}, d_{2}, \cdots, d_{n}$ and $E=e_{1}, e_{2}, \cdots, e_{m}$ are chains and H_{1}, H_{2} are two chain maps of D into E such that $H_{i}(i=1,2)$ takes a link of D into e_{m-1}. Then for some link d_{i} of D, the link $H_{1}\left(d_{i}\right)$ of E is adjacent to the link $H_{2}\left(d_{i}\right)$.

Proof. Suppose $H_{1}\left(d_{1}\right)$ precedes $H_{2}\left(d_{1}\right)$ in $e_{1}, e_{2}, \cdots, e_{m}$. If each link $H_{1}\left(d_{j}\right)$ of E precedes the corresponding link $H_{2}\left(d_{j}\right)$, let d_{i} be a link of D such that $H_{1}\left(d_{i}\right)=e_{m-1}$. Then $H_{1}\left(d_{i}\right)$ is adjacent to $H_{2}\left(d_{i}\right)$.

If for some link d_{j} of $D, H_{1}\left(d_{j}\right)$ does not precede $H_{2}\left(d_{j}\right)$, let d_{i} be the first such link of D. Then $H_{1}\left(d_{i}\right)$ is adjacent to $H_{2}\left(d_{i}\right)$.

We note that if one chain covers a pseudo-arc, then another chain covering it can be inscribed in the first in a prescribed way.

Theorem 7. Suppose $D=d_{1}, d_{2}, \cdots, d_{n}$ is a chain properly covering a pseudo-arc P and H is a chain map of a chain $X=x_{1}, x_{2}, \cdots, x_{m}$ onto D. Then there is a chain $E=e_{1}, e_{2}, \cdots, e_{m}$ properly covering P such that $e_{i} \subset d_{j}$ if $H\left(x_{i}\right)=d_{j}$.

In fact, if A, B are closed sets in $P \cdot d_{1}, P \cdot d_{n}$ respectively and $H\left(x_{r}\right)=d_{1}$, $H\left(x_{s}\right)=d_{n}$, the chain E may be selected so that $A \subset e_{r}, B \subset e_{s}$.

Proof. The proof would be slightly easier if $A \subset d_{1}-\bar{d}_{2}, B \subset d_{n}-\bar{d}_{n-1}, r=1$, $s=m, x_{r}$ is the only element of X that H takes into d_{1}, and x_{s} is the only element of X that H takes into d_{n}. We now prove the theorem in this special case.

Let p_{1}, p_{2} be points of different components of P in $d_{1}-d_{2}, d_{n}-d_{n-1}$ respectively and D_{1}, D_{2}, \cdots be a sequence of chains from p_{1} to p_{2} such that each D_{i} covers P, D_{i} is of mesh less than $1 / i, D_{i+1}$ is crooked in D_{i}, and $D=D_{1}$. Then it follows from Theorem 6 of [3] that there is a chain $E=e_{1}$, e_{2}, \cdots, e_{m} from p_{1} to p_{2} such that E covers $P, e_{i} \subset d_{j}$ if $H\left(x_{i}\right)=d_{j}$, and for some integer r, each link of E is the sum of links of D_{r}.

Now that we have shown the theorem is true in the special case we alter D, X, H and obtain $D^{\prime}, X^{\prime}, H^{\prime}$ so that the special case applies. Then we adjust the E^{\prime} obtained to get the required E. We suppose with no loss of generality that $r<s$.

The chain D^{\prime} is obtained as follows. Let U_{0}, U_{1}, U_{2} be open subsets of $d_{1}, d_{1} \cdot d_{2}, d_{2}$ respectively such that $P \cdot\left(d_{1}+d_{2}\right) \subset U_{0}+U_{1}+U_{2}, P \cdot\left(d_{1}-d_{2}\right)$ $+A \subset U_{0}, P \cdot\left(d_{2}-d_{1}\right) \subset U_{2}, U_{0} \cdot \bar{U}_{2}=0$, and $A \cdot \bar{U}_{1}=0$. Also, let U_{n-1}, U_{n}, U_{n+1} be open subsets of $d_{n-1}, d_{n-1} \cdot d_{n}, d_{n}$ respectively such that $P \cdot\left(d_{n-1}+d_{n}\right) \subset U_{n-1}$ $+U_{n}+U_{n+1}, P \cdot\left(d_{n-1}-d_{n}\right) \subset U_{n-1}, \quad P \cdot\left(d_{n}-d_{n-1}\right)+B \subset U_{n+1}, \quad \bar{U}_{n-1} \cdot \bar{U}_{n+1}=0$, and $\bar{U}_{n} \cdot B=0$. Then $D^{\prime}=U_{0}, U_{1}, U_{2}, d_{3}, \cdots, d_{n-2}, U_{n-1}, U_{n}, U_{n+1}$.

The chain $X^{\prime}=y^{\prime}, y_{r}, y_{r-1}, \cdots, y_{2}, x_{1}, x_{2}, \cdots, x_{m}, z_{m-1}, \cdots, z_{s}, z^{\prime}$ is obtained from X by adding r elements on at the front and $m+1-s$ on at the end. Then H^{\prime} is the chain map of X^{\prime} onto D^{\prime} so that $H^{\prime}\left(y^{\prime}\right)=U_{0}, H^{\prime}\left(z^{\prime}\right)$ $=U_{n+1}, H^{\prime}\left(x_{i}\right)=H^{\prime}\left(y_{i}\right)=H^{\prime}\left(z_{i}\right)=U_{j}\left(\right.$ or $\left.d_{j}\right)$ if $H\left(x_{i}\right)=d_{j}$.

Since the special case applies to D^{\prime}, X^{\prime}, and H^{\prime}, there is a chain $E^{\prime}=f^{\prime}$, $f_{r}, f_{r-1}, \cdots, f_{2}, e_{1}^{\prime}, e_{2}^{\prime}, \cdots, e_{m}^{\prime}, g_{m-1}, \cdots, g_{s}, g^{\prime}$ such that $A \subset f^{\prime}, B \subset g^{\prime}$, and a link e^{\prime} of E^{\prime} lies in a link d of D^{\prime} provided d is the image under H^{\prime} of the link of X^{\prime} corresponding to e^{\prime}.

The chain $E=e_{1}, e_{2}, \cdots, e_{m}$ satisfying the conclusions of the theorem is obtained by adding together certain elements of E^{\prime}. The link e_{r} is the sum of $f^{\prime}, f_{r}, e_{r}^{\prime}$ while e_{s} is the sum of $g^{\prime}, g_{s}, e_{s}^{\prime}$. In general e_{i} is the sum of $e_{i}^{\prime}, f_{i}, g_{i}$ (if there are such $f^{\prime} s$ and g 's).

The following theorem concerning the existence of chains that cover a snake-like arc of pseudo-arcs in a prescribed fashion will be of use in showing that certain such continua are homeomorphic.

Theorem 8. Suppose P is a snake-like arc of pseudo-arcs $\left\{p_{x} \mid 0 \leqq x \leqq 1\right\}$, $D=d_{1}, d_{2}, \cdots, d_{n}$ is a chain covering P such that each link of D intersects each p_{x}, and H is a chain map of a chain $Y=y_{1}, y_{2}, \cdots, y_{m}$ onto D. Then there is a chain $E=e_{1}, e_{2}, \cdots, e_{m}$ covering P such that each p_{x} intersects each link of E and $e_{i} \subset d_{j}$ if $H\left(y_{i}\right)=d_{j}$.

Proof. First we consider the case where $H\left(y_{1}\right)=d_{1}, H\left(y_{m}\right)=d_{n}$. Let U_{A}, U_{B} be open sets with closures in d_{1}, d_{2} respectively such that U_{A}, U_{B} intersect each element of $\left\{p_{x}\right\}$.

It follows from Theorem 7 that for each $a(0 \leqq a \leqq 1)$ there is a chain $E(a)=e(a)_{1}, e(a)_{2}, \cdots, e(a)_{m}$ covering p_{a} such that $\bar{U}_{A} \cdot p_{a} \subset e(a)_{1}, \bar{U}_{B} \cdot p_{a}$ $\subset e(a)_{m}, e(a)_{i} \subset d_{j}$ if $H\left(y_{i}\right)=d_{j}$.

The upper semicontinuity of the collection $\left\{p_{x}\right\}$ implies that a lies in a connected open subset I_{a} of $(0 \leqq x \leqq 1)$ such that if $x \in I_{a}$, then $E(a)$ covers $p_{x}, \bar{U}_{A} \cdot p_{x} \subset e(a)_{1}$, and $\bar{U}_{B} \cdot p_{x} \subset e(a)_{m}$. A finite collection $I_{a_{1}}, I_{a_{2}}, \cdots, I_{a_{t}}$ of such open connected subsets cover ($0 \leqq x \leqq 1$). Let $E\left(a_{1}\right), E\left(a_{2}\right), \cdots, E\left(a_{t}\right)$ be the corresponding $E(a)$'s.

We now show how to form E from $E\left(a_{1}\right), E\left(a_{2}\right), \cdots \quad E\left(a_{t}\right)$. It follows from Theorem 4 that P is covered by open sets $U_{1}, U_{2}, \cdots, U_{t}$ such that $U_{i} \cdot U_{j}=U_{A}+U_{B}$ if $i \neq j$ and if $p_{x} \cdot\left(U_{i}-\left(U_{A}+U_{B}\right)\right) \neq 0$, then $x \in I_{a_{i}}$. Then the chain E whose k th link $e_{k}=e\left(a_{1}\right)_{k} \cdot U_{1}+e\left(a_{2}\right)_{k} \cdot U_{2}+\cdots+e\left(a_{t}\right)_{k} \cdot U_{t}$ is the required chain.

The purpose of the restriction that $H\left(y_{1}\right)=d_{1}, H\left(y_{m}\right)=d_{n}$ was to make it apparent that each p_{x} intersected each link of E. To prove the theorem in the more general case, suppose $H\left(y_{r}\right)=d_{1}, H\left(y_{s}\right)=d_{n}$. Then alter Y as was done in the proof of Theorem 7 by adding elements onto the first of it and elements onto the last of it so that the resulting chain Y^{\prime} has ends in d_{1}, d_{n} respectively and such that the added elements of Y^{\prime} can be combined with the original links to get a chain resembling Y. Then end chains of the resulting chain E^{\prime} may be added onto the center of E^{\prime} as was done in the proof of Theorem 7 so as to get a chain E satisfying the conditions of the theorem.

In stating the following corollary to Theorem 8, the same symbols are used as appear at the place in the proof of Theorem 10 where it is applied.

Corollary to Theorem 8. Suppose $Q(i / k,(i+1) / k)$ is a snake-like arc of pseudo-arcs $\left\{q_{x} / i / k \leqq x \leqq(i+1) / k\right\}, E$ is a chain covering $Q(i / k,(i+1) / k)$ such that each q_{x} intersects each link of E, and H_{1} is a chain map of a chain $D(r, s)$ onto E. Then there is a positive number ϵ such that if $F(t, u)$ is an ϵ chain irreducibly covering $Q(i / k,(i+1) / k)$, then there is a chain map $R_{(2 i+1) / 2 k}$ of $F(t, u)$ onto $D(r, s)$ such that for each link f_{i} of $F(t, u), f_{i} \subset H_{1} R_{(2 i+1) / 2 k}\left(f_{i}\right)$, and if $f_{v}, f_{v+1}, \cdots, f_{w}$ is a subchain of $F(t, u)$ irreducibly covering some q_{x}, then each link of $D(r, s)$ is the image of three consecutive links of $f_{v}, f_{v+1}, \cdots, f_{w}$.

In obtaining this result from Theorem 8, we let the $P,\left\{p_{x} \mid 0 \leqq x \leqq 1\right\}$, and D of the theorem be the $Q(i / k,(i+1) / k),\left\{q_{x} \mid i / k \leqq x \leqq(i+1) / k\right\}$, and E of the corollary, Y be a chain with four times as many links as $D(r, s)$, and H be a chain map that takes links of Y numbered $4 i+1,4 i+2,4 i+3,4 i+4$ into the image under H_{1} of the i th link of $D(r, s)$. Then ϵ is a number so small that any ϵ-chain properly covering $Q(i / k,(i+1) / k)$ is a refinement of the chain E promised by Theorem 8.
5. A homeomorphism between pseudo-arcs. The following theorem shows that if the same ϵ-chain properly covers two pseudo-arcs, there is a homeomorphism of one onto the other that moves no point by more than ϵ. It also shows how a chain map can be approximated with a homeomorphism.

Theorem 9. Suppose D, E are chains properly covering pseudo-arcs P, Q and H is a chain map of D onto E such that each link of E is the image of a link of D which contains a point of P not on the closure of any other link of D. Then there is a homeomorphism h of P onto Q such that for each link d_{i} of $D, h\left(P \cdot d_{i}\right)$ $\subset H\left(d_{i}\right)$.

The rather awkward condition that each link of E is the image of a link of D that covers a point of P not covered by the closure of any other link of D is necessary because it may be that $D=d_{1}, d_{2}, \cdots, d_{n}$ and $E=e_{1}, e_{2}, \cdots, e_{n}$ have the same number of links, $H\left(d_{i}\right)=e_{i}, P \subset \bar{d}_{2}+\bar{d}_{3}+\cdots+\bar{d}_{n-1}$, and $Q \subseteq \bar{e}_{2}+\bar{e}_{3}+\cdots+\bar{e}_{n-1}$. The less complicated but more stringent condition that each link of E is the image of an interior link of D might be substituted.

We use two simplifications in this proof so as to make the remaining part of the proof essentially like the proof of Theorem 12 of [3].

First simplification. We now show that there is no loss of generality in supposing that D and $E=e_{1}, e_{2}, \cdots, e_{n}$ have the same number of links, H takes the i th link of D into the i th link of E, and each end link of D contains a point not on the closure of any other link of D.

Let $D^{\prime \prime}=d_{1}^{\prime \prime}, d_{2}^{\prime \prime}, \cdots, d_{n}^{\prime \prime}$ be the chain such that $d_{i}^{\prime \prime}$ is the sum of the links of D that go into the i th link of E under H. Then $D^{\prime \prime}$ is a chain covering P such that each end link of $D^{\prime \prime}$ contains a point not contained on the closure of any other link of $D^{\prime \prime}$. Also, if h is a homeomorphism of P onto Q such that $h\left(P \cdot d_{i}^{\prime \prime}\right) \subset e_{i}$, then h is the required homeomorphism. Hence we suppose with no loss of generality that $D^{\prime \prime}=d_{1}^{\prime \prime}, d_{2}^{\prime \prime}, \cdots, d_{n}^{\prime \prime}=d_{1}, d_{2}, \cdots, d_{n}=D$, $H\left(d_{i}\right)=e_{i}, P \cdot\left(d_{1}-\bar{d}_{2}\right)$ contains a point p_{1}, and $P \cdot\left(d_{n}-\bar{d}_{n-1}\right)$ contains a point p_{2} such that p_{1}, p_{2} belong to different composants of P.

Second simplification. We replace chains $D=d_{1}, d_{2}, \cdots, d_{n}$ and $E=e_{1}, e_{2}, \cdots, e_{n}$ left after the first simplification with chains $D^{\prime}=d_{1}^{\prime}$, $d_{2}^{\prime}, \cdots, d_{4 n-3}^{\prime}$ and $E^{\prime}=e_{1}^{\prime}, e_{2}^{\prime}, \cdots, e_{4 n-3}^{\prime}$ covering P and Q respectively such that $p_{1} \in\left(d_{1}^{\prime}-\bar{d}_{2}^{\prime}\right), p_{2} \in\left(d_{4 n-3}^{\prime}-\bar{d}_{4 n-4}^{\prime}\right)$, and if h is any homeomorphism of P onto Q such that $h\left(P \cdot d_{i}^{\prime}\right) \subset \bar{e}_{i-1}^{\prime}+\bar{e}_{i}^{\prime}+\bar{e}_{i+1}^{\prime}$, then h is the required homeomorphism.

First we suppose that q_{1}, q_{2} are points of different composants of Q in $e_{1}-e_{2}$ and $e_{n}-e_{n-1}$ respectively. If there are not already such points, points may be deleted from e_{2} and e_{n-1} to make the condition satisfied.

Suppose that ϵ is a positive number so small that each subset of Q of diameter less than 5ϵ lies in one link of E. Let F be an ϵ-chain properly covering Q. Then e_{1}^{\prime} is the sum of all links of F whose closures intersect $e_{1}-e_{2}$, e_{5}^{\prime} is the sum of all links of F whose closures intersect $e_{2}-\left(e_{1}+e_{3}\right), e_{9}^{\prime}$ is the
sum of all links of F whose closures intersect $e_{3}-\left(e_{2}+e_{4}\right), \cdots$, and $e_{4 n-3}^{\prime}$ is the sum of all links of F whose closures intersect $e_{n}-e_{n-1}$. The links of F with closures in $e_{1} \cdot e_{2}$ are combined to form $e_{2}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}$; the links of F with closures in $e_{2} \cdot e_{3}$ are combined to form $e_{6}^{\prime}, e_{7}^{\prime}, e_{8}^{\prime}, \cdots$, and the links of G with closures in $e_{n-1} \cdot e_{n}$ are combined to form $e_{4 n-6}^{\prime}, e_{4 n-5}^{\prime}, e_{4 n-4}^{\prime}$. (See Figure 1.)

Fig. 1
Let δ be a positive number so small that the distance between any pair of nonadjacent links of $D=d_{1}, d_{2}, \cdots, d_{n}$ is more than 5δ and $\rho\left(p_{1}+p_{2}, d_{2}+d_{n-1}\right)$ $>3 \delta$. Let G be a δ-chain properly covering P and refining D. Then d_{3}^{\prime} is the sum of the links of G that intersect $d_{1} \cdot d_{2}, d_{7}^{\prime}$ is the sum of the links of G that intersect $d_{2} \cdot d_{3}, \cdots$, and $d_{4 n-5}^{\prime}$ is the sum of the links of G that intersect $d_{n-1} \cdot d_{n}$. Also, d_{1}^{\prime} is the sum of the links of G whose closures contain $p_{1} ; d_{2}^{\prime}$ is the sum of the other links of G in $e_{1}-e_{2} ; d_{4}^{\prime}, d_{5}^{\prime}, d_{6}^{\prime}$ are formed by combining links of G in $e_{2}-\left(e_{1}+e_{3}\right), \cdots, d_{4 n-3}^{\prime}$ is the sum of the links of G whose closures contain $p_{2} ; d_{4 n-4}^{\prime}$ is the sum of the other links of G in $e_{n}-e_{n-1}$. See Figure 1.

We now show that if h is a homeomorphism of P onto Q such that $h\left(P \cdot d_{i}^{\prime}\right) \subset \bar{e}_{i-1}^{\prime}+\bar{e}_{i}^{\prime}+\bar{e}_{i+1}^{\prime}$, then h is the required homeomorphism because $h\left(P \cdot d_{i}\right) \subset e_{i}$. The reason is that $h\left(P \cdot d_{i}\right) \subset h\left(P \cdot\left(d_{4 i-5}^{\prime}+d_{4 i-4}^{\prime}+d_{4 i-3}^{\prime}+d_{4 i-2}^{\prime}\right.\right.$ $\left.\left.+d_{4 i-1}^{\prime}\right)\right) \subset \bar{e}_{4 i-6}^{\prime}+\bar{e}_{4 i-5}^{\prime}+\bar{e}_{4 i-4}^{\prime}+\bar{e}_{4 i-3}^{\prime}+\bar{e}_{4 i-2}^{\prime}+\bar{e}_{4 i-1}^{\prime}+\bar{e}_{4 i}^{\prime} \subset \bar{e}_{i}$.

Completion of proof. It follows from Theorem 13 of [3] and the definition
of a pseudo-arc that there is a sequence of chains F_{1}, F_{2}, \cdots from p_{1} to p_{2} such that F_{i} covers P, F_{i+1} is crooked in F_{i}, and F_{i} is of mesh less than $1 / i$. Also, there is a sequence of chains G_{1}, G_{2}, \cdots from q_{1} to q_{2} such that G_{i} covers Q, G_{i+1} is crooked in G_{i}, and G_{i} is of mesh less than $1 / i$.

In order to define the homeomorphism h we shall obtain a sequence of chains D_{1}, D_{2}, \cdots from p_{1} to p_{2} and a sequence of chains E_{1}, E_{2}, \cdots from q_{1} to q_{2} such that (1) D_{i} covers P and E_{i} covers Q; (2) $D_{i}, E_{i}(i>2)$ are of mesh less than $1 / i$; and (3) $D_{i}=d_{1}^{i}, d_{2}^{i}, \cdots, d_{n_{i}}^{i}$ and $E_{i}=e_{1}^{i}, e_{2}^{i}, \cdots, e_{n_{i}}^{i}$ have the same number of links and there is a chain map H_{i} of E_{i+1} onto E_{i} and D_{i+1} onto D_{i} such that $d_{j}^{i+1} \subset H_{i}\left(d_{j}^{t+1}\right), e_{j}^{i+1} \subset H_{i}\left(e_{j}^{i+1}\right)$, and if $H_{i}\left(d_{j}^{t+1}\right)=d_{k}^{d}$, then $H_{i}\left(e_{j}^{i+1}\right)=e_{k}^{i}$.

We set $D_{1}=D^{\prime}$ and $E_{1}=E^{\prime}$ where D^{\prime} and E^{\prime} are the chains obtained in the second simplification.

Let E_{2} be any G_{i} of mesh less than $1 / 3$ that refines E_{i} and H_{2} be any chain map of E_{2} onto E_{1} such that $e_{j}^{2} \subset H_{1}\left(e_{j}^{2}\right)$ for each j. Then by Theorem 6 of [3] we find that there is a chain D_{2} from p_{1} to p_{2} covering P such that for some integer r, each link of D_{2} is the sum of links of F_{r}, D_{2} has the same number of links as E_{2}, and $d_{j}^{2} \subset d_{\mathfrak{k}}^{1}=H_{1}\left(d_{j}^{2}\right)$ if $H_{1}\left(e_{j}^{2}\right)=d_{\mathfrak{k}}^{1}$.

Let D_{3} be any F_{i} of mesh less than $1 / 4$ that refines D_{2} and H_{2} be any chain map of D_{3} onto D_{2} such that $d_{j}^{3} \subset H_{2}\left(d_{j}^{3}\right)$ for each j. Again it follows from Theorem 6 of [3] that there is a chain E_{3} from q_{1} to q_{2} covering Q such that for some integer r, each link of E_{3} is the sum of links of G_{r}, E_{3} has the same number of links as D_{3}, and $e_{j}^{3} \subset e_{k}^{2}=H_{2}\left(e_{j}^{3}\right)$ if $H_{2}\left(d_{j}^{3}\right)=d_{k}^{2}$.

The sequences D_{1}, D_{2}, \cdots and E_{1}, E_{2}, \cdots are obtained by a repetition of this procedure.

Let $d(p, i)$ denote the sum of the elements of D_{i} containing the point p of P and $e(p, i)$ denote the sum of the corresponding elements of E_{i}. Then $d(p, i+1) \subset d(p, i)$. Also, $e(p, i+1) \subset e(p, i)$ since if e_{j}^{i+1} lies in $e(p, i+1), d_{j}^{i+1}$ contains $p, H_{i}\left(d_{j}^{l+1}\right)=d_{\mathbf{k}}^{t}$ contains p and lies in $d(p, i)$, and e_{k}^{i} lies in $e(p, i)$ and contains e_{j}^{i+1}. The homeomorphism h is defined so that $h(p)$ is the intersection of the closures of the decreasing sequence of open sets $e(p, 1), e(p, 2), \cdots$. That h is a homeomorphism of P onto Q follows from an argument similar to that contained at the end of the proof of Theorem 10 of this paper or in Theorem 11 of [3].

Finally we show that $h\left(P \cdot d_{i}^{1}\right) \subset \bar{e}_{i-1}^{1}+\bar{e}_{i}^{1}+\bar{e}_{i+1}^{1}$. If p is a point of $d_{i}^{1}, d(p, 1)$ $\subset d_{i-1}^{1}+d_{i}^{1}+d_{i+1}^{1}$ and $h(p) \in \bar{e}(p, 1) \subset \bar{e}_{i-1}^{1}+\bar{e}_{i}^{1}+\bar{e}_{i+1}^{1}$. Hence $h\left(P \cdot d_{i}^{1}\right) \subset \bar{e}_{i-1}^{1}+\bar{e}_{i}^{1}$ $+\bar{e}_{i+1}^{1}$.
6. Homeomorphisms between arcs of pseudo-arcs. The theorem of this section shows that there is a strong type of topological equivalence between any two continuous snake-like arcs of pseudo-arcs. It is a key theorem to the showing that each circle of pseudo-arcs is homogeneous.

Theorem 10. Suppose P, Q are continuous snake-like arcs of pseudo-arcs $\left\{p_{x}\right\},\left\{q_{x}\right\}(0 \leqq x \leqq 1)$. Then each homeomorphism h that takes the sum of the
ends of P onto the sum of the ends of Q may be extended to a homeomorphism taking P onto Q. In fact, if $h\left(p_{0}\right)=q_{0}$, the extended homeomorphism h may be chosen so that $h\left(p_{x}\right)=q_{x}$.

Proof. Here is an outline of our plan. We shall get a sequence of chains D_{1}, D_{2}, \cdots covering P and a sequence of chains E_{1}, E_{2}, \cdots covering Q and use these sequences to define our homeomorphism h. Also, we obtain sequences of chain maps H_{1}, H_{2}, \cdots and K_{1}, K_{2}, \cdots such that H_{i} takes D_{i} onto E_{i} and K_{i} takes E_{i+1} onto D_{i}. This is illustrated as follows:

The chain map H_{1} will be an approximation to the homeomorphism h we are seeking in that for each point p of P, there is an integer i such that p belongs to the i th link d_{i}^{1} of D_{1} and $h(p)$ belongs to the link $H_{1}\left(d_{i}^{1}\right)$ of E_{1}. Also, K_{1} will be an approximation to h^{-1} in that for each point q of Q there is an integer i such that q is an element of the i th link e_{i}^{2} of E_{2} and $h^{-1}(q)$ is in the link $K_{1}\left(e_{i}^{2}\right)$ of D_{1}. Furthermore, K_{1} agrees with H_{1}^{-1} in that each link of E_{2} lies in its image under $H_{1} K_{1}$.

The D 's, E 's, H 's, K 's will be defined in the following order: E_{1}, D_{1}, H_{1}, $E_{2}, K_{1}, D_{2}, H_{2}, E_{3}, K_{3}, \cdots$ The meshes of D_{i} and E_{i} are less than $1 / 2^{i}$. In general, e_{j}^{i+1} is contained in $H_{i} K_{i}\left(e_{j}^{i+1}\right)$ where e_{j}^{i+1} is the j th link of E_{i+1} and d_{j}^{i+1} is contained in $K_{i} H_{i+1}\left(d_{j}^{i+1}\right)$. (See Figure 2.)

The D 's, E 's, H 's and K 's will be chosen so that for each point p of p_{x}, there is a decreasing sequence of links $d_{n_{1}}^{1}, d_{n_{2}}^{2}, \cdots$ containing $p\left(d_{n_{i}}^{1} \in D_{i}\right)$ such that $K_{i-1} H_{i}\left(d_{n_{i}}^{l}\right)=d_{n_{i-1}}^{i-1}$ and $H_{1}\left(d_{n_{1}}^{1}\right), H_{2}\left(d_{n_{2}}^{2}\right), \cdots$ is a sequence of links $\left(H_{i}\left(d_{n_{i}}^{i}\right) \in E_{i}\right)$ whose closures contain a point q of q_{x}. The homeomorphism h is chosen so that $h(p)=q$. In order to define the D 's, E 's, H 's, and K 's properly, we extend the homeomorphism h to certain elements of $\left\{p_{x}\right\}$ as we go.

We shall use $P(a, b)$ to denote the sum of the elements of $\left\{p_{x} \mid a \leqq x \leqq b\right\}$ and $Q(a, b)$ to denote the sum of the elements of $\left\{q_{x} \mid a \leqq x \leqq b\right\}$.

Now for the details of the proof.
Step 1. In this step we define E_{1} and extend the homeomorphism h to some more elements of $\left\{p_{x}\right\}$. The step contains three parts.
(a) Consider a chain E_{1} irreducibly covering Q and of mesh less than $1 / 2$.
(b) It follows from the continuity of the collection $\left\{p_{x}\right\}$ and the bicompactness of an arc that there is a positive integer n such that if $0 \leqq b-a$ $\leqq 1 / n$, then the subchain of E_{1} that irreducibly covers $Q(a, b)$ properly covers each element of $\left\{q_{x} / a \leqq x \leqq b\right\}$.
(c) Extend the homeomorphism h already defined on $p_{0}+p_{1}$ to $p_{0}+p_{1 / n}$

Fig. 2
$+p_{2 / n}+\cdots+p_{1}$. We do not need to exercise the care in making this extension that we will need to do in later steps. We merely impose the condition that h takes $p_{i / n}$ homeomorphically onto $q_{i / n}$.

Step 2. In this step we define D_{1}, H_{1}, and extend the map h still further by defining it on more elements of $\left\{p_{x}\right\}$. We wish the following conditions to be satisfied.
I. If link d_{j} of D_{1} intersects $p_{i / n}$, then $H_{1}\left(d_{j}\right)$ contains $h\left(d_{j} \cdot p_{i / n}\right)$.
II. For each x, H_{1} takes any subchain of D_{1} that properly covers p_{x} onto a subchain of E_{1} that properly covers q_{x}.

Parts (a)-(e) of Step 2 are used in getting D_{1} and H_{1}. Parts (f)-(h) show that H_{1} and D_{1} satisfy the above Conditions I and II. In Part (i) we extend the homeomorphism to other elements of $\left\{p_{x}\right\}$.
(a). In Step 2a we get a preliminary approximation F to the chain D_{1}. We let F be an ϵ-chain covering P where ϵ is small enough to make the following statements true. (1) $\epsilon<1 / 2$. (2) No link of F intersects both p_{a} and p_{b} if $1 / 2 n \leqq b-a$. (3) The image under h of any subset of $p_{0}+p_{1 / n}+\cdots+p_{1}$ of diameter less than 5ϵ lies in an element of E_{1}. (4) Any subchain of F covering an element of $\left\{p_{x}\right\}$ has at least six times as many links as E_{1}.
(b) In this part of Step 2 we get approximations $R_{0}, R_{1 / 2 n}, R_{1 / n}, R_{3 / 2 n}, \cdots$, R_{1} to H_{1}.

First we describe $R_{i / n}(i=0,1, \cdots, n)$. Consider the subchain $f_{t}, f_{t+1}, \cdots, f_{u}$ of F irreducibly covering $p_{i / n}$ and the subchain $e_{r}, e_{r+1}, \cdots, e_{s}$ of E_{1} ir-
reducibly covering $q_{i / n}$. Then $R_{i / n}$ is a chain map of $f_{t}, f_{t+1}, \cdots, f_{u}$ onto $e_{r}, e_{r+1}, \cdots, e_{s}$ such that $h\left(f_{j} \cdot p_{i / n}\right) \subset R_{i / n}\left(f_{j}\right)$ and for each element e_{k} of e_{r}, e_{r+1}, \cdots, e_{s} there are three consecutive elements of $f_{t}, f_{t+1}, \cdots, f_{u}$ that go into e_{k} under $R_{i / n}$. A precaution to take to insure that each e_{k} is the image of three consecutive elements of $f_{t}, f_{t+1}, \cdots, f_{u}$ is to decide that $R_{i / n}\left(f_{j-2}\right)$ $=R_{i / n}\left(f_{j-1}\right)=R_{i / n}\left(f_{j}\right)=R_{i / n}\left(f_{j+1}\right)=R_{i / n}\left(f_{j+2}\right)=e_{k}$ if e_{k} is the only element of E_{1} such that $h\left(f_{j} \cdot p_{i / n}\right) \subset e_{k}$. Condition 3 of Step 2a enables us to do this. Unless f_{j} is the first or last element of F, such an $R_{i / n}$ sends more than three consecutive elements of F into e_{k}.

Now we describe $R_{(2 i+1) / 2 n}(i=0,1, \cdots, n-1)$. Let $f_{t}, f_{t+1}, \cdots, f_{u}$ and $e_{r}, e_{r+1}, \cdots, e_{s}$ be the subchains of F and E_{1} that irreducibly cover $P(i / n$, $(i+1) / n)$ and $Q(i / n,(i+1) / n)$ respectively. It may be that the subscripts t and u mentioned here may differ considerably from the t and u mentioned in the last paragraph but the r and s used here do not differ by more than 1 from those used there. It follows from Step 1 b that $e_{r}, e_{r+1}, \cdots, e_{s}$ properly covers each element of $\left\{q_{x} / i / n \leqq x \leqq(i+1) / n\right\}$. Then $R_{(2 i+1) / 2 n}$ is any chain map whatever of $f_{t}, f_{t+1}, \cdots, f_{u}$ onto $e_{r}, e_{r+1}, \cdots, e_{s}$ so long as it is true that for each element e_{k} of $e_{r}, e_{r+1}, \cdots, e_{s}$ and each subchain f_{v}, f_{v+1}, \cdots, f_{w} of $f_{t}, f_{t+1}, \cdots, f_{u}$ irreducibly covering an element of $\left\{p_{x} \mid i / n\right.$ $\leqq x \leqq(i+1) / n\}$ there are three consecutive elements of $f_{v}, f_{v+1}, \cdots, f_{w}$ that go into e_{k} under $R_{(2 i+1) / 2 n}$. We must be more careful in describing the analogue of $R_{(2 i+1) / 2 n}$ in Step 3 but we can accomplish the result here by letting $R_{(2 i+1) / 2 n}$ send the first three elements of $f_{t}, f_{t+1}, \cdots, f_{u}$ into e_{r}; the next three into e_{r+1}, \cdots, the next three into e_{s}, the next three into e_{s-1}, \cdots Condition 4 of Step 2a assures us that $f_{v}, f_{v+1}, \cdots, f_{w}$ has enough elements that such a procedure will cause each element of $e_{r}, e_{r+1}, \cdots, e_{s}$ to be the image of some three consecutive members of $f_{v}, f_{v+1}, \cdots, f_{w}$ under $R_{(2 i+1) / 2 n}$.

If it were true that all the R 's agreed, we could use F and an extension of the R 's for D_{1} and H_{1}. However, there is no reason why they must agree so we get a chain D_{1} that refines F and a chain map H_{1}. In obtaining H_{1} we shall be influenced by $R_{i / n}$ near $p_{i / n}$ and by $R_{(2 i+1) / 2 n}$ on the part of P between $p_{i / n}$ and $p_{(i+1) / n}$.
(c) We mentioned that we are influenced by $R_{i / n}$ near $p_{i / n}$. We now describe the part P_{i} of P near $p_{i / n}$ where we were influenced.

Let $\boldsymbol{\epsilon}$ be a positive number less than $1 / 2 n$ and so small that if $f_{t}, f_{t+1}, \cdots, f_{u}$ is the subchain of F irreducibly covering $p_{i / n}$ and $e_{r}, e_{r+1}, \cdots, e_{s}$ is the image of $f_{t}, f_{t+1}, \cdots, f_{u}$ under $R_{i / n}$, then $f_{t}, f_{t+1}, \cdots, f_{u}$ properly covers each element of $\left\{p_{x}| | x-i / n \mid \leqq \epsilon\right\}$ and $e_{r}, e_{r+1}, \cdots, e_{s}$ properly covers each element of $\left\{q_{x}| | x-i / n \mid \leqq \epsilon\right\}$. We shall describe P_{i} so that $P_{i} \subset P(i / n-\epsilon$, $i / n+\epsilon$).

Since each of $R_{i / n}, R_{(2 i+1) / 2 n}$, and $R_{(2 i-1) / 2 n}$ takes $f_{t}, f_{t+1}, \cdots, f_{u}$ (and possibly more) onto a subchain (possibly a different one) of E_{1} that properly covers $q_{i / n}$, it follows from Theorem 6 that there are an f_{y} and an f_{z} of f_{t},
f_{t+1}, \cdots, f_{u} such that $R_{(2 i+1) / n}\left(f_{y}\right), R_{i / n}\left(f_{y}\right)$ are adjacent and $R_{(2 i-1) / 2 n}\left(f_{z}\right)$, $R_{i / n}\left(f_{z}\right)$ are adjacent.

By Theorem 5 there is an open set U_{i} in $P(i / n, i / n+\epsilon) \cdot f_{y}$ such that $\bar{U}_{i} \subset f_{y}$ and $P-U_{i}$ is the sum of two mutually exclusive closed sets A_{i}, B_{i} such that $P(0, i / n) \subset A_{i}, P(i / n+\epsilon, 1) \subset B_{i}$, and for each element p_{x} of $\left\{p_{x} \mid i / n \leqq x \leqq i / n+\epsilon\right\}$, there is one of the sets $p_{x} \cdot A_{i}, p_{x} \cdot B_{i}$ that intersects each element of $f_{t}, f_{t+1}, \cdots, f_{u}$.

Also, there is an open set V_{i} in $P(i / n-\epsilon, i / n)$ such that $\bar{V}_{i} \cdot \bar{U}_{i}=0$, $\bar{V}_{i} \subset f_{z}$, and $P-V_{i}$ is the sum of two mutually exclusive closed sets $A_{i}^{\prime}, B_{i}^{\prime}$ such that $P(0,1 / n-\epsilon) \subset A_{i}^{\prime}, P(i / n, 1) \subset B_{i}^{\prime}$, for each element p_{x} of $\left\{p_{x} \mid i / n-\epsilon \leqq x \leqq i / n\right\}$ there is one of the sets $p_{x} \cdot A_{i}^{\prime}, p_{x} \cdot B_{i}^{\prime}$ that intersects each element of $f_{t}, f_{t+1}, \cdots, f_{u}$.

Then $P_{i}=A_{i} \cdot B_{i}^{\prime}$ if $i=1,2, \cdots, n-1$. If $i=0, P_{i}=A_{i}$; if $i=n, P_{i}=B_{i}^{\prime}$. We note that $p_{i / n} \subset P_{i}$.
(d) In this step we define the chain D_{1}. Let D_{1} be a chain irreducibly covering P of mesh so small that (1) if an element d of D_{1} intersects P_{i}, it lies in $P_{i}+U_{i}+V_{i}$ and in a link of the subchain of F that irreducibly covers $p_{i / n}$, (2) if d does not intersect any P_{i}, then it lies in some $P(i / n,(i+1) / n)$ and in a link of the subchain of F that irreducibly covers $P(i / n,(i+1) / n)$, (3) d does not intersect both U_{i} and V_{i} but it lies in f_{y} or f_{z} according as it intersects U_{i} or V_{i}. We note that if d intersects P_{i}, it lies in an element of F on which $R_{i / n}$ is defined and otherwise it lies in an element of F on which some $R_{(2 i+1) / 2 n}$ is defined.
(e) We now describe the chain map H_{1} of D_{1} onto E_{1}. Suppose d is an element of D_{1} that lies in f_{k} of F. If d intersects the U_{i} mentioned in Step 2c, then we pick f_{k} to be f_{y}; then $H_{1}(d)$ is $R_{i / n}\left(f_{y}\right)$ or $R_{(2 i+1) / 2 n}\left(f_{y}\right)$ according as d does or does not intersect P_{i}. If d intersects V_{i}, then we pick f_{k} to be f_{z}; $H_{1}(d)$ is $R_{i / n}\left(f_{z}\right)$ or $R_{(2 i-1) / 2 n}\left(f_{z}\right)$ according as d does or does not intersects P_{i}. If d intersects P_{i} but neither U_{i} nor V_{i}, pick f_{k} to be any link of F on which $R_{i / n}$ is defined; then $H_{1}(d)=R_{i / n}\left(f_{k}\right)$. If d does not intersect any $V_{i}+P_{i}+U_{i}$, it lies in some $P(i / n,(i+1) / n)$ so pick f_{k} to be some link of F on which $R_{(2 i+1) / 2 n}\left(f_{k}\right)$ is defined; then $H_{1}(d)=R_{(2 i+1) / 2 n}\left(f_{k}\right)$.
(f) Here we show that H_{1} is a chain map-that is $H_{1}\left(d_{j}\right)$ is adjacent to $H_{1}\left(d_{j+1}\right)$ where d_{j}, d_{j+1} are adjacent elements of D_{1}. If both d_{j} and d_{j+1} intersect P_{i}, then $H_{1}\left(d_{j}\right)$ is adjacent to $H_{1}\left(d_{j+1}\right)$ because $R_{i / n}$ is a chain map. If one intersects P_{i} and the other does not, either both intersect U_{i} or both intersect V_{i}. If both intersect U_{i}, both lie in f_{y} and $R_{i / n}\left(f_{y}\right)$ is adjacent to $R_{(2 i+1) / 2 n}\left(f_{y}\right)$; if both intersect V_{i}, both lie in f_{z} and $R_{i / n}\left(f_{z}\right)$ is adjacent to $R_{(2 i-1) / 2 n}\left(f_{z}\right)$. If neither d_{j} nor d_{j+1} intersect any P_{i}, then $H_{1}\left(d_{j}\right)$ is adjacent to $H_{1}\left(d_{j+1}\right)$ because each $R_{(2 i+1) / 2 n}$ is a chain map.
(g) In Step 2 g we show that the chain map H_{1} satisfies Condition I mentioned at the beginning of Step 2.

Suppose d_{j} intersects $p_{i / n}, d_{j} \subset f_{k}$, and $H_{1}\left(d_{j}\right)=R_{i / n}\left(f_{k}\right)$. We find from the
definition of $R_{i / n}$ in Step 2b that $h\left(f_{k} \cdot p_{i / n}\right) \subset R_{i / n}\left(f_{k}\right)$. Hence $h\left(d_{j} \cdot p_{i / n}\right)$ $\subset R_{i / n}\left(f_{k}\right)=H_{1}\left(d_{j}\right)$.
(h) Now we turn to Condition II. Suppose that d_{j} intersects $p_{x}(i / n \leqq x$ $\leqq(i+1) / n)$. First we show that $H_{1}\left(d_{j}\right)$ intersects q_{x}.

There is an element f_{k} of F containing d_{j} such that $H_{1}\left(d_{j}\right)$ is equal to either $R_{i / n}\left(f_{k}\right), R_{(2 i+1) / 2 n}\left(f_{k}\right)$, or $R_{(i+1) / n}\left(f_{k}\right)$. If $H_{1}\left(d_{j}\right)=R_{i / n}\left(f_{k}\right), H_{1}\left(d_{j}\right)$ is a link of the subchain of E_{1} irreducibly covering $q_{i / n}$ and hence intersects q_{x} as a result of conditions in Step 1 b ; if $H_{1}\left(d_{j}\right)=R_{(i+1) / n}\left(f_{k}\right), H_{1}\left(d_{j}\right)$ is a link of the subchain of E_{1} irreducibly covering $q_{(i+1) / n}$ and hence intersects q_{x}; if $H_{1}\left(d_{j}\right)$ $=R_{(2 i+1) / 2 n}\left(f_{k}\right), H_{1}\left(d_{j}\right)$ is a link of the subchain of E_{1} irreducibly covering $Q(i / n,(i+1) / n)$ as noted in Step 2b and hence intersects each element of $\left\{q_{x} / i / n \leqq x \leqq(i+1) / n\right\}$ by Step 1b.

Suppose $d_{v}, d_{v+1}, \cdots, d_{w}$ is the subchain of D_{1} that irreducibly covers p_{x}. Now we show that if e_{k} is an element of the subchain of E_{1} irreducibly covering q_{x}, then there is an element d_{j} of $d_{v}, d_{v+1}, \cdots, d_{w}$ such that $e_{k}=H_{1}\left(d_{j}\right)$.

If p_{x} intersects $P_{i}+U_{i}$ it follows from the definition of ϵ in Step 2c that e_{k} is an element of the subchain $e_{r}, e_{r+1}, \cdots, e_{s}$ of E_{1} that irreducibly covers $q_{i / n}$.

If $p_{x} \cdot P_{i}$ intersects each element of the subchain $f_{t}, f_{t+1}, \cdots, f_{u}$ of F that irreducibly covers $p_{i / n}$, consider the three consecutive elements f_{a-1}, f_{a}, f_{a+1} of $f_{t}, f_{t+1}, \cdots, f_{u}$ that go into e_{k} under $R_{i / n}$ as mentioned in Step 2b. There is a d_{j} of $d_{v}, d_{v+1}, \cdots, d_{w}$ such that $d_{j} \cdot p_{x} \cdot P_{i}$ intersects f_{a}. Then $H_{1}\left(d_{j}\right)$ is equal to either $R_{i / n}\left(f_{a-1}\right), R_{i / n}\left(f_{a}\right)$, or $R_{i / n}\left(f_{a+1}\right)$ and all three of them are equal to e_{k}.

In case p_{x} intersects $P_{i}+U_{i}$ but $p_{x} \cdot P_{i}$ does not intersect each of f_{i}, f_{t+1}, \cdots, f_{u}, then $p_{x}-\left(U_{i}+P_{i}\right)$ intersects each element of $f_{t}, f_{t+1}, \cdots, f_{u}$ by definition of A_{i}, B_{i} in Step 2c. Now let f_{a-1}, f_{a}, f_{a+1} be three consecutive elements of the subchain $f_{t}, f_{t+1}, \cdots, f_{u}$ that go into e_{k} under $R_{(2 i+1) / 2 n}$. There is a d_{j} of $d_{v}, d_{v+1}, \cdots, d_{w}$ such that d_{j} lies in f_{a} and intersects $p_{x}-\left(U_{i}+P_{i}\right)$. Then $H_{1}\left(d_{j}\right)$ is either $R_{(2 i+1) / 2 n}\left(f_{a-1}\right), R_{(2 i+1) / 2 n}\left(f_{a}\right)$, or $R_{(2 i+1) / 2 n}\left(f_{a+1}\right)$ and all three are equal to e_{k}.

In case p_{x} intersects $V_{i+1}+P_{i+1}$, we also find that there is an element d_{j} of $d_{v}, d_{v+1}, \cdots, d_{w}$ such that $e_{k}=H_{1}\left(d_{j}\right)$.

In case p_{x} does not intersect $P_{i}+U_{i}+V_{i+1}+P_{i+1}$, we find that e_{k} is a link of the subchain of E_{k} that irreducibly covers $Q(i / n,(i+1) / n)$. Let $f_{t}, f_{t+1}, \cdots, f_{u}$ be the subchain of F that irreducibly covers p_{x} and f_{a-1}, f_{a}, f_{a+1} be the three consecutive elements of $f_{t}, f_{t+1}, \cdots, f_{u}$ that go into e_{k} under $R_{(2 i+1) / 2 n}$. Again we find that there is an element d_{j} of $d_{v}, d_{v+1}, \cdots, d_{w}$ in f_{a} such that $H_{1}\left(d_{j}\right)=e_{k}$.
(i) As in Step 1 b we find that there is an integer k such that k is a multiple of n and if $0 \leqq b-a \leqq 1 / k$, the subchain of D_{1} that irreducibly covers $P(a, b)$ properly covers each element of $\left\{p_{x} \mid a \leqq x \leqq b\right\}$ and the image of this subchain under H_{1} properly covers each element of $\left\{q_{x} \mid a \leqq x \leqq b\right\}$.

We now extend the homeomorphism h to $p_{0}, p_{1 / k}, p_{2 / k}, \cdots, p_{1}$. This is done so that $h\left(p_{i / k}\right)=q_{i / k}$ and such that for each element d_{j} of the subchain of D_{1} that properly covers $p_{i / k}, h\left(p_{i / k} \cdot d_{j}\right) \subset H_{1}\left(d_{j}\right)$. Theorem 9 assures us that h can be extended in this fashion.

Step 3. In this step we define a chain E_{2} covering Q, a chain map K_{1} of E_{2} onto D_{1}, and extend the map h to additional elements of $\left\{p_{x}\right\}$. The step is much like Step 2. We are getting an approximation to h^{-1} instead of to h.

We show that there is a $1 / 4$-chain E_{2} irreducibly covering Q and a chain $\operatorname{map} K_{1}$ of E_{2} onto D_{1} such that
I. If link e_{i} of E_{2} intersects $q_{j / k}$, then $h^{-1}\left(e_{i} \cdot q_{j / k}\right) \subset K_{1}\left(e_{i}\right)$.
II. For each x, K_{1} takes any subchain of E_{2} properly covering q_{x} onto a subchain of D_{1} properly covering p_{x}.
III. $e_{i} \subset H_{1} K_{1}\left(e_{i}\right)$ for each link e_{i} of E_{2}.

The thing making Step 3 more complicated than Step 2 is Condition III. The proof that there are E_{2} and K_{1} satisfying Conditions I and II is similar to that showing that there are D_{1} and H_{1} satisfying Conditions I and II of Step 2.

Here we show how to alter the arguments of Step 2 to get E_{2} and K_{1} to satisfy Condition III in addition to I and II.

As in Step 2, we get an approximation F to E_{2}. The F of Step 3 will be an ϵ-chain irreducibly covering Q where ϵ is small enough to make the following statements true. (1) $\epsilon<1 / 4$. (2) No link of F intesects q_{a} and q_{b} if $1 / 2 k<b$ $-a$. (3) The image under h^{-1} of any subset of $q_{0}+q_{1 / k}+\cdots+q_{1}$ of diameter less than 5ϵ lies in an element of E_{1}. (4) ϵ is less than the ϵ mentioned in the corollary to Theorem 8 where the $D(r, s)$ there is the subchain of D_{i} irreducibly covering $P(i / k,(i+1) / k)(i=0,1, \cdots, k-1)$ and E is the image of $D(r, s)$ under H_{1}.

The chain map $R_{i / k}$ we define here is similar to the $R_{i / n}$'s defined in Step 2b in that $R_{i / k}$ takes the subchain $f_{t}, f_{t+1}, \cdots, f_{u}$ of F that irreducibly covers $q_{i / k}$ onto the subchain $d_{v}, d_{v+1}, \cdots, d_{w}$ of D_{1} that irreducibly covers $p_{i / k}$ such that each element of $d_{v}, d_{v+1}, \cdots, d_{w}$ is the image of three consecutive elements of $f_{t}, f_{t+1}, \cdots, f_{u}$ and for each $j, h^{-1}\left(q_{i / k} \cdot f_{j}\right) \subset R_{i / k}\left(f_{j}\right)$. Operating on both sides of $h^{-1}\left(q_{i / k} \cdot f_{j}\right) \subset p_{i / k} \cdot R_{i / k}\left(f_{j}\right)$ by h we find that $q_{i / k} \cdot f_{j} \subset h\left(p_{i / k}\right.$ - $\left.R_{i / k}\left(f_{j}\right)\right)$. Since $h\left(p_{i / k} \cdot R_{i / k}\left(f_{j}\right)\right) \subset H_{1} R_{i / k}\left(f_{j}\right)$ by Step 2 i , we have that $q_{i / k}$ $\cdot f_{j} \subset H_{1} R_{i / k}\left(f_{j}\right)$.

To complete the analogue of Step 2b, we only need to pick a chain map $R_{(2 i+1) / 2 k}$. It takes the subchain $f_{t}, f_{i+1}, \cdots, f_{u}$ of F that irreducibly covers $Q(i / k,(i+1) / k)$ onto the subchain $d_{r}, d_{r+1}, \cdots, d_{s}$ of D_{1} that irreducibly covers $P(i / k,(i+1) / k)$ so that (1) $f_{j} \subset H_{1} R_{(2 i+1) / 2 k}\left(f_{j}\right)$ and (2) for each x $(i / k \leqq x \leqq(i+1) / k), R_{(2 i+1) / 2 k}$ takes the subchain $f_{v}, f_{v+1}, \cdots, f_{w}$ of F irreducibly covering q_{x} onto $d_{r}, d_{r+1}, \cdots, d_{s}$ so that each element of d_{r}, d_{r+1}, \cdots, d_{s} is the image of three consecutive links of $f_{v}, f_{v+1}, \cdots, f_{w}$. That there is such a map $R_{(2 i+1) / 2 k}$ follows from the fact that the mesh of the chain
F was taken smaller than the ϵ mentioned in the corollary to Theorem 8.
In the analogue to Step 2c we pick ϵ so small that the Q_{i}, V_{i}, U_{i} we obtain will have the property that if f_{j} is an element of the subchain of F irreducibly covering $q_{i / k}$, then $\left(V_{i}+Q_{i}+U_{i}\right) \cdot f_{j} \subset H_{1} R_{i / k}\left(f_{j}\right)$. (We already have that $q_{i / k} \cdot f_{j} \subset H_{1} R_{i / k}\left(f_{j}\right)$ from the definition of $R_{i / k}$.)

Now the argument in Step 3 proceeds as the argument in Step 2 through parts c, d, e, f, g, h, and i. The purpose in extending the homeomorphism h in part (i) is to help in setting up Step 4. We complete the discussion of Step 3 by showing that the E_{2} we obtained in the analogue of Step 2d satisfies Condition III with respect to the K_{1} we obtained in the analogue of Step 2e.

Suppose the link e_{j} of E_{2} intersects Q_{i} (where Q_{i} is the analogue of P_{i} in Step 2c), $e_{j} \subset f_{z}$, and $K_{1}\left(f_{z}\right)=R_{i / k}\left(f_{z}\right)$. Then f_{z} is a link of the subchain of F irreducibly covering $q_{i / k}$ and $e_{j} \subset V_{i}+Q_{i}+U_{i}$. Since $\left(V_{i}+Q_{i}+U_{i}\right)$ $\cdot f_{z} \subset H_{1} R_{i / k}\left(f_{z}\right), e_{j} \subset H_{1} K_{1}\left(e_{j}\right)$.

Suppose e_{j} does not intersect any Q_{i}. Then there is an f_{z} such that $e_{,} \subset f_{z}$ and $K_{1}\left(e_{j}\right)=R_{(2 i+1) / 2 k}\left(f_{z}\right)$. But since $f_{z} \subset H_{1} R_{(2 i+1) / 2 k}\left(f_{z}\right), e_{j} \subset H_{1} K_{1}\left(e_{j}\right)$.

Steps $4,5, \cdots$. These steps are essentially repetitions of Step 3. We have Conditions A, A', B, B' satisfied which are modifications of Conditions II and III of Step 3.

In Step 2n we find a chain D_{n} irreducibly covering P and a chain map H_{n} of D_{n} onto E_{n} such that the following conditions hold.
A. For each $x(0 \leqq x \leqq 1), H_{n}$ takes any subchain of D_{n} properly covering p_{x} onto a subchain of E_{n} properly covering q_{x}.
B. $d_{i} \subset K_{n-1} H_{n}\left(d_{i}\right)$ for each link d_{i} of D_{n}.

In Step $2 n+1$ we get a chain E_{n+1} irreducibly covering Q and a chain $\operatorname{map} K_{n}$ of E_{n+1} onto D_{n} satisfying the following conditions.
A^{\prime}. For each $x(0 \leqq x \leqq 1), K_{n}$ takes any subchain of E_{n+1} properly covering q_{x} onto a subchain of D_{n} properly covering p_{x}.
$\mathrm{B}^{\prime} . e_{i} \subset H_{n} K_{n}\left(e_{i}\right)$ for each link e_{i} of E_{n+1}.
Although we carry along analogues of Condition I of Step 3, the only part of this that will interest us henceforward is the following.
C. If link d_{i} of D_{n} intersects $p_{0}+p_{1}$, then $h\left(d_{i} \cdot\left(p_{0}+p_{1}\right)\right) \subset H_{n}\left(d_{i}\right)$.
C^{\prime}. If link e_{i} of E_{n+1} intersects $q_{0}+q_{1}$, then $h^{-1}\left(e_{i} \cdot\left(q_{0}+q_{1}\right)\right) \subset K_{n}\left(e_{i}\right)$.
Definition of homeomorphism h. For each point p of P let $d(p, i)$ denote the sum of the elements of D_{i} containing p and $H_{i} d(p, i)$ denote the sum of the images under H_{i} of the elements of D_{i} in $d(p, i)$. We note that $d(p, i)$ is the sum of one or two adjacent links of D_{i} while $H_{i} d(p, i)$ is the sum of one or two adjacent links of E_{i}.

Of course, $d(p, i+1) \subset d(p, i)$. We now show that $H_{i+1} d(p, i+1) \subset H_{i} d(p, i)$ by showing that if $e_{j}^{i+1}=H_{i+1}\left(d_{k}^{t+1}\right)$ where d_{k}^{t+1} is an element of D_{i+1} in $d(p, i+1)$, then $e_{j}^{i+1} \subset H_{i} d(p, i)$. Since $d_{k}^{i+1} \subset K_{i} H_{i+1}\left(d_{k}^{i+1}\right)$ by Condition B, the link $K_{i} H_{i+1}\left(d_{k}^{i+1}\right)=K_{i}\left(e_{j}^{i+1}\right)$ of D_{i} lies in $d(p, i)$. Also, $e_{j}^{i+1} \subset H_{i} K_{i}\left(e_{j}^{i+1}\right)$ by Condition B^{\prime} and $H_{i} K_{i}\left(e_{j}^{i+1}\right)=H_{i}\left(d_{k}^{t+1}\right) \subset H_{i} d(p, i)$.

For each point p of P, let $h(p)$ be the intersection of the closures of the decreasing sequence of open sets $H_{1}(d(p, 1)), H_{2}(d(p, 2)), H_{3}(d(p, 3)), \cdots$. The intersection exists because $\left.H_{i+1} d(p, i+1)\right) \subset H_{i}(d(p, i))$. It is a point because the diameter of the closure of $H_{i}(d(p, i))$ is less than $2 / 2^{i}$.

If q is any point of $d(p, i)$, the diameter of $H_{i}(d(p, i))+H_{i}(d(q, i))$ is less than $3 / 2^{i}$ so $\rho(h(p), h(q))<3 / 2^{i}$. Therefore h is continuous.

If $p \in p_{x}$, we find from Condition A that $H_{i}(d(p, i))$ intersects q_{x}. Hence $h(p) \in q_{x}$.

We now show that h takes P onto Q. Let q be a point of Q and e_{j}^{i} be an element of E_{i} containing q. There is an element d_{k}^{i} of D_{i} such that $H_{i}\left(d_{k}^{i}\right)=e_{j}^{i}$. Therefore for some point p of $P, e_{j}^{i} \subset H_{i}(d(p, i))$. Since the diameter of $H_{i}(d(p, i))$ is less than $2 / 2^{i}, \rho(q, h(p))<2 / 2^{i}$. This shows that $h(P)$ is dense in Q. Since $h(P)$ is closed, it is equal to Q.

The transformation h we have defined agrees with the given homeomorphism h on $p_{0}+p_{1}$ because for each point p of $p_{0}+p_{1}, H_{i}(d(p, i))$ contains $h(p)$ by Condition C.

Finally we show that h is $1-1$. Suppose $h(p)=h(q)$. Since the closures of $H_{i} d(p, i)$ and $H_{i} d(q, i)$ intersect and we are dealing in this paper only with chains whose nonadjacent links do not have closures that intersect, then $H_{i} d(p, i)$ intersects $H_{i} d(q, i)$. Since K_{i-1} is a chain map, the set $K_{i-1} H_{i} d(p, i)$ intersects the set $K_{i-1} H_{i} d(q, i)$. But the closures of these two sets contain p and q respectively so $\rho(p, q)<4 / 2^{i}$. Therefore $p=q$ if $h(p)=h(q)$.
7. A circle of pseudo-arcs. It follows from Theorem 10 that each circle of pseudo-arcs is homogeneous and that any two of them are homeomorphic. In this section we show that the plane contains a circle of pseudo-arcs. But we first describe an analogous upper-semicontinuous collection G of arcs in the plane.

Let W_{1} and W_{2} be circles in the plane with center at $(0,0)$ and radii equal to one and two, respectively. We shall define a collection $\left\{g_{x} \mid-\pi \leqq x \leqq \pi\right\}$ of mutually exclusive arcs such that each g_{x} is a straight line interval which is irreducible from W_{1} to W_{2} (or which is the sum of two such straight line intervals whose intersection is a common end point), $g_{-\pi}=g_{\pi}$, and $\sum g_{x}(-\pi \leqq x \leqq \pi)$ is a circle-like continuum.

Let $g_{-\pi}$ be the sum of the two straight line intervals from ($r=1, \theta=-\pi$) to $(r=2, \theta=-\pi \pm \pi / 12)$. Let $g_{\pi}=g_{-\pi}$. Let g_{0} be the sum of the two straight line intervals from $(1,0)$ to $(2, \pm \pi / 12)$. Let $g_{\pi / 2}$ be the sum of the straight line intervals from $(2, \pi / 2)$ to ($1, \pi / 2 \pm \pi / 12$) and let $g_{-\pi / 2}$ be the sum of the straight line intervals from ($2,-\pi / 2$) to ($1,-\pi / 2 \pm \pi / 12$). Because of their shape, these elements of $\left\{g_{x}\right\}$ will be called V 's.

Now let U denote the set of all points of the annulus $W_{1} W_{2}$ not belonging to any V defined thus far. There are a finite number of components of U which intersect both W_{1} and W_{2} and in each of these components two V 's will be defined. Let the arc $T_{i}(i=1,2)$ be the closure of the intersection of
such a component of U with W_{i}. One end point of $T_{i}(i=1,2)$ is an end point of a V and the other end point of T_{i} is the vertex of a V. Now construct two disjoint V 's in U such that one of these V 's has its end points on T_{i} ($i=1,2$), the other has its vertex on T_{i} and these three points are the quarter points of T_{i}. The reader should note that on W_{1} or W_{2} no vertex of a V is adjacent to a vertex of a V and no end point of a V is adjacent to an end point of another V.

After the above construction of a pair of V 's has been carried out for every component of U which intersects both W_{1} and W_{2}, a new U may be defined and the process continued countably many ($\boldsymbol{\aleph}_{0}$) times. Let G denote the collection of all the V 's together with each straight line interval which is the limit of a convergent sequence of V 's but which is not a subset of a V. By appropriately choosing the subscripts $x,\left\{g_{x} \mid-\pi \leqq x \leqq \pi\right\}$ is the collection G. It is easy to see that G is an upper-semicontinuous collection of arcs, G is a circle (if its elements are thought of as points) and G^{*} (the sum of the elements of G) is a circle-like continuum. Something quite similar to the fact that G^{*} is circle-like has been previously observed by Roberts [25].

The reader will note that G is not a continuous collection. This is due fundamentally to the fact that in the plane an arc has two sides. Furthermore G^{*} is not homogeneous for still another reason, namely, some points of G are local separating points (the vertices of the V 's) while others are not. But if pseudo-arcs are substituted for the V 's, it should be possible to eliminate these two properties from G and G^{*} respectively while in general keeping G and G^{*} unchanged in other respects.

As before let W_{1} and W_{2} be concentric circles in the plane with center at $(0,0)$ and radii one and two, respectively. Since there are countably many V^{\prime} 's of the preceding construction, let them be $V_{1}, V_{2}, V_{3}, \cdots$ in inverse order to the polar angle between a_{i} and c_{i} (the end points of V_{i}). Let b_{i} be the vertex of V_{i} and for convenience let b_{i} belong to W_{1} when i is odd but belong to W_{2} when i is even.

Now there exists a sequence $D_{1}, D_{2}, D_{3}, \cdots$ of circular chains of simple domains in the plane such that
(1) for each positive integer i, the closure of each element of D_{i+1} is a subset of some element of D_{i};
(2) for each i, each element of D_{i} intersects the annulus $W_{1} W_{2}$ and not both of two intersecting links of D_{i} intersect $W_{1}+W_{2}$,
(3) if (for each i) δ_{i} is the maximum diameter of a link of D_{i}, then $\delta_{i} \rightarrow 0$,
(4) the subscripts of the elements of D_{i} which intersect W_{1} preserve the counterclockwise order on W_{1} and the subscripts of these intersecting W_{2} preserve the counterclockwise order on W_{2},
(5) if a_{i}, b_{i}, and c_{i} are the end points and vertex of V_{i}, there is a natural number $m(i)$ such that the (shortest) subchain of $D_{m(i)}$ irreducible from a_{i} to c_{i} contains b_{i}, the subchain of $D_{m(i)+1}$ irreducible from a_{i} to b_{i} contains c_{i},
the subchain of $D_{m(i)+2}$ irreducible from b_{i} to c_{i} contains a_{i}, the subchain of $D_{m(i)+3}$ irreducible from a_{i} to c_{i} contains b_{i}, etc.,
(6) $\left(W_{1}+W_{2}\right) \cdot \Pi D_{i}^{*}=$ closure of $\sum\left(a_{i}+b_{i}+c_{i}\right)$ as in the preceding example,
(7) for each i, D_{i} is the sum of finitely many subchains $T_{i 1}, T_{i 2}, \cdots$, $T_{i n(i)}$ such that (a) $T_{i 1}^{*}, T_{i 2}^{*}, \cdots, T_{i n(i)}^{*}$ is a circular chain, and (b) for each j, [$1 \leqq j \leqq n(i)], T_{i j}$ is either irreducible from W_{1} to W_{2} or (for some k) irreducible about $a_{k}+b_{k}+c_{k}$, and
(8) if $h<i$, each element of $\left\{T_{y}^{*}\right\}_{j=1}^{n(i)}$ is a subset of two intersecting elements of $\left\{T_{h j}^{*}\right\}_{j=1}^{n(h)}$ and
(9) if $h<i$ and $T_{i j}$ is a refinement of $T_{h k}+T_{h l}, T_{i j}$ is crooked [3] with respect to $T_{h k}+T_{h l}$ where $l=(k+1) \bmod n(h)$.

Fig. 3

Now let $M=\Pi D_{i}^{*}$ and let G denote the set of all subcontinua of M which are irreducible from W_{1} to W_{2}. The reader will observe that if (9) were omitted the construction of the chains D_{i} could be carried out in such a way that each element of G would be an arc if its intersection with $W_{1}+W_{2}$ were two points and indecomposable if this intersection were three points. Also, in this case M would be a continuous circle-like circle of continua. With the addition of (9) one may see with the help of [3] that each element of G is a pseudo-arc. It follows from Theorem 10 that M is homogeneous.

Bibliography

1. R. D. Anderson, On monotone interior mappings in the plane, Trans. Amer. Math. Soc. vol. 73 (1952) pp. 211-222.
2. ——, Report on results on continuous collections of pseudo-arcs in the plane and homogeneity of the universal curve, Summary of Lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, 1955, pp. 76-77.
3. R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. vol. 15 (1948) pp. 729-742.
4. ——, Concerning hereditarily indecomposable continua, Pacific J. Math. vol. 1 (1951) pp. 43-51.
5. ——, Snake-like continua, Duke Math. J. vol. 18 (1951) pp. 653-663.
6. ——, Another homogeneous plane continuum, Bull. Amer. Math. Soc. Abstract 60-6766.
7. -, The pseudo-arc, Summary of Lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, 1955, pp. 70-73.
8. C. E. Burgess, Some theorems on n-homogeneous continua, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 136-143.
9. -, Certain types of homogeneous continua, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 348-350.
10. -, Homogeneous continua, Summary of Lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, 1955, pp. 73-76.
11. Gustav Choquet, Prolongements d'homéomorphies. Ensembles topologiquement nommables, Caractérization topologique individuelle des ensembles fermés totalement discontinus, C.R. Acad. Sci. Paris, vol. 219 (1944) pp. 542-544.
12. H. J. Cohen, Some results concerning homogeneous plane continua, Duke Math. J. vol. 18 (1951) pp. 467-474.
13. F. B. Jones, A note on homogeneous plane continua, Bull. Amer. Math. Soc. vol. 55 (1949) pp. 113-114.
14. -, Certain homogeneous unicoherent indecomposable continua, Proc. Amer. Math. Soc. vol. 2 (1951) pp. 855-859.
15. On a certain type of homogeneous plane continuum, Bull. Amer. Math. Soc. Abstract 60-6-770.
16. -, On homogeneity, Summary of Lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, 1955, pp. 66-68.
17. -, On a certain type of homogeneous plane continuum, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 735-740.
18. I. Kapuano, Sur une proposition de M. Bing, C. R. Acad. Sci. Paris vol. 236 (1953) pp. 2468-2469.
19. ——, Sur les continus linéaires, C. R. Acad. Sci. Paris, vol. 237 (1953) pp. 683-685.
20. B. Knaster, Un continu dont tout sous-continu est indécomposable, Fund. Math. vol. 3 (1922) pp. 247-286.
21. B. Knaster and C. Kuratowski, Problème 2, Fund. Math. vol. 1 (1920) p. 223.
22. S. Mazurkiewicz, Sur les continus homogènes, Fund. Math. vol. 5 (1924) pp. 137-146.
23. E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc. vol. 63 (1948) pp. 581-594.
24. \quad, A note on the pseudo-arc, Trans. Amer. Math. Soc. vol. 64 (1949) pp. 57-58.
25. J. H. Roberts, Collections filling a plane, Duke Math. J. vol. 2 (1936) pp. 10-19.
26. Z. Waraszkiewicz, Sur les courbes planes topologiquement homogenes, C. R. Acad. Sci. Paris, vol. 204 (1937) pp. 1388-1390.

The University of Wisconsin, Madison, Wis.
The University of North Carolina, Chapel Hill, N. C.

